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Abstract

Hematologic cancers are often diagnosed after symptoms become apparent, which can make it difficult to control the disease
and implement effective treatment strategies. Studying gene expression profiles is vital for early diagnosis and the development
of treatment strategies for hematologic cancers such as T-cell leukemia. The motivation of this study is to reveal the molecular
mechanisms in the pathogenesis of this disease by comparing the whole gene expression profile in Adult T-cell Leukemia (ATL)
cells and CD4+T cells of healthy individuals. For this aim, several machine learning algorithms, Naive Bayes, K -Nearest
Neighbor, Support Vector Machine, Random Forest, C4.5, Logistic Regression, Linear Discriminant Analysis and Artificial
Neural Network algorithms were used. Their performance was compared on the GSE33615 dataset by using 5-fold cross
validation with stratified sampling. Among these, Artificial Neural Network stood out with an AUC of 0.98 and an F1 score of
0.93. It was followed by SVM with an AUC of 0.97 and 0.957 F1 score. In addition to performance comparison, information
gain ratio, SHAPLEY metric and correlation values were calculated for the detection of genes causing ATL. Among the models,
the three with the highest performance (ANN, SVM, RF) were selected, and the top ten most significant genes were identified
for each. Considering the intersection of these gene sets, ZSCAN18, PLK3, and NELL2 were found to be associated with the
related disease. These genes may contribute to Adult T-cell Leukemia pathogenesis through their roles in cell cycle regulation,
transcriptional control, and oncogenic signaling. Further investigation is needed to clarify their precise molecular mechanisms
in the related disease.

Keywords: Adult T-cell Leukemia (ATL), Microarray study, Machine learning, Variable importance.

Eriskin T Hiicreli Losemi (ATL) Patogenezindeki Marker Genlerin Makine
Ogrenmesi Modelleri ile Kesfi ve Performans Karsilastirmasi

Oz

Hematolojik kanserler genellikle semptomlar belirginlestikten sonra teshis edilir ve bu durum hastaligin kontrol altina alinmasin
ve etkili tedavi stratejilerinin uygulanmasim zorlagtirabilir. Ozellikle T hiicreli 16semi gibi hematolojik kanserlerde, gen
ekspresyon profillerinin incelenmesi, erken tan1 ve tedavi stratejilerinin gelistirilmesinde hayati 6neme sahiptir. Bu ¢alisma,
Yetigkin T hiicreli Losemi (ATL) hiicrelerinde ve saglikli bireylerin CD4+T hiicrelerindeki tiim gen ekspresyon profilini
kargilagtirarak, bu hastaligin patogenezindeki molekiiler mekanizmalart farkli makine 6grenme yontemleri ile ortaya ¢ikarma
motivasyonu ile gergeklestirilmistir. Naive Bayes, K-En Yakin Komsu, Destek Vektor Makinesi, Rassal Orman, C4.5, Lojistik
Regresyon, Dogrusal Diskriminant Analizi ve Yapay Sinir Aglar1 algoritmalarimin karar performanslari, GSE33615 veri seti
iizerinde tabakal1 6rnekleme ile 5 kath ¢apraz dogrulama yontemi kullanilarak karsilastirilmistir. Bunlar arasinda Yapay Sinir
Ag1 0,98 AUC ve 0,93 F1 skoru ile 6ne ¢ikmistir. Onu, 0.97 AUC ve 0.957 F1 skoru ile SVM takip etmistir. Performans
kargilagtirmasina ek olarak, ATL'ye neden olan genlerin tespiti i¢in bilgi kazang orani, SHAPLEY metrigi ve korelasyon
degerleri hesaplanmistir. Her model i¢in en yiliksek dneme sahip ilk on gen belirlenmistir. Modeller tarafindan dnerilen genlerin
kesisim kiimesi dikkate alindiginda, ZSCAN18, PLK3 ve NELL2 genlerinin ilgili hastalik i¢in iliskili oldugu bulunmustur. Bu
genler, hiicre dongiisli diizenlenmesi, transkripsiyonel kontrol ve onkojenik sinyal iletimi iizerindeki rollerine bagli olarak
Eriskin T-hiicreli Losemi patogenezine katkida bulunabilir. Bu genlerin molekiiler rollerinin daha iyi anlasilabilmesi i¢in ileri
aragtirmalara ihtiya¢ duyulmaktadir.
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1. Introduction

Adult T-cell leukemia/lymphoma (ATL) is a highly aggressive disease caused by human T-cell
leukemia virus type I (HTLV-1) with an extremely bad prognosis (Ishitsuka and Tamura, 2014;
Uchiyama et al., 1977). The median overall survival of the aggressive subtypes, including the acute
and lymphoma types (about 60% of cases), is only sketchy to ten months (Katsuya et al., 2015). Even
those initially diagnosed in indolent forms, such as smoldering and chronic subtypes, usually progress
to aggressive disease within a year (Takasaki et al., 2010). HTLV-1 infection is estimated to affect 5
to 20 million people worldwide (Gessain and Cassar, 2012), with higher prevalence in regions such
as southwestern Japan, the Caribbean Basin and central Africa (Ishitsuka and Tamura, 2014). While
HTLV-1 infection usually leads to a lifelong carrier state, less than 5% of infected individuals die
from HTLV-1-associated leukemia. ATL leukemogenesis involves the accumulation of multiple
genetic abnormalities in HTLV-1-infected cells, a complex process.

The diagnosis of ATL is usually made by detection of HTLV-1 antibodies in the light of clinical
signs such as lymph node enlargement, skin lesions, hypercalcemia and subsequent confirmation of
HTLV-1 proviral DNA by PCR (Cook et al., 2021). Early diagnosis of ATL is critical, as the
aggressive progression of the disease often results in mortality.

While recent studies have introduced various ML models for the diagnosis of ATL, these efforts
often focus solely on predictive performance using a single method, such as deep learning (Kiligarslan
and Pacal, 2023; Xu et al., 2023), support vector machines (Chong et al., 2020), random forests (Faiz
et al., 2024), or decision trees (Eckardt et al., 2020). However, very few studies emphasize the
identification of the underlying genome profiles (Abass and Adeshina, 2021; Stricker et al., 2017),
which are essential for understanding disease mechanisms and developing effective treatment
strategies. Furthermore, model interpretability and biological insight are often overlooked, despite
their importance in clinical settings where transparency and explanation of predictions are vital.

To address these gaps, this study makes several key contributions to the field. First, it provides
a comprehensive comparison of widely used ML models—Naive Bayes, K-Nearest Neighbour,
Support Vector Machine, Random Forest, C4.5, Logistic Regression, Linear Discriminant Analysis
and Artificial Neural Network—on a common ATL-specific dataset (GSE33615). Second, beyond
evaluating classification accuracy, the study applies model-specific feature importance techniques
(Information Gain Ratio, SHAP etc.) extract informative gene signatures relevant to ATL. Third, the
results reveal a consistent set of potential biomarkers (PLK3, ZSCAN18, and NELL?2) identified
across models, offering novel insight into the genomic basis of ATL and opening new possibilities

for early diagnosis, targeted therapy, and drug development.
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The sections of this paper are organized as follows: In the next section (Related Works), the
works that have examined the use of machine learning in ATL diagnosis are summarized. The dataset
used in the study is described in the Materials section. The details of the experimental design and the
methods used are given in the Methods section. The performance comparisons of the models and the
significant genes identified for each model are presented in the Results section. The Conclusion

section includes contributions of the findings of this study and recommendations for future work.

2. Related Work

In recent years, ML has been increasingly adopted in biomedical sciences to support disease
diagnosis, prognosis, and decision-making. Numerous studies demonstrate the diagnostic utility of
ML in various domains, including hematologic malignancies, solid tumors, and even non-medical
pattern recognition problems. However, the use of ML in ATL remains limited, particularly with
regard to model interpretability and gene-level insights. Notable ML-based studies in this domain are
critically reviewed below, with an emphasis on their methodological strengths, key findings, and
limitations. Based on this review, key gaps in the existing literature were identified, which guided the
motivation for this study. The novel contributions of the present work, along with its distinctions from
prior research, are articulated in the final paragraph of this section.

Chong et al. (2020) employed a decision tree-based model for lymphoid neoplasms, achieving
94.7% overall accuracy. Nevertheless, the model failed to generalize well to ATL samples, showing
error rates up to 100% in some cases—highlighting the diagnostic complexity of ATL using
conventional ML tools.

Ghobadi et al. (2022) emphasized that although there are clinical guidelines for ATLlymphoma
and its subtypes, they are far from being the gold standard. Therefore, reliable biomarkers should be
found. With this aim, they proposed an SVM-based ML model capable of making diagnoses based
on mRNA and miRNA features. Although the application details of the model were not given, it was
emphasized nearly 95% accuracy was achieved. The related study is one of the rare studies in which
disease-causing gene profiles are identified. However, these gene profiles were not extracted from
the SVM model. Instead, experimentally validated target genes of miRNAs were examined.

In another study for T cell lymphoma diagnosis, deep learning was preferred (Xu et al., 2023).
In the related study, class imbalance was observed in the dataset. To mitigate the potential negative
impact of this issue on prediction performance, the authors used the bootstrap sampling to
synthetically balance the class distribution. The classification performance of the model was
calculated by area under curve (AUC) metric and found to be 0.75. Although the study highlights that

the DL model detects gene expressions, the specific mechanism by which it accomplishes this remains
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unclear. Considering that the deep learning model is a black box approach, it is critical to explain in
detail how these expressions are revealed from the model.

Another study using deep learning was conducted by Akalin and Yumusak (2023). The dataset
used in the study has 12500 gene profiles for each individual. In order to reduce the computational
complexity, feature selection was performed using whale optimization. Long term short term memory
(LSTM) model was used for the diagnosis of ALL, AML and MLL leukaemia types. The accuracy
of the model was 89.88%. Since the method is structurally more suitable for time series analysis, its
use may be limited in studies that do not examine time or memory dependent variation. Therefore,
the suitability of the LSTM method in the context of this study should be evaluated. Regardless of
the methodology, this study also did not examine the factors affecting the diagnosis.

Patel et al. (2021) proposed a multi-class diagnostic model for leukaemia diagnosis. Leukaemia
tissues were micro-arrayed for extracting the gene expressions, then feature selection was applied on
these expressions. Although the study was conducted for multi-class classification, logistic regression
was executed based on a binary classification approach. Since the model was implemented using a
"one-vs-all" strategy, the performance results are far from reflecting the true nature of the multi-class
classification problem. Similar to many other studies in the domain, this work focuses solely on the
performance of the model. It does not examine the disease-causing or protective gene profiles.

Study by Zhang et al. (2022), employed autoencoders to reduce the dimensionality of
transcriptomic data, followed by clustering algorithms to identify biologically meaningful patient
subgroups. The model successfully stratified patients into high- and low-risk categories, as evidenced
by significant differences in survival analyses. Although the model identified molecular subtypes
correlated with prognosis, its clinical applicability remains untested. Additionally, the use of black-
box models like autoencoders limits interpretability, and no external validation was conducted to
assess generalizability.

In broader contexts, although not directly related to the present topic, the examination of the
following studies may also provide valuable insights.

A hybrid ensemble approach integrating logistic regression, support vector machines (SVM),
and Extra Trees classifiers was implemented to enhance gene selection and prediction performance
(Ruppapare et. al, 2022). The study utilized ADASYN for class imbalance and Chi-Squared tests for
feature selection. Reported performance metrics were promising, with accuracy at 92%, F1-score at
90%, and balanced accuracy at 89%. However, the model's applicability to other hematological
malignancies was not explored, and the biological significance of the selected genes was
insufficiently discussed. External validation was also absent.

The work of Stagno et al. (2025) reflects the growing interest in applying ML to hematological

malignancies. Their study reviews ML's utility in the diagnosis, prognosis, and treatment of chronic
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myeloid leukemia (CML), emphasizing the need for integrating predictive performance with clinical
interpretability. Although insightful, this work focuses on CML and does not address ATL-specific
genomic signatures.

Erdem and Bozkurt (2021) performed a comparative evaluation of various supervised ML
techniques for prostate cancer prediction, showing that performance varies significantly across
algorithms. However, similar to ATL studies, their focus remains largely on classifier performance
rather than model explainability or biomarker identification.

To summarize the aforementioned studies, Table 1 provides an overview of key machine
learning-based approaches applied to ATL and related leukemia diagnoses, outlining the datasets
used, methodologies implemented, reported performance metrics, and notable limitations or
contributions of each study.

Table 1. Comparison of the related work with the proposed study

Study (Author, Dataset Used Methods Performance Notes on
Year) Applied Metrics Limitations/Strengths
Chong et al., Lymphoid Decision Tree Accuracy: Failed to generalize
2020 neoplasm data 94.7% (but poor | to ATL; up to 100%
ATL error in ATL cases
generalization)
Ghobadi et al., mRNA and SVM Accuracy: ~95% | Gene profiles not
2022 miRNA data (exact AUC not | derived from model;
reported) lack of application
details
Xu et al., 2023 T-cell Deep Learning AUC: 0.75 Black-box model;
lymphoma gene | (DL) + mechanism for gene
expression Bootstrap for expression detection
imbalance unclear
Akalin & 12,500 gene LSTM + Whale | Accuracy: Suitable for time
Yumusak, 2023 | profiles Optimization 89.88% series; no diagnostic
factor analysis
Patel et al., 2021 | Leukemia Logistic Not specified Lacks true multi-
microarray data | Regression (performance class representation
(One-vs-All for | incomplete) and gene-level
multi-class) interpretation
Zhang et al., Transcriptomic | Autoencoder + Survival Lacks external
2022 data Clustering stratification validation; black-box
limits interpretability
Ruppapare et al., | Not ATL- Hybrid Acc: 92%, F1: No biological
2022 specific (general | Ensemble (LR, 90%, Bal. Acc: | interpretation; not
genes) SVM, Extra 89% ATL-specific
Trees) +
ADASYN
Stagno et al., CML-related Literature — Not ATL-specific;
2025 Review of ML emphasizes need for
tools interpretable ML
Erdem & Prostate cancer | Various — No gene-level
Bozkurt, 2021 data supervised ML interpretation;
models general ML
benchmark
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Proposed Work

GSE33615
(ATL-specific)

Naive Bayes, K-
Nearest

AUC: 0.98
(ANN),

Model
interpretability via

Neighbour, SHAP, biologically
Support Vector | F1: 0.95 (SVM), | relevant gene
Machine, signatures identified,

1051

Precision: 0.95
(RF)

Random Forest,
C4.5, Logistic
Regression,
Linear
Discriminant
Analysis and
Artificial Neural
Network +
SHAP & Info
Gain +
Evolutionary
Opt.

comparative model
evaluation

Based on the literature review and the studies examined, despite the methodological progress
in the field, three core gaps remain:

e Insufficient ATL-specific focus: Despite ATL's clinical importance, only a limited
number of studies address it specifically, and even fewer examine gene-level signatures
tied to its pathogenesis by using ML.

e [ack of comparative model analysis on the same dataset under controlled conditions for
ATL.

e Single-method dependency: Most studies focus on a single classifier, without
comparative benchmarking of different algorithms under the same experimental
conditions

e Limited use of variable importance or explainable Al tools (e.g., SHAP, Information
Gain) to extract disease-relevant gene signatures.

The proposed study addresses these shortcomings by:

e Comparatively evaluating multiple ML models (SVM, RF, C4.5) under identical
conditions on the GSE33615 dataset

e Combining high prediction performance with biological interpretability, offering a
framework for biomarker discovery, therapeutic target identification, and improved
clinical decision-making in ATL.

e Applying model-specific variable importance techniques (SHAP for SVM and RF,
Information Gain Ratio for C4.5) to identify biologically meaningful genes associated
with ATL.

In contrast to prior literature that prioritizes accuracy alone, this study not only advances

diagnostic performance but also contributes to understanding the molecular basis of ATL by



Karadeniz Fen Bilimleri Dergisi 15(3), 1046-1069, 2025 1052

integrating prediction with gene-level interpretation. Thus setting a foundation for interpretable
precision oncology in the context of AT and paving the way for biomarker-driven research and

targeted therapeutic strategies
3. Materials and Methods

This study was conducted with two main motivations. The first one is to compare the
performance of ML methods that are widely used in T-cell leukemia diagnosis and to establish a final
model with high diagnostic performance. The second motivation is to identify disease-causing genes

for early diagnosis of ATL. The general infrastructure of the study is presented in Figure 1.
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Figure 1. Infrastructure of the experimental design

In this study, the leukemia dataset, GSE33615, was retrieved from Gene Expression Omnibus
(GEO) database. Genes with low variance were eliminated in the feature selection step. Then, several
ML models were trained and validated. The performance of each model was compared according to
precision, recall, AUC and F1 score metrics. In order to find the genes affecting ATL, the results of
top tree performing models were first given to the correlation matrix. To calculate the variable
importance for each ML model, different metrics were applied. Shapley's criterion and variants were

used for black-box based methods. TreeSHAP and information gain ratio (IGR) was used for RF.
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Then, the significant genes for each model were ranked and the common ones were added to the gene

pool as genes affecting the disease.

3.1. Material

To identify marker genes in leukemia cancer, the dataset GSE33615 (Fujikawa et al., 2016;

Yamagishi et al., 2012) from the Gene Expression Omnibus (GEO) database was used. The dataset

consists of 52 ATL diagnosed cases and 21 controls, each containing 45,015 gene profiles. For the

preliminary analysis of these data, the box plot, Figure 2, was used.
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Figure 2. Distribution of the GSE33615 Data set. Purple color indicates CD4+t cell (control), Green
Color indicates ATL (case).

Both groups have a wide range of genes; however, they exhibit significant expression

differences. Figure 2 shows that leukemia samples generally have higher gene expression levels and

a wider distribution range than normal samples. This indicates that the dataset has a wide range of

gene expressions and that gene markers in the presence of ATL are different from normal samples.

3.2. Methods

The performance of DT based methods, specifically C4.5 and RF and black-box approaches

such as SVM, have been compared for the diagnosis of ATL. Unlike other studies in the literature,

this study aims to identify the gene profiles affecting the disease along with high diagnostic

performance. Therefore, a specific variable importance extraction was performed for each model,

and the common genes identified as significant in the diagnosis of ATL were determined. The

methodology used to achieve these primary objectives are presented in detail under subheadings. All

ML and feature selection algorithms were developed in the R programming language.
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3.2.1. Feature Selection

The GEO GSE33615 dataset was used for training and validation of the ML models. This set
consists of 52 cases and 21 controls with 45,015 gene profiles for each individual. A preprocessing
step was applied in order to improve the performance of the models and find the genes with the
highest impact on diagnosis.

In this step, genes exhibiting low genetic diversity were filtered out based on their variance
values. Specifically, the varFilter and genefilter functions from the R platform were employed with a
threshold value of 0.9. Utilizing such a high variance threshold is a recognized strategy to enhance
the reliability of data analysis by focusing on genes with significant expression variability. This
approach effectively reduces noise and potential false positives, thereby improving the accuracy of
the model. For instance, Haury et al. (2011) demonstrated that applying stringent variance thresholds
can lead to more stable and interpretable molecular signatures in high-dimensional gene expression
data. Similarly, Lee et al. (2013) highlighted the importance of robust feature selection methods in
early cancer detection, emphasizing that higher variance thresholds contribute to the identification of

consistent and biologically relevant biomarker

3.2.2. Naive Bayes

Naive Bayes is a probabilistic classification algorithm based on Bayes’ Theorem, assuming
feature independence given the class label (Rish, 2001). It is particularly effective for high-

dimensional data and works efficiently even with small datasets.

The posterior probability that a given instance x=(x,,x2,...,xn) belongs to class Ck is computed

as in Equation 1:

P(Cr) 171 P(Crlxi
P(Cklx) — (Ck) P(-1x)( klxi) (1)

Here, P(Cy) is the prior probability of class Ck, P(x;/Cx) is the likelihood of feature x; given

class Crand P(x) is the evidence.
3.2.3. K Nearest Neighbours
KNN is a simple yet effective non-parametric classification algorithm that makes decisions

based on proximity between data points in a feature space (Cover and Hart, 1967). The method does

not construct an explicit model during training; instead, it stores the entire training dataset and
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performs classification during the prediction phase based on distance calculations (Keller et al.,
1985).

In this algorithm, a given instance is assigned to the class most common among its k nearest
neighbors, where k is a predefined positive integer. The proximity between data points is usually
measured using distance metrics such as Euclidean distance, Manhattan distance, or Minkowski
distance. In this study, Euclidean distance is used, which is calculated as in Equation 2 for a d-

dimensional feature space:

D(x,y) = |2& (x;—y:)? (2)

Here, x and y are the feature vectors of two instances, and d is the total number of features.
Once the distances to all training instances are computed, the k& closest instances are selected, and the
class label is determined by majority voting. In the case of a tie, methods such as distance-weighted

voting can be applied.

3.2.4. Support Vector Machine

SVM, developed by Vapnik et al. (1995), is one of the most preferred ML methods in the
literature due to its successful performance on high-dimensional datasets of nonlinear problems (Roy
and Chakraborty, 2023). Its main goal is to find the hyperplane that will provide the highest margin
between classes.

When the classes are linearly separable, a dataset of » points can be represented as (x1,yi),...,
(xnyn). Accordingly, any hyperplane, where w’ is the weight vector, x is the input vector and b is the
bias, can be written as the set of points given in Equation 3:

wlix+b = 3)

In binary classification, this hyperplane separates the classes according to the following
equation:

f={,wl—-b=>1-1,wix+b<-1 4)

The SVM tries to optimize the distance between these two hyperplanes to the maximum margin
by minimizing ||w||.

When the classification problem is nonlinear, the data is mapped to a higher dimensional space
using the kernel method instead of dot product. Different kernel functions (Equations 5 to 8) can be
used for this purpose.

K(xi )X ) = XiXj (5)

K(xi VX ) = (xix; + c)® (6)

K(xi » Xj ) = exp (—vy||x; - xj||2) (7)
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K(xi )X ) = tanh (ax;x; + ¢) (8)
In this study, the Radial-based SVM, renowned for its ability to model complex relationships
in biological data, was employed due to its effectiveness in high-dimensional and small datasets,

yielding significant results in genetics and molecular biology (Guido et al., 2024).
3.2.5. Random Forest

RF is an ensemble model consisting of multiple DTs (Breiman, 2001). Each tree is trained using
a random subset and the final decision is determined by the majority voting. RO increases the
generalization ability of the model by reducing overfitting (Breiman, 2001).

N denotes the total number of trees, each tree hi(x) predicts the data x and the results are

combined with the ensemble model as in Equation 9.

) = ST hy(x) ©)
3.2.6. C4.5 Decision Tree

C4.5 (Quinlan, 2014) is an advanced version of the ID3 algorithm and stands out with its ability
to work with both categorical and numerical data (Fahim et al., 2023). The model selects the attributes
that will divide the dataset in the most homogeneous way possible and places them in nodes at
different levels in the tree structure. Different criteria can be used for this division (branching).

In this study, the information gain ratio (IGR) based on entropy calculation is chosen as the
branching criterion. Entropy is calculated as in Equation 10. where S is the dataset and pi is the
probability for class i.

H(S) = - X1 pi(pi) (10)

After the entropy is calculated, the IGR for each variable is calculated as in Equation 11.

| Ty

IG(T,X) = H(T) = Yvevaixy 7 H(Ty) (11)

T is a dataset and X 1s a variable and 7 is a subset of X with value in Equation 2. The variable

with the highest IGR is assigned to the relevant node of the tree.
3.2.7. Logistic Regression

Logistic Regression is a widely used linear classification algorithm that models the probability

of a binary outcome using the logistic function (Hosmer et al., 2013). It estimates the parameters by
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For a given feature vector x, the probability that the instance belongs to class 1 is given by:

1
P(y = 1|x) = 1+e—(Bo+B1x1++Bnxn) (12)

Where fois the intercept, and f,...,f» are the model coefficients.
3.2.8. Linear Discriminant Analysis

Linear Discriminant Analysis is a supervised classification method that assumes a Gaussian
distribution for each class and models a common covariance matrix across classes (Fisher, 1936). It
seeks a linear combination of features that best separates two or more classes.

In case of binary classification, the decision function is based on the linear discriminant score

given in Equation — 13:

8 (0) = xT X e — /5 T 7y + log my (13)

Uk 1s the mean vector of class &, 2 is the shared covariance matrix, 7« is the prior probability of class
k.

An observation is assigned to the class with the maximum discriminant score. In this study,
LDA was chosen due to its efficiency and robustness with small datasets and linearly separable

features.

3.2.9. Artificial Neural Networks

Artificial Neural Networks are inspired by the biological structure of the human brain and
consist of interconnected nodes (neurons) arranged in layers: input, hidden, and output (Haykin,
1999). Each neuron computes a weighted sum of its inputs and passes it through a nonlinear activation

function. For a single hidden layer, the output of the network can be expressed as:

y = FEIw® 0T, w x; + b)) + by) (14)
xi are the input features, wii’ and w/’ are the weights for input-to-hidden and hidden-to-output
layers respectively, b; and by are bias terms, o() is the activation function (e.g., ReLU, sigmoid) and
/() denotes the activation function in the output layer, typically softmax or sigmoid depending on the

classification type
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All methods used in the study are implemented in R language and the hyper-parameter values

were optimized by evolutionary algorithm (Lee et al., 2021).
3.2.10. Gene Profiling Module

For top tree performing ML models, this module ranks the genes affecting the classification
according to their importance. For this ranking, model-specific variable importance method is
applied. For the tree-based models IGR and TreeSHAP (Inan and Rahman, 2023; Lundberg et al.,
2019) was used. For the ranking of the attributes in SVM and ANN model, the SAHPLEY criterion
(S. Lundberg, 2017), and KernelSHAP (Ekanayake et al., 2022) which are widely used in black box
approaches, is preferred. Based on game theory, this criterion calculates the presence or absence of a
selected attribute in the model using different combinations of attributes. The SHAPLEY measure of
the selected attribute is calculated by weighting the combinations based on the values of the attribute

as in Equation 15.
1511(p=1S|-1)! .
Bjwan = Zsetr.oni— 5 — (val(S U {j} = val(s)) (15)

In the training set consisting of p features, let S be a subset of features, x represent a vector
containing the values of the selected feature, and valx(S) denote the prediction of the values of features

in S based on the values of features not included in S.
4. Findings and Discussion

One of the motivations of the study is to compare the performance of ML methods frequently
used for the diagnosis of ATL. For this purpose, NB, KNN, SVM, RF, C4.5, LR, LDA and ANN
models were built, trained and tested on the Gene Expression Omnibus (GEO) GSE33615 dataset. A
5-fold cross-validation was applied for the training and testing process. For each fold, random
stratified sampling was used.

To assess potential overfitting, the difference in training and validation performance was

evaluated based on AUC. The corresponding comparison is presented in Figure 3.
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Training vs Validation AUC Across Models
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Figure 3. Train and validation AUC comparison of the esablished models.

Figure 3 demonstrates that the training AUC and Validation AUC exhibit a similar trend across
all models. Moreover, there is no significant performance gap between training and validation. This
suggests that the models learned without overfitting. Significant overfitting typically occurs when the
training AUC is substantially higher than the validation AUC (Goodfellow et al., 2016). Therefore, a
low but consistent validation AUC indicates that the model generalizes effectively.

Following the overfitting analysis, the validation performance of the models was compared

using precision, recall, AUC and F1 metrics. The results of this comparison are presented in Table 2.

Table 2. Performance comparison of the models

MODEL | Precisio | Recall | AUC | F1
n

NB 0.576 0.852 | 0.760 | 0.688
KNN 0.81 0.95 0.868 | 0.874
SVM 0.92 0.98 0.970 | 0.949
RF 0.95 0.945 | 0.963 | 0.947
C4.5 0.841 0.835 | 0.855 | 0.838
LR 0.840 0.835 | 0.887 | 0.837
LDA 0.872 0.823 | 0.892 | 0.846
ANN 0.928 0932 | 0.980 | 0.930

Table 2 shows that ANN, SVM and RF outperform other models in terms of AUC and F1. ANN
model has the highest AUC, while SVM has the highest F1. The superiority of SVM and ANN over
other models can be explained by their high ability to adapt to nonlinear problems on

multidimensional data (Vapnik, 1995; LeCun et al., 2015). On the other hand, the strong performance
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of the RF model can be attributed to its ensemble learning structure, which effectively reduces
overfitting and handles high-dimensional, nonlinear data (Breiman, 2001; Chi et al., 2022).

The main motivation and the contribution of the study is the extraction of gene profiles causing
ATL from the ML methods. For this purpose, genes that are highly correlated with ATL positive
status were selected from top tree performing models (ANN, SVM, RF). Then, different variable
importance calculations were made on each model. IGR and TreeSHAP (Inan and Rahman, 2023)
were used for RF, SHAPLEY (Wang et al., 2024) and KernelSHAP (Ekanayake et al., 2022) was
used for ANN and SVM. As a result of these calculations, the top ten genes found significant for each

model are presented through tables 3-5.

Table 3. Top ten significant genes found by ANN model. The genes found to be significant by all models are
shown in bold italics.

SYMBOL GENE NAME
1 ARHGAP20 Rho GTPase Activating Protein 20
2 FMNL2 Formin Like 2
3 PLK3 Polo-like kinase 3
4 SPHK?2 Sphingosine Kinase 2
5 ZBTB40 Zinc Finger And BTB Domain Containing 40
6 ZSCAN18 Zinc finger and SCAN domain-containing 18
7 CDHR1 Cadherin Related Family Member 1
8 PRPSAP2 Phosphoribosyl Pyrophosphate Synthetase
Associated Protein 2
9 TIAM?2 TIAM Racl Associated GEF 2
10 STAT4 Signal Transducer and Activator of Transcription 4

The first three genes found to be important by the ANN model are known to be closely
associated with leukemia ATL and cancer mechanisms. The ARHGAP20 gene encodes a Rho
GTPase-activating protein that regulates cytoskeletal dynamics and cell motility. In chronic
lymphocytic leukemia (CLL), ARHGAP20 expression was unexpectedly higher in cases (Liu et al.,
2021). FMNL2 is an actin nucleating protein that promotes cell migration and invasion. While
specific studies on FMNL?2 in leukemia are limited, its role in cytoskeletal regulation implicates it in
various cancers (Zhu et al., 2011). PLK3 is a serine/threonine kinase involved in cell cycle regulation
and DNA damage response. Although direct studies linking PLK3 to leukemia are scarce, its function
in cell cycle control suggests potential involvement in hematologic malignancies (Zhang et al., 2021;)
Hukasova, 2017; Xie et al., 2001)

The top ten significant genes found by RF model is presented in Table 4.
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Table 4. Top ten significant genes found by RF model. The genes found to be significant by all models are
shown in bold italics.

SYMBOL GENE NAME
1 ZSCAN18 Zinc finger and SCAN domain-containing 18
2 STAT4A Signal Transducer and Activator of Transcription 4
3 ITK IL2-inducible T-cell kinase
4 PLK3 Polo-like kinase 3
5 CDKN1A Cyclin-dependent kinase inhibitor 1A
6 DEFA4 Alpha-defensing 4
7 BCL11B B-cell chronic lymphocytic leukemia/lymphoma 11B
8 RGS16 G-protein signaling regulator 16
9 NELL2 Neural EGFL like 2
10 PGRMC2 Progesterone receptor membrane component 2

Top three genes in Table 4, ZSCAN18, STAT4 and ITK, are associated with leukemia in the
literature. ZSCAN18 is a member of the zinc finger protein family that regulates gene expression and
therefore plays a role in hematopoiesis (Hall, 2021). STAT4 is involved in many cytokine and growth
factor signaling pathways that may affect leukemia cell survival, proliferation and apoptosis (Frank,
1999; Rajasingh et al., 2006). It is also involved in immune response regulation. Recent studies have
identified STAT4 as a prognostic biomarker in AML, where its expression correlates with disease
progression (Li et al., 2024). lITK is an important tyrosine kinase in T-cell receptor signaling and is
associated with T-cell acute lymphoblastic leukemia (T-ALL) (Cordo et al., 2022). Aberrant ITK
activity has been implicated in T-cell malignancies, including ATL, by promoting uncontrolled T-
cell proliferation and survival Abnormal activation or mutations of these genes may be involved in
the pathogenesis of the disease. Therefore, it may be useful to target these features of genes to propose
new therapeutic strategies.

The top ten significant genes found by SVM model is presented in Table 5.

Table 5. Top ten significant genes found by SVM model. The genes found to be significant by all models are
shown in bold italics.

SYMBOL GENE NAME
1 CCR7 C-C motif chemokine receptor 7
2 HIP1R Huntingtin interacting protein 1 related
3 LYSMD?2 LysM domain containing 2
4 PLK3 Polo-like kinase 3
5 ZSCAN18 Zinc finger and SCAN domain-containing 18
6 NELL2 Neural EGFL like 2
7 CXorf57 Chromosome X open reading frame 57
8 ZNF502 Cinko parmak protein 502
9 ITPKB Inositol-trisphosphate 3-kinase B
10 CDKN1A Cyclin-dependent kinase inhibitor 1A
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The first three genes found significant by SVM were CCR7, HIPIR and LYSMD2,
respectively. CCR7, which plays an important role in the spread of leukemia cells, is a chemokine
receptor in lymphocyte migration and homing processes (Choi et al., 2020; Legler et al., 2014). CCR7
is frequently expressed in ATL cells, facilitating their migration to lymphoid tissues through
interactions with its ligands, CCL19 and CCL21. Gain-of-function mutations in CCR7 have been
observed in ATL patients, leading to enhanced downstream signaling and potentially contributing to
disease progression (Sakamoto et al., 2022).HIPIR is associated with cytoskeleton and vesicular
traffic and may be involved in cell growth and cancer development (Hyun and Ross, 2004; Saralamma
et al., 2020). LYSMD?2 is a LysM domain-containing protein and is involved in immune responses
and cellular processes (Miao et al., 2023; Sundaramurthi et al., 2023).

The intersection set of genes found to be significant by all three models showed that PLK3,
ZSCAN18 and NELL2 genes were prominent in ATL diagnosis. These genes are implicated in
various malignancies, including cancer, leukemia, and ATL.

Among these genes, PLK3 is a cell cycle regulator and plays a role in DNA damage response
processes (Helmke et al., 2016; Hukasova, 2017) . It is a serine/threonine kinase involved in cell cycle
regulation and stress response. Unlike its family members PLK1 and PLK2, which are often
overexpressed in cancers, PLK3 acts as a tumor suppressor (Goroshchuk et al., 2019). It mediates
apoptosis and responds to DNA damage and oxidative stress. Aberrant expression of PLK3 has been
observed in various tumors, suggesting its role in tumorigenesis. In acute leukemia, PLK3's tumor-
suppressive function underscores its potential as a therapeutic target (Helmke et al., 2016).

The effects of different protein isoforms of the ZSCAN family on cancer cell growth and
proliferation are being investigated. It is a validated prognostic marker in renal cell carcinoma
(KIRC), and breast cancer where higher expression correlates with favorable outcomes (Wang et al.,
2023). Therefore, it can be considered as an important cancer marker (Li et al., 2023). However, its
role in leukemia and ATL remains unclear due to limited data.

NELL2 is a secreted glycoprotein involved in neural development and chromatin remodeling.
In Ewing sarcoma, NELL2 autocrine signaling enhances cell proliferation by inhibiting cdc42 and
promoting BAF complex assembly (Nakamura et al., 2015). This signaling pathway also upregulates
EWS-FLI1 transcriptional output. Although NELL2 is not a prognostic marker in glioblastoma, its
expression is elevated in thyroid carcinoma, suggesting its involvement in certain cancers (Jayabal et
al., 2021).

Beyond the genes commonly identified across all models, several others—including BCL11B,
CDKNI1A, DEFA4, RGS16, SPHK?2, —were also found to be associated with leukemia and ATL,

underscoring their potential relevance in disease pathogenesis.
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BCLI11B 1is a transcription factor essential for T-cell development, it exhibits reduced
expression in ATL cases. Studies have shown that ectopic expression of BCL11B suppresses the
growth of ATL-derived cell lines, suggesting its role as a tumor suppressor in ATL pathogenesis
(Kurosawa et al., 2013).

CDKNI1A is typically overexpressed in HTLV-1-infected cell lines and its expression is
downregulated in primary ATL cells (Watanabe et al., 201). This downregulation is often due to
promoter methylation, implicating epigenetic modifications in ATL development (Cordo et al.,
2022).

DEFA4 encodes an antimicrobial peptide predominantly expressed in neutrophils. Elevated
DEFA4 expression has been reported in acute myeloid leukemia (AML) patients, suggesting its
potential as a biomarker for disease progression (Zhao et al., 2023).

RGS16 modulates G-protein-coupled receptor signaling pathways. Altered RGS16 expression
has been associated with various hematological malignancies, including leukemia, indicating its role
in leukemogenesis (LeBlanc et al., 2020).

SPHK2 is involved in sphingolipid metabolism and has been found to be overexpressed in large
granular lymphocyte leukemia. SPHK?2 promotes cell survival through upregulation of anti-apoptotic
proteins like Mcl-1, highlighting its potential as a therapeutic target (LeBlanc et al., 2020).

A deeper study of these genes may help better understand the mechanisms of the disease and
their genetic interactions. The results of this study represent an important step forward in
understanding the complexity of ATL and identifying potential therapeutic targets through detailed
analysis of genetic data.

Despite the promising diagnostic performance of the proposed models and the identification of
meaningful gene signatures, this study has several limitations. Firstly, the methodology was evaluated
using a single publicly available dataset (GSE33615), which may not fully capture the diversity of
ATL cases across different populations. Secondly, although interpretability was enhanced through
model-specific variable importance measures (e.g., SHAP, Information Gain Ratio), these methods
do not entirely explain complex gene-gene interactions or account for biological noise in gene
expression data. Additionally, the models assume the availability and accuracy of all relevant
features, which may not always be feasible in real-world clinical datasets. These limitations suggest
that external validation and further biological investigation are essential for confirming the robustness

and clinical applicability of the findings
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5. Conclusions and Recommendations

ATL is a highly aggressive disease caused by human T-cell leukemia virus type I (HTLV-1)
with an extremely unfavorable prognosis. It is usually diagnosed after symptoms become apparent,
which can make it difficult to control the disease and provide effective treatment. It is therefore
critical to find models and biomarkers that can be used for early diagnosis of the disease.

There are different studies using ML for early diagnosis of the related disease. When these
studies are analyzed, it is observed that the most preferred methods are tree-based methods such as
DT and RF and black box-based methods such as SVM. Some of these studies show that ATL
derivatives are very difficult to diagnose (Chong et al., 2020). For this reason, current studies have
used a single classifier model and the diagnostic performance has been the focus of the study. The
underlying reasons for the model's diagnostic performance are not analyzed.

In this study, the diagnostic performances of several machine learning methods (Naive Bayes,
K-Nearest Neighbor, Support Vector Machine, Random Forest, C4.5, Logistic Regression, Linear
Discriminant Analysis and Artificial Neural Network), which are frequently used in the literature for
ATL diagnosis, were first compared according to precision, recall, AUC and F1 score metrics on the
Gene Expression Omnibus GSE33615 dataset. Among these, Artificial Neural Network stood out
with an AUC of 0.98 and an F1 score of 0.93. It was followed by SVM with an AUC of 0.97 and
0.957 F1 score.

To fill the gap in the literature, the main contribution of this study is to reveal the gene profiles
that have an effect on ATL diagnosis. For this purpose, the ten most significant gene profiles affecting
the diagnosis were extracted from the top tree performing models (ANN, SVM and RF) by using
different variable importance calculations. Examining the intersection set of these genes, PLK3,
ZSCAN18 and NELL?2 stood out in distinguishing the ATL positive class. It is seen that both the
individual gene clusters of the models (Table 3, Table 4, and Table 5) and the genes in the intersection
set are in accordance with cancer and leukemia studies in the literature. Among these genes, PLK3 is
a cell cycle regulator and plays a role in DNA damage response processes. ZSCANI1S is a
transcription factor containing zinc finger and SCAN domains that may play a role in transcriptional
regulation and cell differentiation. This protein regulates gene expression by binding to DNA and
shows RNA polymerase II-specific transcription factor activity (Wang et al., 2023). NELL?2 is the
gene encoding a protein that plays an important role in nervous system development and synaptic
plasticity. This protein is active in cell signaling and neuronal differentiation processes (Nakamura et
al., 2015).Therefore, PLK3, ZSCANI18, NELL2 can be considered as a significant cancer marker.

Beyond the genes commonly identified across all models, several others—including BCL11B,
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CDKNI1A, DEFA4, RGS16, SPHK?2, —were also found to be associated with leukemia and ATL,
underscoring their potential relevance in disease pathogenesis.

The effects of the identified genes on cancer biology and their contribution to potential
treatment strategies are highly valuable. A detailed understanding of the effects of these genes on
cancer development and responses to treatment may enable the development of more effective and
personalized treatment methods. It is important to evaluate the effects of these genes on cancer
development, metastasis processes and responses to treatment in more depth. For this reason, it may
be recommended to examine the functions and interactions of these genes in more detail in future

studies.

6. Future Work

For future research, expanding the methodological framework to include ensemble and deep
learning-based models could further improve diagnostic accuracy and reveal more complex patterns
in gene expression. Although deep learning approaches, such as convolutional and recurrent neural
networks, offer significant predictive capabilities, their lack of transparency limits clinical usability.
Therefore, integrating explainable Al techniques into such models (e.g., attention mechanisms,
integrated gradients) may help address this issue. Additionally, hybrid ensemble strategies that
combine the strengths of interpretable and high-performing models should be explored to achieve
both accuracy and transparency in ATL diagnostics. This direction may contribute to developing
more generalizable, reliable, and clinically relevant decision support tools.

Moreover, future studies should aim to increase the availability of datasets specific to ATL in
order to evaluate model performance across diverse and unseen data. In cases where new datasets
cannot be obtained, data augmentation techniques may be employed to expand the sample size and

enhance the robustness and generalizability of the models
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