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Abstract: Super-resolution techniques are employed to enhance the quality of digital images. Color spaces are developed to model 
colors in various digital environments. In the literature, several studies suggest that applying color space transformations and 
subsequently employing super-resolution techniques on the transformed images improve image quality. This study analyzes the 
impact of color space trans-formations on super-resolution applications. The analysis is conducted by performing the super-resolution 
process entirely in the RGB color space, followed by converting the obtained result into a different color space and comparing the 
quality metrics. The findings reveal that it is possible to achieve higher scores by converting RGB images into YCbCr or CIELab color 
spaces, despite no actual improvement in perceived image quality. Our experiments involve applying image enhancement techniques 
solely within the RGB color space, converting the results into alternative color spaces, and comparing them with ground truth images 
in Set5, Set14, BSDS100, Urban100, and DIV2K. Working in color spaces other than RGB does not lead to significant visual quality 
improvement. Our experiments demonstrate that solely through color space conversion, traditional metrics such as PSNR and SSIM, as 
well as deep learning-based metrics like DISTS and A-DISTS, can yield higher scores. Therefore, the observed improvements in quality 
metrics resulting from color space transformations may be misleading and may not reflect actual enhancements in image fidelity. With 
the A-DISTS metric that evaluates human perception, our study examines not only the impact of transformations from RGB to 
alternative color spaces on metrics but also evaluates the alignment of these metrics with human perception, an area that has received 
limited attention in the literature. 
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1. Introduction 
Image data captured by imaging systems, such as digital 
cameras, can be enhanced using various methods. Super-
resolution aims to improve the data obtained by image 
detection systems with various techniques (Candès and 
Fernandez-Granda, 2014). With resolution enhancement 
techniques, it is possible to use more economical 
solutions instead of more expensive optical systems that 
can provide shorter exposure or high-quality images. 
Color spaces are mathematically defined models 
developed to describe colors to determine which 
components can be used to obtain color. It is important 
to choose the appropriate color space according to the 
characteristics of the environment in which the image 
will be processed or printed to obtain true-to-life colors 
(Yilmaz et al., 2002). Although most of the resolution 
improvement studies work with RGB color space, which 
is modeled according to the intensity of red, green, and 
blue color components, it has been observed that color 

spaces including achromatic data along with color axes 
give successful results in resolution improvement studies 
(Dong et al., 2016; John et al., 2016; Z. Wang et al., 2021). 
According to Z. Wang et al. (2021), RGB color space is 
frequently used compared to other color spaces, and 
improvements made on the Y component of YCbCr (or 
YCC) color space in previous models are mentioned. It 
has been revealed that models trained using different 
color spaces with luminance axis other than RGB can 
make a significant difference in success (Z. Wang et al., 
2021). John et al. (2016) show that YCbCr and CMYK 
models produce better PSNR results and stated that 
CIELab color space could also be used in resolution 
enhancement (John et al., 2016). Dong et al. (2016) 
highlighted the superior performance of the Y channel 
within the YCbCr color space compared to training across 
all axes, yet demonstrated that the best results were 
achieved using the RGB color space (Dong et al., 2016). 
Gong et al. (2017) similarly propose the use of the 
classified dictionary learning method in super-resolution 
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processes, recommending the L* coordinate in the 
CIELab color space and the Y coordinate in the YIQ 
system (Gong et al., 2017). 
Single-image super-resolution (SISR) techniques aim to 
enhance the resolution of a single low-resolution image, a 
critical task in various image processing applications. A 
common practice in SISR is to convert RGB images into 
alternative color spaces, such as YCbCr and CIELab, 
assuming that this conversion improves image quality. 
However, the efficacy of this approach remains unclear, 
prompting our investigation. 
Unlike previous works, which primarily focus on 
quantitative assessments using metrics like PSNR and 
SSIM, we scrutinize the perceptual quality of images 
resulting from color space transformations. Our 
methodology involves applying image enhancement 
techniques exclusively in the RGB color space, followed 
by conversion into YCbCr and CIELab for comparison 
with the original images. By doing so, we aim to elucidate 
whether the observed improvements in scores translate 
to tangible enhancements in visual quality. 
Instead of applying resolution enhancement techniques 
on completely different color spaces, the color spaces of 
the input and output images are processed in RGB format 
as usual, then converted after the enhancement process. 
It has been demonstrated that color space 
transformation, when excluded from the resolution 
enhancement process, may independently appear to 
improve performance. 
This study uses the Set5 (Bevilacqua et al., 2012), Set14 
(Zeyde et al., 2012), BSDS100 (Martin et al., 2001), and 
Urban100 (Huang et al., 2015), DIV2K with unknown 
degradation (Agustsson and Timofte, 2017) datasets, 
which are frequently used in resolution enhancement 
studies. All images within the datasets consist of real-
world high-resolution visuals paired with their 
corresponding synthetically generated low-resolution 
counterparts (Su et al., 2024). 
Section II discusses the interpolation methods, neural 
network architectures, and transformer-based models 
and image quality assessment methods utilized in this 
study; Section III presents the experiments conducted; 
and Section IV provides the results and suggestions. 
 
2. Materials and Methods 
This section provides a detailed examination of the 
techniques and models employed in this study, alongside 
the image quality metrics utilized for evaluation.  
2.1. Resolution Enhancement Methods 
Generalizing the effect of color space conversion, 
interpolation methods and deep learning methods that 
have successful results in resolution enhancement are 
examined and have been studied. 
2.1.1. Interpolation methods 
Figure 1 shows the most widely used and known 
interpolation methods, which are nearest neighbor, 
bilinear, bicubic, and Lanczos interpolation, applied to 3D 
planes. 

2.1.2. Nearest neighbor interpolation 
The pixel value desired to be obtained in nearest 
neighbor interpolation takes the value of the known 
nearest point. Although it is the easiest interpolation 
method to implement and understand, created images 
become low quality. This is because the rectangular 
function is equivalent to the sinc function in the Fourier 
transform and there is a rapid loss in the transition gain 
(Fadnavis, 2014). Image distortion, called "pixelating" in 
nearest neighbor interpolation, is a more noticeable 
problem, especially as the upscaling factor is increased. 
In our nearest neighbor interpolation experiments, 
Euclidean distance is used for distance metric. 
 

 
 

Figure 1. Demonstration of nearest neighbor, bilinear, 
bicubic, and Lanczos interpolation methods on examples 
(Getreuer, 2011). 
 
2.1.3. Bilinear interpolation 
According to the table shown in Figure 2, the data to be 
estimated is obtained from pairs of points. E value is 
obtained from A-B pairs and F value is obtained from C-D 
pairs. Then, P is obtained from the predicted E-F point 
pairs using weighted average. More realistic results are 
achieved than nearest neighbor interpolation (Han, 
2013). 
 

 
 

Figure 2. Application of the bilinear interpolation 
method on the matrix (Han, 2013). 
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2.1.4. Bicubic interpolation 
It works similarly to the bilinear interpolation algorithm. 
The calculation is made here considering that it is a 
square matrix with 16 elements, where the points A-B-C-
D are placed at the corners as shown in Figure 3. In this 
algorithm, the influence is expanded more than in the 
double linear interpolation algorithm. While calculating 
the point e between points A and B, a linear and non-
broken curve is used by using the points A-1 and B+1 
(Han, 2013). 
 

 
 

Figure 3. Diagram of bicubic interpolation algorithm 
(Han, 2013). 
 
2.1.5. Lanczos interpolation 
Lanczos interpolation is a low-band filtering method 
close to the ideal sinc function. It is performed using the 
sinc filter. The computational cost is more costly than 
other methods because it contains trigonometric 
functions. The sinc function uses a windowed pruned 
sinc function, as shown in Figure 4 (Burger and Burge, 
2008). It is more successful than the other interpolation 
methods mentioned in removing noises in the image. 
 

 
 

Figure 4. Lanczos window functions (a, b) and their 
corresponding interpolation kernels (c, d) (The original 
sinc function is shown as dashed.) (Burger and Burge, 
2008). 
 
2.1.6. Deep learning methods 
Deep learning has introduced transformative 
advancements in computer vision, with architectures like 
Swin Transformer and GANs leading the way in feature 
extraction and high-resolution image synthesis. Swin 
Transformer excels at multi-scale feature learning 
through hierarchical attention mechanisms, while GANs 
leverage adversarial training for generating highly 
realistic images, exemplifying state-of-the-art deep 
learning applications in image processing (Ma et al., 
2022; Wang et al., 2023). 

2.1.7. SRGAN (Super-Resolution generative 
adversarial networks) 
SRGAN is a generative adversarial network-based neural 
network that focuses on a single-image super-resolution 
called perceptual loss, which is the weighted sum of 
adversarial and content loss, with a new approach, as 
seen in equation 1 (Ledig et al., 2017). 

lSR = lXSR + 10−3lGenSR  (1) 

SRGAN’s discriminator network works as expected as 
standard GAN architecture. In a generative network, 
residual blocks are used to make the training process 
easier and to keep the previous layers connected and 
active. Another crucial point is the input data. Instead of 
using random noise, the input image is used directly.  
SRGAN generates realistic textures on images but they 
have some artifacts (Wang et al., 2018). 
In our SRGAN experiments, all parameters and network 
types are defined as mentioned in the original study 
(Ledig et al., 2017). 
2.1.8. Real-ESRGAN (Enhanced super-resolution 
generative adversarial networks) 
ESRGAN (Wang et al., 2018) tries to enhance image 
quality according to SRGAN results. ESRGAN uses SRGAN 
network architecture, adversarial loss, and perceptual 
loss. Besides this, residual-in-residual dense block is 
introduced, and batch normalization is abandoned. The 
idea of predicting relative realness comes from 
relativistic average GAN (RaGAN) (Jolicoeur-Martineau, 
2018). RaGAN compares images to determine which is 
more realistic instead of resolving, “Is this real or fake?” 
(Wang et al., 2018). 
Most image restoration and enhancement approaches are 
not good at real-world data because real-world data is 
more complicated than the ones generated by classical 
degradation models consisting of down sampling, 
blurring, noising, and JPEG compression. Real-ESRGAN, 
mainly based on ESRGAN, is focused on real-world data 
to overcome its complexity by using completely synthetic 
data while training the network. U-Net discriminator 
(Ronneberger et al., 2015) is used instead of a VGG-style 
discriminator to make local details clearer (X. Wang et al., 
2021). 
In our Real-ESRGAN experiments, all parameters and 
network types are defined as mentioned in the original 
study (X. Wang et al., 2021). 
2.1.9. Swin2SR (SwinV2 transformer for compressed 
image super-resolution and restoration) 
Transformer is a network architecture built for natural 
language processing and becomes an important 
advancement in this topic by using the attention 
mechanism (Vaswani et al., 2017). In image processing, 
CNNs are very useful, but Vision Transformers (ViT) 
achieve better results than CNNs with fewer 
computational resources at the training phase 
(Dosovitskiy et al., 2020). The idea behind ViT is the 
representation of the image in the transformer network. 
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While pixel arrays are used in CNNs, ViT uses visual 
tokens that represent an image split into non-overlapped 
patches. 
CNNs use the same convolution kernel for various image 
sections, but this may not be a good idea for all situations 
because they are content-independent. The self-attention 
mechanism in visual transformers solves this problem, 
but this time, fixed-sized patches may cause border 
artifacts and sacrifice information over border pixels. 
With shallow feature extraction, deep feature extraction, 
and high-quality image reconstruction modules, SwinIR 
has fewer parameters but more successful results (Liang 
et al., 2021). 
Swin2SR is an improved form of SwinIR (Liang et al., 
2021) using SwinV2 Transformer (Liu et al., 2022) 
network specialized for super-resolution. With pre-
normalization in the SwinV2 Transformer, more training 
parameters without instabilities become possible. Scaled 
cosine attention between queries and keys minimizes 
resolution gaps. With these improvements, despite using 
%33 fewer iterations in the training process, Swin2SR 
achieves similar results to SwinIR (Conde et al., 2023). 
In our Swin2SR experiments, all parameters and network 
types are defined as mentioned in the original study 
(Conde et al., 2023). 
2.2. Image Quality Assessments 
PSNR and SSIM (Wang et al., 2004), visual comparison 
metrics that have been used for a long time and have 
become standardized in the literature, give results 
contrary to human perception in some techniques that 
show successful results. Therefore, artificial neural 
network-based approaches are emerging to perform 
better optimization in artificial neural network-based 
visual enhancement methods and to determine how close 
the proposed images are to the original forms. With 
LPIPS (Learned Perceptual Image Patch Similarity) 
(Zhang et al., 2018), DISTS (Deep Image Structure and 
Texture Similarity) (Ding et al., 2020) and A-DISTS 
(Adaptive-DISTS) (Ding et al., 2021), which are a metric 
developed with the idea of combining structural and 
textural similarity, results become very close to human 
interpretation. 
Quality assessment metrics are divided into two 
categories: information-oriented and data-oriented. 
Knowledge-based methods such as PSNR, SSIM, FSIM 
(Zhang et al., 2011), VIF (Sheikh and Bovik, 2006), and 
GMSD (Xue et al., 2013) generally use classical distance 
measurements between two images. For this reason, the 
mentioned methods do not achieve as accurate results as 
DeepIQA (Bosse et al., 2017), PieAPP (Popat and Picard, 
1997), LPIPS (Zhang et al., 2018), DISTS, and A-DISTS, 
which are data-driven methods for capturing perceptual 
similarities. To compare these methods, which produce 
values in completely different value ranges and different 
sizes, an approach called “Two-alternative forced choice” 
(2AFC) is used, in which the observer has to choose one 
of two options in a way that would prevent from being 
undecided (Ding et al., 2021). 

In Figure 5, the original (a), degraded (b), and resampled 
original image (c) are shown. Although PSNR, SSIM, FSIM, 
VIF, GMSD, DeepIQA, PieAPP, and LPIPS metrics all give 
the result that image (b) is better than the image (c) 
contrary to human perception, DISTS metric is concluded 
that image (c) is better. However, in some cases, DISTS 
can reach a general conclusion over the entire image by 
ignoring the textures in the image. To overcome this 
ignorance problem, A-DISTS is developed to analyze local 
tissue details better with an adaptive approach. 
 

 
 

Figure 5. Original grass image (a), degradation after JPEG 
compression (b), resampled image (c) 
 
The VGG neural network in DISTS does not offer 
sufficient sensitivity in terms of size. The convolution 
filters of the VGG neural network are renormalized so 
that the L2 norm of each filter is equal to 1. Thus, 
statistics are made easier to compare by ensuring that all 
convolution filters respond in similar intervals. A 
statistical feature called the dispersion index is used with 
A-DISTS as formulated in equation 2. In (3), p�k

(i) is used to 
calculate the difference between X and Y images, and the 
pattern probability of the ith dimension of the kth patch is 
expressed. This measurement produces a value in the 
range of [0,1] (Ding et al., 2020). 
As the PSNR and SSIM values increase, it is concluded 
that there are more compatible images, while results 
close to zero with DISTS and A-DISTS reveal that the 
images are more compatible. Resolution enhancement 
studies still include PSNR and SSIM metrics to compare 
with previous studies. DISTS and A-DISTS results are also 
included in our study, as they give the closest results to 
evaluating local textures and human perception 
according to their formulation as seen in equations 2 and 
3. 

A − DISTS(X, Y) = 1 − 1
N
∑ ∑ S(X�j

(i), Y�j
(i))Ni

j=0
M
i=0  (2) 

 
S�X�j

(i), Y�j
(i)� =  1

Ki
∑ �p�k

(i)l�x�j,k
(i), y�j,k

(i)�+ q�k
(i)s�x�j,k

(i), y�j,k
(i)��Ki

k=1  (3) 

Another important perceptual metric is Learned 
Perceptual Image Patch Similarity (LPIPS). Zhang et al. 
introduces LPIPS designed to align closely with human 
visual similarity judgments. This metric leverages deep 
features from intermediate layers of pretrained 
convolutional neural networks to quantify perceptual 
similarity between images. These features capture both 
low-level visual attributes (e.g., edges, textures) and 
high-level semantic structures. For two images, feature 
maps fl(x1) and fl(x2) are extracted from layer l, 
normalized, and their L2 distances are computed in 
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equation 4, where wl represents learned weights 
optimized to align with human perceptual judgments. 
The overall LPIPS distance is obtained by aggregating 
contributions across layers as seen in equation 5. The 
metric has been validated across various tasks, including 
super-resolution and image compression, demonstrating 
higher alignment with human evaluations compared to 
traditional metrics like PSNR and SSIM. By utilizing 
different architectures (e.g., AlexNet, VGG, SqueezeNet), 
LPIPS balances computational efficiency and perceptual 
fidelity, making it a robust tool for perceptual similarity 
assessment in computer vision (Zhang et al., 2018). In 
our experiments, predefined VGG network model is used 
to evaluate method outputs. 

dl(x1, x2) = ||wl  ⨀  (fl(x1)− fl(x2))||22 (4) 

LPIPS(x1, x2) =  ∑ dl(x1, x2)l  (5) 

According to the PSNR calculation in equation 6, MAXI 
value depends on the maximum available value in the 
signal, which is 255 for RGB images for each axes 
(Dosselmann and Yang, 2005). However, according to 
John et. al., in all PSNR experiments among various color 
spaces, the maximum value is assumed to be 255 (John et 
al., 2016). Similarly, Wang et al. (2021) accepts 255 as 
the maximum value because of the 8-bit representation. 
In our study, MAXI is used as 255, too. In the SSIM 
original paper, it’s unclear what color space is used for 
the input (Nilsson and Akenine Möller, 2020; Wang et al., 
2004). For both SSIM and PSNR calculations, 255 are 
assumed as the maximum value for all color space axes 
for a fair comparison within this study. 

PSNR = 10 ⋅ log10 �
MAXI2

MSE
� (6) 

Although the PSNR calculation in resolution 
enhancement studies is mostly obtained by converting 
images in various color spaces to YCbCr color space and 
calculating on the Y channel, it is suggested that a clear 
approach is needed in this regard (Keles et al., 2021). 
However, in this study, in which the effect of color space 
change on the results is examined, the quality 
assessments of each color space are calculated and 
evaluated separately in terms of color space. 
2.3. Methodology 
In our experiments, all images are enhanced exclusively 
within the RGB color space with 4x upscaling factor. 
Following the super-resolution process, the upscaled and 
ground truth images are subsequently converted to the 
YCbCr and CIELab color spaces. Image Quality 
Assessment (IQA) metrics are then applied to both the 
original and enhanced images within their respective 
color spaces for comprehensive evaluation.  
Figure 6 demonstrates the method overview. 

 
 

Figure 6. Method overview. 
 
The PSNR and SSIM metrics are calculated for all axes to 
enable a clearer comparison of the differences between 
color spaces. However, many studies in the literature 
focus on the Y axis in the YCbCr color space, and the L* 
axis in the CIELab color space that include luminance 
information, often disregarding the chromatic 
components. Due to differences in how these metrics are 
calculated and the perspectives presented in various 
studies, expressing the changes in metric results as 
percentages is crucial for understanding the extent of 
improvement. In our study, the most important 
consideration when analyzing results should be to focus 
on the percentage increase in metric scores rather than 
their absolute values. This is because our study performs 
enhancements on images exclusively in the RGB color 
space but evaluates performance metrics on the 
achromatic axes of the YCbCr and CIELab color spaces. 
2.3.1. Interpolation method details 
In our bilinear interpolation experiments, the weighted 
average is used to obtain the missing value; in bicubic 
interpolation experiments, 4x4 pixel neighborhoods 
around the target pixel is used based on a cubic 
polynomial expansion; in Lanczos interpolation 
experiments, windowed sinc function utilizing 4x4 
neighborhood is used. 
2.3.2. SRGAN hyper-parameters and model details 
The SRGAN generator network consists of 16 residual 
blocks, each constructed with 3×3 convolutional layers 
featuring 64 feature maps per layer, and employs 
Parametric ReLU (PReLU) as the activation function for 
enhancing the learning capacity of neural networks by 
allowing the slope of negative inputs to be learned 
adaptively, improving model flexibility and performance 
compared to standard ReLU. To upscale image resolution, 
two sub-pixel convolutional layers are incorporated. The 
discriminator network, on the other hand, is composed of 
8 convolutional layers with a kernel size of 3×3, where 
the number of feature maps doubles at each layer, 
starting from 64 and increasing up to 512. Leaky ReLU 
(α=0.2), addresses the "dying ReLU" problem by allowing 
a small, non-zero gradient for negative inputs, enabling 
the network to learn even when activations are not 
strictly positive, is utilized as the activation function in 
the discriminator (Erdemir et al., 2020). Optimization is 
performed using the Adam algorithm (β1=0.9) with a 
learning rate set to 10−4 for the first 100,000 iterations 
and reduced to 10−5 for the subsequent 100,000 
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iterations. The loss function combines perceptual loss, 
which leverages content loss based on high-level feature 
maps of a pre-trained VGG network, with adversarial loss 
driven by the discriminator's ability to distinguish super-
resolved images from real high-resolution images. During 
training, each mini-batch contains 16 images with a 
resolution of 96×96, derived from a dataset of 350,000 
images from ImageNet. To enhance stability and avoid 
suboptimal convergence, the generator is initialized 
using the SRResNet model pre-trained with MSE loss. 
This carefully structured design allows SRGAN to 
produce photo-realistic SR images, effectively bridging 
the gap between low-resolution inputs and high-
resolution outputs (Ledig et al., 2017). 
2.3.3. Real-ESRGAN hyper-parameters and model 
details 
The Real-ESRGAN model is designed to address complex 
real-world image degradations using a refined 
architecture and carefully tuned hyperparameters. Its 
generator adopts Residual-in-Residual Dense Blocks 
(RRDB) architecture, while the discriminator utilizes a U-
Net design with spectral normalization to enhance local 
detail discrimination and stabilize training. The model is 
trained in two stages: an initial PSNR-oriented phase 
using L1 loss and a combined training phase 
incorporating L1, perceptual, and GAN losses with 
respective weights of {1, 1, 0.1}. Optimized with the 
Adam optimizer (β1=0.9, β2=0.999), the learning rate is 
set to 2×10−4 during the first stage and 10−4 in the 
second, with a total of 1,000,000 and 400,000 iterations 
respectively. The training employs high-resolution 
patches (256×256) from datasets such as DIV2K and 
Flickr2K and uses a second-order degradation model 
incorporating Gaussian and Poisson noise, JPEG 
compression, and sinc filters. Additional techniques such 
as Exponential Moving Average (EMA) and sharpening of 
ground-truth images further enhance training stability 
and visual sharpness, ensuring robust performance in 
real-world scenarios (X. Wang et al., 2021). 

2.3.4. Swin2SR hyper-parameters and model details 
The Swin2SR model leverages an advanced architecture 
optimized for compressed image super-resolution and 
restoration, incorporating 6 Residual Swin Transformer 
Blocks, each containing 6 Swin Transformer Layers with 
a window size of 8, 180 channels, and 6 attention heads. 
The training process employs an L1 loss as the primary 
objective, supplemented by auxiliary and high-frequency 
loss functions to enhance the accuracy of low-resolution 
restoration and preserve fine details. Training is 
conducted on DIV2K and Flickr2K datasets using 192-
pixel high-resolution image patches, with standard 
augmentations such as rotation and flipping. 
Optimization is performed with the Adam optimizer 
(β1=0.9, β2=0.999) and an initial learning rate of 2×10−4. 
The model achieves efficient resolution enhancement 
through a pixel shuffle mechanism, maintaining a 
relatively compact size of 12 million parameters, 
enabling it to deliver competitive performance in 
restoring high-quality images from heavily compressed 
inputs (Conde et al., 2023). 
 
3. Results 
When the quality of the improved images is evaluated 
according to PSNR and SSIM measurements, as Ledig et 
al. mentioned, some inconsistencies stand out in various 
methods because these metrics are based on pixel-wise 
differences and cannot capture perceptual details well 
(Ledig et al., 2017). However, for transformer-based 
approaches, PSNR and SSIM metrics are still working as 
expected. It is observed qualitatively that better results 
are achieved with Swin2SR in almost all enhanced 
images, as seen in  
Table 1. 
Enhanced images on the Set5 dataset with nearest 
neighbor, linear, bicubic, Lanczos interpolations, SRGAN, 
Real-ESRGAN, and Swin2SR results are shown in Figure 
7, Figure 8, and Figure 9. 

 
 

Figure 7. Interpolations, SRGAN, Real-ESRGAN, and Swin2SR results on Set14 - baboon.png and comic.png images 
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Figure 8. Interpolations, SRGAN, Real-ESRGAN, and Swin2SR results on Set5 dataset 

 
 

Figure 9. Interpolations, SRGAN, Real-ESRGAN, and Swin2SR results on DIV2K dataset. 
 
The model used in Real-ESRGAN is trained with fully 
synthetic and noise-free data. Therefore, while it clearly 
shows the outlines of the objects in the images, in some 
cases, it is observed that "beauty filters" do smooth the 
image but lose the details. Besides this, there’s a conflict 
in the baboon image between the DISTS and A-DISTS 
results. This is because the A-DISTS metric, which focuses 
much better on local patterns, is better optimized than 

DISTS. In such images where texture details are 
important, A-DISTS is a more proper metric that can be 
used to determine the successful method. 
When the conversion to YCbCr color space is performed 
on SRGAN and Real-ESRGAN outputs saved by working 
with original images in RGB color space, it is seen that 
only the effect of color space change on PSNR and SSIM 
results is positive. 
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Table 1 shows the averages of PSNR, SSIM, DISTS, A-
DISTS, and LPIPS values calculated before and after 
conversion to YCbCr and CIELab color spaces according 

to the methods applied to the data sets. Note that lower 
DISTS, A-DIST, and LPIPS values mean better results, 
unlike PSNR and SSIM. 

 
Table 1. Image quality assessment scores of before and after conversion to YCbCr and CIELab color spaces (Best scores 
within the dataset and quality metric are marked as “*”.) 
 

Da
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Method 

Before Conversion (RGB1) 
Success of After Conversion (%) 
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A-
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IP
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Se
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Interpolation – NN9 29.03 0.86 0.26 0.48 0.34 18.7% 18.2% 28.3% 29.1% 26.7% 17.8% 18.1% 28.1% 27.8% 28.3% 
Interpolation - Linear 30.44 0.89 0.21 0.42 0.28 17.9% 16.3% 5.2% 20.6% 8.4% 17.0% 16.1% 8.0% 21.2% 13.0% 
Interpolation - Cubic 30.04 0.89 0.20 0.39 0.26 18.6% 19.1% 6.4% 23.6% 10.5% 18.5% 18.7% 8.9% 24.1% 15.0% 
Interpolation - Lanczos 30.34 0.90 0.19 0.38 0.25 18.4% 18.8% 8.7% 25.2% 12.8% 18.3% 18.4% 11.0% 25.7% 16.9% 
SRGAN10 31.44 0.90 0.09 0.23 *0.14 17.3% 12.0% 36.8% 43.0% 36.8% 16.9% 11.3% 39.6% 44.7% 40.9% 
Real-ESRGAN11 28.81 0.85 0.14 0.37 0.21 18.5% 16.5% 13.5% 26.7% 21.0% 17.8% 16.3% 19.5% 29.3% 25.1% 
Swin2SR12 *35.57 *0.94 *0.11 *0.24 *0.14 15.2% 6.4% 31.1% 38.6% 32.0% 14.5% 6.1% 34.6% 41.0% 36.2% 

Se
t1

4 

Interpolation - NN 27.07 0.82 0.26 0.50 0.37 20.1% 26.9% 25.2% 24.4% 25.6% 19.5% 26.9% 25.6% 24.0% 25.5% 
Interpolation - Linear 27.75 0.83 0.24 0.49 0.35 19.6% 25.8% -5.2% 15.7% 10.2% 19.1% 25.8% -4.5% 15.3% 10.7% 
Interpolation - Cubic 27.31 0.84 0.24 0.47 0.33 20.1% 25.7% -4.3% 17.8% 11.3% 20.1% 25.8% -3.5% 17.4% 11.5% 
Interpolation - Lanczos 27.11 0.84 0.23 0.46 0.33 20.3% 25.4% -3.3% 18.8% 12.0% 20.3% 25.4% -2.9% 18.2% 12.1% 
SRGAN 28.36 0.83 *0.12 0.34 *0.22 19.4% 23.5% 20.5% 28.3% 26.8% 19.1% 22.8% 21.2% 28.3% 27.6% 
Real-ESRGAN 27.80 0.81 0.15 0.44 0.27 19.5% 25.3% 3.8% 18.5% 17.0% 19.1% 25.3% 3.8% 19.1% 17.6% 
Swin2SR *31.50 *0.89 0.14 0.34 *0.22 16.8% 14.0% 11.5% 26.3% 22.8% 16.5% 14.0% 9.9% 26.2% 22.5% 

BS
DS

10
0 

Interpolation - NN 25.85 0.83 0.28 0.51 0.41 22.0% 43.5% 25.2% 21.6% 24.7% 21.1% 43.3% 24.8% 20.2% 24.2% 
Interpolation - Linear 26.75 0.86 0.27 0.49 0.37 21.3% 38.7% -4.6% 16.9% 11.6% 20.5% 38.3% -3.5% 16.2% 11.1% 
Interpolation - Cubic 26.43 0.87 0.26 0.47 0.36 21.5% 36.8% -4.9% 18.0% 9.8% 20.8% 36.4% -4.1% 17.2% 9.0% 
Interpolation - Lanczos 26.50 0.87 0.26 0.47 0.35 21.5% 36.1% -4.0% 18.8% 10.7% 20.8% 35.7% -3.5% 18.0% 10.1% 
SRGAN 28.09 0.84 *0.12 *0.32 *0.22 20.2% 34.4% 27.4% 31.0% 27.6% 19.3% 32.6% 25.4% 30.2% 26.9% 
Real-ESRGAN 28.25 0.85 0.16 0.41 0.27 19.8% 34.7% 13.6% 24.0% 22.6% 19.1% 34.1% 13.4% 23.4% 22.1% 
Swin2SR *31.33 *0.91 0.17 0.36 0.25 17.8% 21.7% 14.8% 27.5% 25.2% 17.0% 21.3% 15.4% 26.9% 25.2% 

Ur
ba

n1
00

 

Interpolation - NN 25.33 0.81 0.26 0.47 0.36 22.5% 31.6% 21.4% 21.2% 22.1% 21.6% 32.1% 20.6% 20.5% 21.9% 
Interpolation - Linear 25.84 0.82 0.26 0.46 0.35 22.0% 31.4% 1.1% 17.8% 12.9% 21.1% 31.7% 1.1% 17.5% 13.6% 
Interpolation - Cubic 25.13 0.82 0.25 0.44 0.33 22.7% 35.2% 1.7% 18.9% 14.6% 22.1% 35.4% 1.6% 18.5% 14.9% 
Interpolation - Lanczos 25.12 0.82 0.25 0.44 0.33 22.7% 34.7% 2.4% 19.4% 15.0% 22.1% 34.8% 2.2% 19.0% 15.1% 
SRGAN 26.93 0.84 *0.11 0.33 0.21 21.1% 19.7% 29.2% 29.8% 30.9% 20.2% 18.5% 28.3% 30.1% 31.1% 
Real-ESRGAN 25.69 0.82 0.13 0.38 0.25 22.0% 24.5% 12.7% 23.4% 21.2% 21.1% 24.9% 12.6% 24.0% 22.1% 
Swin2SR *30.55 *0.91 *0.11 *0.29 *0.18 18.0% 11.1% 26.0% 30.9% 29.2% 17.2% 11.0% 26.1% 31.6% 30.6% 

DI
V2

K 
 

(u
nk

no
w

n 
de

g.
) 

Interpolation - NN 22.93 0.57 0.41 0.59 0.54 18.1% 40.3% 28.9% 17.0% 20.6% 18.8% 40.3% 26.3% 16.5% 17.7% 
Interpolation - Linear 23.20 0.58 0.30 0.61 0.51 17.8% 37.5% -2.5% 17.7% 14.0% 18.5% 37.1% -3.5% 14.8% 10.8% 
Interpolation - Cubic 22.80 0.57 0.28 0.59 0.49 18.4% 41.9% -1.6% 18.3% 13.5% 19.1% 41.5% -2.0% 16.2% 9.9% 
Interpolation - Lanczos 22.95 0.58 0.28 0.59 0.49 19.0% 41.0% 0.3% 19.4% 14.2% 18.8% 43.7% -0.9% 16.5% 10.9% 
SRGAN 23.00 0.57 0.23 *0.53 *0.44 18.3% 41.7% 4.4% 18.0% 16.2% 18.8% 41.3% 2.5% 27.7% 13.1% 
Real-ESRGAN 22.33 0.54 *0.21 0.58 *0.44 16.9% 47.0% 10.8% 10.9% 14.4% 19.5% 46.6% 4.9% 18.8% 10.3% 
Swin2SR *23.29 *0.59 0.25 0.58 0.46 36.7% 38.7% 2.9% 22.2% 14.9% 18.5% 37.5% 1.1% 19.4% 10.8% 

Average (%):  20.0% 28.5% 10.9% 22.8% 18.9% 19.2% 28.3% 11.1% 23.0% 18.9% 
1 RGB: Red, Green, and Blue, 2 YCbCr: Luminance, Chrominance Blue, and Chrominance Red, 3 CIELab: Commission Internationale de 
l’Eclairage’s standard; L* is for luminance, a* is for green to red, b* is for blue to yellow, 4 Peak Signal-to-Noise Ratio, 5 Structural 
Similarity Index Measure, 6 Deep Image Structure and Texture Similarity, 7 Adaptive-Deep Image Structure and Texture Similarity, 8 
Learned Perceptual Image Patch Similarity, 9 Nearest Neighbor, 10 Super Resolution Generative Adversarial Networks, 11 Enhanced 
Super-Resolution Generative Adversarial Networks, 12 SwinV2 Transformer for Compressed Image Super-Resolution and Restoration. 
 
4. Discussion 
Our study delves into the dual impact of transforming 
RGB data into alternative color spaces, emphasizing not 
only the quantitative changes in evaluation metrics but 
also their correspondence to human perceptual 
experiences. The findings suggest that while certain 
transformations improve specific metrics, their 
perceptual relevance varies, underscoring the 
importance of incorporating human-centric assessments 
in future research. These insights highlight a critical gap 
in the literature, advocating for the development of 

methods that balance computational accuracy with 
perceptual validity. 
Wang et al. (2021) and John et al. (2016) have 
highlighted the effectiveness of the YCbCr color space for 
improving PSNR and SSIM metrics in super-resolution 
tasks. Our findings corroborate these observations, 
demonstrating that transformations to the YCbCr space 
lead to higher scores in these metrics. However, similar 
to prior studies, we found that these improvements do 
not correspond to significant enhancements in 
perceptual image quality. Furthermore, the results 
obtained through transformations to the CIELab color 
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space align with the findings of John et al. (2016), who 
suggested its potential utility in resolution enhancement. 
Nevertheless, our experiments reveal that the 
contributions of these transformations are 
predominantly metric-specific and do not reflect tangible 
improvements in visual fidelity (Ding et al., 2021; John et 
al., 2016). 
According to Dong et al. (2016), the YCbCr space allows 
the method to enhance only the luminance channel, 
which is crucial for SR tasks aiming at perceptual 
improvements. This focus reduces the computational 

load and avoids distortions in color channels (Dong et al., 
2016). 
Xu et al. (2020) propose a super-resolution 
reconstruction method that integrates L2/3 sparse 
regularization with color channel constraints. By 
converting low-resolution images to the YCbCr color 
space, the luminance channel is enhanced using the 
sparse model, while the chrominance channels are 
refined to reduce color artifacts (Xu et al., 2020). Note 
that this study applies x2 upscaling factor to only five 
images that listed in Table 2, PSNR and SSIM metrics are 
applied on Y channel solely.  

 
Table 2. Bicubic interpolation and proposed method of Xu et al. (2020), x2 upscaling factor with YCbCr color space 

 PSNR 1 SSIM 2 

Image Bicubic Interpolation Xu et al.’s Method Success Bicubic Interpolation Xu et al.’s Method Success 

Flowers 30.38 33.40 9.9% 0.898 0.938 4.5% 
Comic 26.06 27.92 7.1% 0.851 0.908 6.7% 

Butterfly 27.42 31.19 13.7% 0.915 0.958 4.7% 
Skiing 32.00 34.33 7.3% 0.931 0.953 2.4% 
Bike 25.66 27.92 8.8% 0.850 0.913 7.4% 

1 Peak Signal-to-Noise Ratio, 2 Structural Similarity Index Measure 
 
In all the experiments of our study, the resolution 
improvement process is carried out in RGB color space, 
and measurements are calculated before and after the 
conversion to the color spaces specified in the tables. 
Therefore, the effects of different color spaces on the 
calculations of success values are examined without any 
effect on the improvement phase. Although converting an 
image in RGB color space to YCbCr and CIELab color 
spaces does not affect the image quality, it positively 
affects the quality assessment results. The metrics used 
to assess the success of SISR methods are not sufficient 

for evaluating the effects on different color spaces. There 
is a need for alternative metrics that can effectively 
assess the success across various color spaces. Without 
developing these metrics, examining the impact of color 
space transformation will not be robust.  
The success seems to be high in interpolating and deep 
learning architectures because the value ranges between 
the color spaces do not match exactly. The extreme 
values and the number of possible different values are 
shown in Table 3. 

 
Table 3. Value ranges of RGB, YCbCr, and CIELab color space axes (Yang et al., 2007) 

 RGB1 YCbCr2 CIELab3 
 R G B Y Cb Cr L* a* b* 
Maximum Value 255 255 255 235 240 240 100 110 110 
Minimum Value 0 0 0 16 16 16 0 -110 -110 
Number of values  256 256 256 220 225 225 101 221 221 
Possible values  
per color space 

16,777,216 11,137,500 4,932,941 

1 RGB: Red, Green, and Blue, 2 YCbCr: Luminance, Chrominance Blue, and Chrominance Red, 3 CIELab: Commission Internationale de 
l’Eclairage’s standard; L* is for luminance, a* is for green to red, b* is for blue to yellow. 
 
Converting an image from an RGB color space that scales 
to a wider range of values, such as a YCbCr color space 
that scales to a narrower range of values, will reduce the 
variety of color values from 16,581,375 different possible 
values to 11,137,500. As a result of this decrease, 
although there is no improvement other than the 
technique applied in the image quality, the quality seems 
to increase according to the calculation metrics. The 
same situation is observed in the CIELab color space, too. 
This time, while converting from RGB, all possible values 
in CIELab decrease to 4,932,941. 

The impact of color space transformation on 
performance metrics could similarly be a subject of 
investigation in other areas of image processing. 
Despite these considerations, if a comparison between 
YCbCr and CIELab color spaces is to be made beyond 
RGB, YCbCr emerges as computationally efficient due to 
its linear transformation from RGB and the independent 
processing of the luminance channel. This makes it ideal 
for tasks where structural accuracy is prioritized over 
color fidelity. On the other hand, CIELab's alignment with 
human perception renders it suitable for applications 
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requiring high color accuracy, albeit at the cost of 
increased computational complexity. Consequently, 
YCbCr is often preferred in real-time applications, 
whereas CIELab is more suitable for offline processes 
where perceptual quality is of greater importance. 
 

5. Conclusion  
This study explores the intricate relationship between 
color space transformations and super-resolution 
techniques, highlighting the balance between 
quantitative metrics and perceptual quality. While RGB 
continues to dominate as the standard color space for 
resolution enhancement, our findings challenge its 
singular dominance by examining the impact of post-
enhancement transformations to any color space with 
achromatic axis like YCbCr and CIELab. Although these 
transformations do not inherently enhance visual quality, 
they significantly influence image quality metrics both 
pixel-wise and perceptual-based. This discrepancy raises 
important questions about whether working in different 
color spaces meaningfully impacts perceived image 
quality or simply skews numerical evaluations. Future 
efforts should aim to refine quality assessment 
frameworks and explore innovative hybrid approaches 
that maximize both perceptual and computational 
benefits in super-resolution tasks. 
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