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Abstract 

Hematologic cancers are often diagnosed after symptoms become apparent, which can make it difficult to control the disease 

and implement effective treatment strategies. Studying gene expression profiles is vital for early diagnosis and the development 
of treatment strategies for hematologic cancers such as T-cell leukemia. The motivation of this study is to reveal the molecular 

mechanisms in the pathogenesis of this disease by comparing the whole gene expression profile in Adult T-cell Leukemia (ATL) 

cells and CD4+T cells of healthy individuals. For this aim, several machine learning algorithms, Naive Bayes, K-Nearest 

Neighbor, Support Vector Machine, Random Forest, C4.5, Logistic Regression, Linear Discriminant Analysis and Artificial 
Neural Network algorithms were used. Their performance was compared on the GSE33615 dataset by using 5-fold cross 

validation with stratified sampling. Among these, Artificial Neural Network stood out with an AUC of 0.98 and an F1 score of 

0.93. It was followed by SVM with an AUC of 0.97 and 0.957 F1 score. In addition to performance comparison, information 
gain ratio, SHAPLEY metric and correlation values were calculated for the detection of genes causing ATL. Among the models, 

the three with the highest performance (ANN, SVM, RF) were selected, and the top ten most significant genes were identified 

for each. Considering the intersection of these gene sets, ZSCAN18, PLK3, and NELL2 were found to be associated wi th the 
related disease. These genes may contribute to Adult T-cell Leukemia pathogenesis through their roles in cell cycle regulation, 

transcriptional control, and oncogenic signaling. Further investigation is needed to clarify their precise molecular mechanisms 

in the related disease.  

Keywords: Adult T-cell Leukemia (ATL), Microarray study, Machine learning, Variable importance. 

 

 

Erişkin T Hücreli Lösemi (ATL) Patogenezindeki Marker Genlerin Makine 

Öğrenmesi Modelleri ile Keşfi ve Performans Karşılaştırması 

 

Öz 

Hematolojik kanserler genellikle semptomlar belirginleştikten sonra teşhis edilir ve bu durum hastalığın kontrol altına alınmasını 
ve etkili tedavi stratejilerinin uygulanmasını zorlaştırabilir. Özellikle T hücreli lösemi gibi hematolojik kanserlerde, gen 

ekspresyon profillerinin incelenmesi, erken tanı ve tedavi stratejilerinin geliştirilmesinde hayati öneme sahiptir. Bu çalışm a, 

Yetişkin T hücreli Lösemi (ATL) hücrelerinde ve sağlıklı bireylerin CD4+T hücrelerindeki tüm gen ekspresyon profilini 
karşılaştırarak, bu hastalığın patogenezindeki moleküler mekanizmaları farklı makine öğrenme yöntemleri ile ortaya çıkarma 

motivasyonu ile gerçekleştirilmiştir. Naive Bayes, K-En Yakın Komşu, Destek Vektör Makinesi, Rassal Orman, C4.5, Lojistik 

Regresyon, Doğrusal Diskriminant Analizi ve Yapay Sinir Ağları algoritmalarının karar performansları, GSE33615 veri seti 

üzerinde tabakalı örnekleme ile 5 katlı çapraz doğrulama yöntemi kullanılarak karşılaştırılmıştır. Bunlar arasında Yapay Sini r 
Ağı 0,98 AUC ve 0,93 F1 skoru ile öne çıkmıştır. Onu, 0.97 AUC ve 0.957 F1 skoru ile SVM takip etmiştir. Performans 

karşılaştırmasına ek olarak, ATL'ye neden olan genlerin tespiti için bilgi kazanç oranı, SHAPLEY metriği ve korelasyon 

değerleri hesaplanmıştır. Her model için en yüksek öneme sahip ilk on gen belirlenmiştir. Modeller tarafından önerilen genlerin 
kesişim kümesi dikkate alındığında, ZSCAN18, PLK3 ve NELL2 genlerinin ilgili hastalık için ilişkili olduğu bulunmuştur. Bu 

genler, hücre döngüsü düzenlenmesi, transkripsiyonel kontrol ve onkojenik sinyal iletimi üzerindeki rollerine bağlı olarak 

Erişkin T-hücreli Lösemi patogenezine katkıda bulunabilir. Bu genlerin moleküler rollerinin daha iyi anlaşılabilmesi için ileri 
araştırmalara ihtiyaç duyulmaktadır. 

Anahtar Kelimeler: Yetişkin T-hücreli Lösemi (ATL), Mikroarray çalışması, Makine öğrenmesi, Değişken önemi.  

https://doi.org/10.31466/kfbd.1597865
https://dergipark.org.tr/tr/pub/kfbd
https://orcid.org/0009-0007-9299-7141
https://orcid.org/0000-0002-1030-3545


Karadeniz Fen Bilimleri Dergisi 15(3), 1046-1069, 2025 1047 

1. Introduction 

 

Adult T-cell leukemia/lymphoma (ATL) is a highly aggressive disease caused by human T-cell 

leukemia virus type I (HTLV-1) with an extremely bad prognosis (Ishitsuka and Tamura, 2014; 

Uchiyama et al., 1977). The median overall survival of the aggressive subtypes, including the acute 

and lymphoma types (about 60% of cases), is only sketchy to ten months (Katsuya et al., 2015). Even 

those initially diagnosed in indolent forms, such as smoldering and chronic subtypes, usually progress 

to aggressive disease within a year (Takasaki et al., 2010). HTLV-1 infection is estimated to affect 5 

to 20 million people worldwide (Gessain and Cassar, 2012), with higher prevalence in regions such 

as southwestern Japan, the Caribbean Basin and central Africa (Ishitsuka and Tamura, 2014). While 

HTLV-1 infection usually leads to a lifelong carrier state, less than 5% of infected individuals die 

from HTLV-1-associated leukemia. ATL leukemogenesis involves the accumulation of multiple 

genetic abnormalities in HTLV-1-infected cells, a complex process. 

The diagnosis of ATL is usually made by detection of HTLV-1 antibodies in the light of clinical 

signs such as lymph node enlargement, skin lesions, hypercalcemia and subsequent confirmation of 

HTLV-1 proviral DNA by PCR (Cook et al., 2021). Early diagnosis of ATL is critical, as the 

aggressive progression of the disease often results in mortality. 

While recent studies have introduced various ML models for the diagnosis of ATL, these efforts 

often focus solely on predictive performance using a single method, such as deep learning (Kılıçarslan 

and Pacal, 2023; Xu et al., 2023), support vector machines (Chong et al., 2020), random forests (Faiz 

et al., 2024), or decision trees (Eckardt et al., 2020). However, very few studies emphasize the 

identification of the underlying genome profiles (Abass and Adeshina, 2021; Stricker et al., 2017), 

which are essential for understanding disease mechanisms and developing effective treatment 

strategies. Furthermore, model interpretability and biological insight are often overlooked, despite 

their importance in clinical settings where transparency and explanation of predictions are vital. 

To address these gaps, this study makes several key contributions to the field. First, it provides 

a comprehensive comparison of widely used ML models—Naive Bayes, K-Nearest Neighbour, 

Support Vector Machine, Random Forest, C4.5, Logistic Regression, Linear Discriminant Analysis 

and Artificial Neural Network—on a common ATL-specific dataset (GSE33615). Second, beyond 

evaluating classification accuracy, the study applies model-specific feature importance techniques 

(Information Gain Ratio, SHAP etc.) extract informative gene signatures relevant to ATL. Third, the 

results reveal a consistent set of potential biomarkers (PLK3, ZSCAN18, and NELL2) identified 

across models, offering novel insight into the genomic basis of ATL and opening new possibilities 

for early diagnosis, targeted therapy, and drug development. 
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The sections of this paper are organized as follows: In the next section (Related Works), the 

works that have examined the use of machine learning in ATL diagnosis are summarized. The dataset 

used in the study is described in the Materials section. The details of the experimental design and the 

methods used are given in the Methods section. The performance comparisons of the models and the 

significant genes identified for each model are presented in the Results section. The Conclusion 

section includes contributions of the findings of this study and recommendations for future work. 

 

2. Related Work 

 

In recent years, ML has been increasingly adopted in biomedical sciences to support disease 

diagnosis, prognosis, and decision-making. Numerous studies demonstrate the diagnostic utility of 

ML in various domains, including hematologic malignancies, solid tumors, and even non-medical 

pattern recognition problems. However, the use of ML in ATL remains limited, particularly with 

regard to model interpretability and gene-level insights. Notable ML-based studies in this domain are 

critically reviewed below, with an emphasis on their methodological strengths, key findings, and 

limitations. Based on this review, key gaps in the existing literature were identified, which guided the 

motivation for this study. The novel contributions of the present work, along with its distinctions from 

prior research, are articulated in the final paragraph of this section. 

Chong et al. (2020) employed a decision tree-based model for lymphoid neoplasms, achieving 

94.7% overall accuracy. Nevertheless, the model failed to generalize well to ATL samples, showing 

error rates up to 100% in some cases—highlighting the diagnostic complexity of ATL using 

conventional ML tools. 

Ghobadi et al. (2022) emphasized that although there are clinical guidelines for ATLlymphoma 

and its subtypes, they are far from being the gold standard. Therefore, reliable biomarkers should be 

found. With this aim, they proposed an SVM-based ML model capable of making diagnoses based 

on mRNA and miRNA features. Although the application details of the model were not given, it was 

emphasized nearly 95% accuracy was achieved. The related study is one of the rare studies in which 

disease-causing gene profiles are identified. However, these gene profiles were not extracted from 

the SVM model. Instead, experimentally validated target genes of miRNAs were examined. 

In another study for T cell lymphoma diagnosis, deep learning was preferred (Xu et al., 2023). 

In the related study, class imbalance was observed in the dataset. To mitigate the potential negative 

impact of this issue on prediction performance, the authors used the bootstrap sampling to 

synthetically balance the class distribution. The classification performance of the model was 

calculated by area under curve (AUC) metric and found to be 0.75. Although the study highlights that 

the DL model detects gene expressions, the specific mechanism by which it accomplishes this remains 
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unclear. Considering that the deep learning model is a black box approach, it is critical to explain in 

detail how these expressions are revealed from the model. 

Another study using deep learning was conducted by Akalın and Yumuşak (2023). The dataset 

used in the study has 12500 gene profiles for each individual. In order to reduce the computational 

complexity, feature selection was performed using whale optimization. Long term short term memory 

(LSTM) model was used for the diagnosis of ALL, AML and MLL leukaemia types. The accuracy 

of the model was 89.88%. Since the method is structurally more suitable for time series analysis, its 

use may be limited in studies that do not examine time or memory dependent variation. Therefore, 

the suitability of the LSTM method in the context of this study should be evaluated. Regardless of 

the methodology, this study also did not examine the factors affecting the diagnosis. 

Patel et al. (2021) proposed a multi-class diagnostic model for leukaemia diagnosis. Leukaemia 

tissues were micro-arrayed for extracting the gene expressions, then feature selection was applied on 

these expressions. Although the study was conducted for multi-class classification, logistic regression 

was executed based on a binary classification approach. Since the model was implemented using a 

"one-vs-all" strategy, the performance results are far from reflecting the true nature of the multi-class 

classification problem. Similar to many other studies in the domain, this work focuses solely on the 

performance of the model. It does not examine the disease-causing or protective gene profiles. 

Study by Zhang et al. (2022), employed autoencoders to reduce the dimensionality of 

transcriptomic data, followed by clustering algorithms to identify biologically meaningful patient 

subgroups. The model successfully stratified patients into high- and low-risk categories, as evidenced 

by significant differences in survival analyses. Although the model identified molecular subtypes 

correlated with prognosis, its clinical applicability remains untested. Additionally, the use of black-

box models like autoencoders limits interpretability, and no external validation was conducted to 

assess generalizability. 

In broader contexts, although not directly related to the present topic, the examination of the 

following studies may also provide valuable insights. 

A hybrid ensemble approach integrating logistic regression, support vector machines (SVM), 

and Extra Trees classifiers was implemented to enhance gene selection and prediction performance 

(Ruppapare et. al, 2022). The study utilized ADASYN for class imbalance and Chi-Squared tests for 

feature selection. Reported performance metrics were promising, with accuracy at 92%, F1-score at 

90%, and balanced accuracy at 89%. However, the model's applicability to other hematological 

malignancies was not explored, and the biological significance of the selected genes was 

insufficiently discussed. External validation was also absent. 

The work of Stagno et al. (2025) reflects the growing interest in applying ML to hematological 

malignancies. Their study reviews ML's utility in the diagnosis, prognosis, and treatment of chronic 
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myeloid leukemia (CML), emphasizing the need for integrating predictive performance with clinical 

interpretability. Although insightful, this work focuses on CML and does not address ATL-specific 

genomic signatures. 

Erdem and Bozkurt (2021) performed a comparative evaluation of various supervised ML 

techniques for prostate cancer prediction, showing that performance varies significantly across 

algorithms. However, similar to ATL studies, their focus remains largely on classifier performance 

rather than model explainability or biomarker identification. 

To summarize the aforementioned studies, Table 1 provides an overview of key machine 

learning-based approaches applied to ATL and related leukemia diagnoses, outlining the datasets 

used, methodologies implemented, reported performance metrics, and notable limitations or 

contributions of each study. 

Table 1. Comparison of the related work with the proposed study  

Study (Author, 

Year) 

Dataset Used Methods 

Applied 

Performance 

Metrics 

Notes on 

Limitations/Strengths 

Chong et al., 

2020 

Lymphoid 

neoplasm data 

Decision Tree Accuracy: 

94.7% (but poor 

ATL 

generalization) 

Failed to generalize 

to ATL; up to 100% 

error in ATL cases 

Ghobadi et al., 

2022 

mRNA and 

miRNA data 

SVM Accuracy: ~95% 

(exact AUC not 

reported) 

Gene profiles not 

derived from model; 

lack of application 

details 

Xu et al., 2023 T-cell 

lymphoma gene 

expression 

Deep Learning 

(DL) + 

Bootstrap for 

imbalance 

AUC: 0.75 Black-box model; 

mechanism for gene 

expression detection 

unclear 

Akalın & 

Yumuşak, 2023 

12,500 gene 

profiles 

LSTM + Whale 

Optimization 

Accuracy: 

89.88% 

Suitable for time 

series; no diagnostic 

factor analysis 

Patel et al., 2021 Leukemia 

microarray data 

Logistic 

Regression 

(One-vs-All for 

multi-class) 

Not specified 

(performance 

incomplete) 

Lacks true multi-

class representation 

and gene-level 

interpretation 

Zhang et al., 

2022 

Transcriptomic 

data 

Autoencoder + 

Clustering 

Survival 

stratification 

Lacks external 

validation; black-box 

limits interpretability 

Ruppapare et al., 

2022 

Not ATL-

specific (general 

genes) 

Hybrid 

Ensemble (LR, 

SVM, Extra 

Trees) + 

ADASYN 

Acc: 92%, F1: 

90%, Bal. Acc: 

89% 

No biological 

interpretation; not 

ATL-specific 

Stagno et al., 

2025 

CML-related Literature 

Review of ML 

tools 

— Not ATL-specific; 

emphasizes need for 

interpretable ML 

Erdem & 

Bozkurt, 2021 

Prostate cancer 

data 

Various 

supervised ML 

models 

— No gene-level 

interpretation; 

general ML 

benchmark 
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Proposed Work GSE33615 

(ATL-specific) 

Naive Bayes, K-

Nearest 

Neighbour, 

Support Vector 

Machine, 

Random Forest, 

C4.5, Logistic 

Regression, 

Linear 

Discriminant 

Analysis and 

Artificial Neural 

Network  + 

SHAP & Info 

Gain + 

Evolutionary 

Opt. 

AUC: 0.98 

(ANN),             

 

F1: 0.95 (SVM),  

 

Precision: 0.95 

(RF) 

Model 

interpretability via 

SHAP, biologically 

relevant gene 

signatures identified, 

comparative model 

evaluation 

 

Based on the literature review and the studies examined, despite the methodological progress 

in the field, three core gaps remain: 

● Insufficient ATL-specific focus: Despite ATL's clinical importance, only a limited 

number of studies address it specifically, and even fewer examine gene-level signatures 

tied to its pathogenesis by using ML. 

● Lack of comparative model analysis on the same dataset under controlled conditions for 

ATL. 

● Single-method dependency: Most studies focus on a single classifier, without 

comparative benchmarking of different algorithms under the same experimental 

conditions 

● Limited use of variable importance or explainable AI tools (e.g., SHAP, Information 

Gain) to extract disease-relevant gene signatures. 

The proposed study addresses these shortcomings by: 

● Comparatively evaluating multiple ML models (SVM, RF, C4.5) under identical 

conditions on the GSE33615 dataset 

● Combining high prediction performance with biological interpretability, offering a 

framework for biomarker discovery, therapeutic target identification, and improved 

clinical decision-making in ATL. 

● Applying model-specific variable importance techniques (SHAP for SVM and RF, 

Information Gain Ratio for C4.5) to identify biologically meaningful genes associated 

with ATL. 

In contrast to prior literature that prioritizes accuracy alone, this study not only advances 

diagnostic performance but also contributes to understanding the molecular basis of ATL by 
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integrating prediction with gene-level interpretation. Thus setting a foundation for interpretable 

precision oncology in the context of AT and paving the way for biomarker-driven research and 

targeted therapeutic strategies 

 

3. Materials and Methods 

 

This study was conducted with two main motivations. The first one is to compare the 

performance of ML methods that are widely used in T-cell leukemia diagnosis and to establish a final 

model with high diagnostic performance. The second motivation is to identify disease-causing genes 

for early diagnosis of ATL. The general infrastructure of the study is presented in Figure 1. 

 

Figure 1. Infrastructure of the experimental design 

 

In this study, the leukemia dataset, GSE33615, was retrieved from Gene Expression Omnibus 

(GEO) database. Genes with low variance were eliminated in the feature selection step. Then, several 

ML models were trained and validated. The performance of each model was compared according to 

precision, recall, AUC and F1 score metrics. In order to find the genes affecting ATL, the results of 

top tree performing models were first given to the correlation matrix. To calculate the variable 

importance for each ML model, different metrics were applied. Shapley's criterion and variants were 

used for black-box based methods. TreeSHAP and information gain ratio (IGR) was used for RF. 



Karadeniz Fen Bilimleri Dergisi 15(3), 1046-1069, 2025 1053 

Then, the significant genes for each model were ranked and the common ones were added to the gene 

pool as genes affecting the disease. 

 

3.1. Material 

 

To identify marker genes in leukemia cancer, the dataset GSE33615 (Fujikawa et al., 2016; 

Yamagishi et al., 2012) from the Gene Expression Omnibus (GEO) database was used. The dataset 

consists of 52 ATL diagnosed cases and 21 controls, each containing 45,015 gene profiles. For the 

preliminary analysis of these data, the box plot, Figure 2, was used. 

 

Figure 2. Distribution of the GSE33615 Data set. Purple color indicates CD4+t cell (control), Green  

Color indicates ATL (case). 

 

Both groups have a wide range of genes; however, they exhibit significant expression 

differences. Figure 2 shows that leukemia samples generally have higher gene expression levels and 

a wider distribution range than normal samples. This indicates that the dataset has a wide range of 

gene expressions and that gene markers in the presence of ATL are different from normal samples. 

 

3.2. Methods 

 

The performance of DT based methods, specifically C4.5 and RF and black-box approaches 

such as SVM, have been compared for the diagnosis of ATL. Unlike other studies in the literature, 

this study aims to identify the gene profiles affecting the disease along with high diagnostic 

performance.  Therefore, a specific variable importance extraction was performed for each model, 

and the common genes identified as significant in the diagnosis of ATL were determined. The 

methodology used to achieve these primary objectives are presented in detail under subheadings. All 

ML and feature selection algorithms were developed in the R programming language. 

 



Karadeniz Fen Bilimleri Dergisi 15(3), 1046-1069, 2025 1054 

3.2.1. Feature Selection 

 

The GEO GSE33615 dataset was used for training and validation of the ML models. This set 

consists of 52 cases and 21 controls with 45,015 gene profiles for each individual. A preprocessing 

step was applied in order to improve the performance of the models and find the genes with the 

highest impact on diagnosis. 

In this step, genes exhibiting low genetic diversity were filtered out based on their variance 

values. Specifically, the varFilter and genefilter functions from the R platform were employed with a 

threshold value of 0.9. Utilizing such a high variance threshold is a recognized strategy to enhance 

the reliability of data analysis by focusing on genes with significant expression variability. This 

approach effectively reduces noise and potential false positives, thereby improving the accuracy of 

the model. For instance, Haury et al. (2011) demonstrated that applying stringent variance thresholds 

can lead to more stable and interpretable molecular signatures in high-dimensional gene expression 

data. Similarly, Lee et al. (2013) highlighted the importance of robust feature selection methods in 

early cancer detection, emphasizing that higher variance thresholds contribute to the identification of 

consistent and biologically relevant biomarker 

 

3.2.2. Naive Bayes 

Naive Bayes is a probabilistic classification algorithm based on Bayes’ Theorem, assuming 

feature independence given the class label (Rish, 2001). It is particularly effective for high-

dimensional data and works efficiently even with small datasets. 

The posterior probability that a given instance x=(x1,,x2,...,xn) belongs to class Ck is computed 

as in Equation 1: 

𝑃(𝐶𝑘|𝑥) =
𝑃(𝐶𝑘 ) ∏ 𝑃(𝐶𝑘|𝑥𝑖)𝑛

𝑖=1 )

𝑃(𝑥)
                                                                                                 (1) 

Here, P(Ck) is the prior probability of class Ck, P(xi|Ck) is the likelihood of feature xi given 

class Ck and P(x) is the evidence. 

3.2.3. K Nearest Neighbours 

 

KNN is a simple yet effective non-parametric classification algorithm that makes decisions 

based on proximity between data points in a feature space (Cover and Hart, 1967). The method does 

not construct an explicit model during training; instead, it stores the entire training dataset and 
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performs classification during the prediction phase based on distance calculations (Keller et al., 

1985). 

In this algorithm, a given instance is assigned to the class most common among its k nearest 

neighbors, where k is a predefined positive integer. The proximity between data points is usually 

measured using distance metrics such as Euclidean distance, Manhattan distance, or Minkowski 

distance. In this study, Euclidean distance is used, which is calculated as in Equation 2 for a d-

dimensional feature space: 

𝐷(𝑥, 𝑦) = √∑ (𝑥𝑖−𝑦𝑖)2𝑑
𝑖=1                                                                                                        (2)                           

Here, x and y are the feature vectors of two instances, and d is the total number of features.  

Once the distances to all training instances are computed, the k closest instances are selected, and the 

class label is determined by majority voting. In the case of a tie, methods such as distance-weighted 

voting can be applied. 

3.2.4. Support Vector Machine 

 

SVM, developed by Vapnik et al. (1995), is one of the most preferred ML methods in the 

literature due to its successful performance on high-dimensional datasets of nonlinear problems (Roy 

and Chakraborty, 2023). Its main goal is to find the hyperplane that will provide the highest margin 

between classes. 

When the classes are linearly separable, a dataset of n points can be represented as (x1,y1),..., 

(xn,yn). Accordingly, any hyperplane, where wT is the weight vector, x is the input vector and b is the 

bias, can be written as the set of points given in Equation 3: 

𝑤𝑇𝑥 + 𝑏 =                                                                                                                               (3) 

In binary classification, this hyperplane separates the classes according to the following 

equation: 

𝑓(𝑥) = {1, 𝑤𝑇 − 𝑏 ≥ 1 − 1, 𝑤𝑇𝑥 + 𝑏 ≤ −1                                                                          (4) 

The SVM tries to optimize the distance between these two hyperplanes to the maximum margin 

by minimizing ||w||. 

When the classification problem is nonlinear, the data is mapped to a higher dimensional space 

using the kernel method instead of dot product. Different kernel functions (Equations 5 to 8) can be 

used for this purpose.  

𝐾(𝑥𝑖 , 𝑥𝑗 ) = 𝑥𝑖𝑥𝑗                                                                                                                      (5) 

𝐾(𝑥𝑖 , 𝑥𝑗 ) = (𝑥𝑖𝑥𝑗 + 𝑐)𝑑                                                                                                          (6) 

𝐾(𝑥𝑖 , 𝑥𝑗 ) = 𝑒𝑥𝑝 (−𝛾||𝑥𝑖 − 𝑥𝑗||2)                                                                                          (7) 
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𝐾(𝑥𝑖 , 𝑥𝑗 ) = 𝑡𝑎𝑛ℎ (𝛼𝑥𝑖𝑥𝑗 + 𝑐)                                                                                                (8) 

In this study, the Radial-based SVM, renowned for its ability to model complex relationships 

in biological data, was employed due to its effectiveness in high-dimensional and small datasets, 

yielding significant results in genetics and molecular biology (Guido et al., 2024).  

 

3.2.5. Random Forest 

 

RF is an ensemble model consisting of multiple DTs (Breiman, 2001). Each tree is trained using 

a random subset and the final decision is determined by the majority voting. RO increases the 

generalization ability of the model by reducing overfitting (Breiman, 2001).  

N denotes the total number of trees, each tree hi(x) predicts the data x and the results are 

combined with the ensemble model as in Equation 9. 

 

𝑓(𝑥) =
1

𝑁
∑ ℎ𝑖(𝑥)𝑁

𝑖=                                                                                                                   (9) 

 

3.2.6. C4.5 Decision Tree 

 

C4.5 (Quinlan, 2014) is an advanced version of the ID3 algorithm and stands out with its ability 

to work with both categorical and numerical data (Fahim et al., 2023).  The model selects the attributes 

that will divide the dataset in the most homogeneous way possible and places them in nodes at 

different levels in the tree structure. Different criteria can be used for this division (branching). 

In this study, the information gain ratio (IGR) based on entropy calculation is chosen as the 

branching criterion. Entropy is calculated as in Equation 10. where S is the dataset and 𝑝i is the 

probability for class i. 

𝐻(𝑆) = − ∑ 𝑝𝑖(𝑝𝑖)
𝑛
𝑖=1                                                                                                             (10) 

After the entropy is calculated, the IGR for each variable is calculated as in Equation 11.   

𝐼𝐺(𝑇, 𝑋) = 𝐻(𝑇) − ∑
|𝑇𝑣|

𝑇
𝐻(𝑇𝑣)𝑉∈𝑉𝑎𝑙(𝑋)                                                                                 (11) 

T is a dataset and X is a variable and Tv is a subset of X with value in Equation 2. The variable 

with the highest IGR is assigned to the relevant node of the tree.  

 

3.2.7. Logistic Regression 

 

Logistic Regression is a widely used linear classification algorithm that models the probability 

of a binary outcome using the logistic function (Hosmer et al., 2013). It estimates the parameters by 
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maximizing the likelihood function based on the observed class labels. 

For a given feature vector x, the probability that the instance belongs to class 1 is given by: 

 

𝑃(𝑦 = 1|𝑥) =
1

1+𝑒−(𝛽0+𝛽1𝑥1+⋯+𝛽𝑛𝑥𝑛) (12) 

Where β0 is the intercept, and β1,...,βn  are the model coefficients. 

 

3.2.8. Linear Discriminant Analysis 

 

Linear Discriminant Analysis is a supervised classification method that assumes a Gaussian 

distribution for each class and models a common covariance matrix across classes (Fisher, 1936). It 

seeks a linear combination of features that best separates two or more classes. 

In case of binary classification, the decision function is based on the linear discriminant score 

given in Equation – 13: 

 

𝛿𝑘(𝑥) = 𝑥𝑇 ∑ 𝜇𝑘 − 1
2⁄−1 𝜇𝑘

𝑇 ∑ 𝜇𝑘 + log 𝜋𝑘
−1                                                                     (13) 

μk is the mean vector of class k, Σ is the shared covariance matrix, πk  is the prior probability of class 

k. 

An observation is assigned to the class with the maximum discriminant score. In this study, 

LDA was chosen due to its efficiency and robustness with small datasets and linearly separable 

features. 

3.2.9. Artificial Neural Networks 

 

Artificial Neural Networks are inspired by the biological structure of the human brain and 

consist of interconnected nodes (neurons) arranged in layers: input, hidden, and output (Haykin, 

1999). Each neuron computes a weighted sum of its inputs and passes it through a nonlinear activation 

function.  For a single hidden layer, the output of the network can be expressed as: 

 

𝑦 = 𝑓(∑ 𝑤𝑗
(2)ℎ

𝑗=1 . 𝜎(∑ 𝑤𝑖𝑗
(1)

𝑥𝑖 + 𝑏𝑗
𝑛
𝑖=1 ) + 𝑏0)                                                                       (14) 

xi are the input features, wij
1 and wj

2 are the weights for input-to-hidden and hidden-to-output 

layers respectively, bj and b0 are bias terms, σ(⋅) is the activation function (e.g., ReLU, sigmoid) and 

f(⋅) denotes the activation function in the output layer, typically softmax or sigmoid depending on the 

classification type 
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All methods used in the study are implemented in R language and the hyper-parameter values 

were optimized by evolutionary algorithm (Lee et al., 2021). 

  

3.2.10. Gene Profiling Module 

 

For top tree performing ML models, this module ranks the genes affecting the classification 

according to their importance. For this ranking, model-specific variable importance method is 

applied. For the tree-based models IGR and TreeSHAP (Inan and Rahman, 2023; Lundberg et al., 

2019) was used. For the ranking of the attributes in SVM and ANN model, the SAHPLEY criterion 

(S. Lundberg, 2017), and KernelSHAP (Ekanayake et al., 2022) which are widely used in black box 

approaches, is preferred. Based on game theory, this criterion calculates the presence or absence of a 

selected attribute in the model using different combinations of attributes. The SHAPLEY measure of 

the selected attribute is calculated by weighting the combinations based on the values of the attribute 

as in Equation 15. 

 

∅𝑗(𝑣𝑎𝑙) = ∑
|𝑆|!(𝑝−|𝑆|−1)!

𝑝!𝑆𝜖{1,…,𝑝}\𝑗 (𝑣𝑎𝑙(𝑆 ∪ {𝑗} − 𝑣𝑎𝑙(𝑆))                                                    (15) 

 

In the training set consisting of p features, let S be a subset of features, x represent a vector 

containing the values of the selected feature, and valx(S) denote the prediction of the values of features 

in S based on the values of features not included in S. 

 

4. Findings and Discussion 

 

One of the motivations of the study is to compare the performance of ML methods frequently 

used for the diagnosis of ATL. For this purpose, NB, KNN, SVM, RF, C4.5, LR, LDA and ANN 

models were built, trained and tested on the Gene Expression Omnibus (GEO) GSE33615 dataset. A 

5-fold cross-validation was applied for the training and testing process. For each fold, random 

stratified sampling was used.  

To assess potential overfitting, the difference in training and validation performance was 

evaluated based on AUC. The corresponding comparison is presented in Figure 3. 
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Figure 3. Train and validation AUC comparison of the esablished models. 

 

Figure 3 demonstrates that the training AUC and Validation AUC exhibit a similar trend across 

all models. Moreover, there is no significant performance gap between training and validation. This 

suggests that the models learned without overfitting. Significant overfitting typically occurs when the 

training AUC is substantially higher than the validation AUC (Goodfellow et al., 2016). Therefore, a 

low but consistent validation AUC indicates that the model generalizes effectively. 

Following the overfitting analysis, the validation performance of the models was compared 

using precision, recall, AUC and F1 metrics. The results of this comparison are presented in Table 2. 

 

Table 2. Performance comparison of the models 

MODEL  Precisio
n 

Recall AUC F1 

NB 0.576 0.852 0.760 0.688 

KNN 0.81 0.95 0.868 0.874 
SVM 0.92 0.98 0.970 0.949 

RF 0.95 0.945 0.963 0.947 

C4.5 0.841 0.835 0.855 0.838 

LR 0.840 0.835 0.887 0.837 

LDA 0.872 0.823 0.892 0.846 
ANN 0.928 0932 0.980 0.930 

 

Table 2 shows that ANN, SVM and RF outperform other models in terms of AUC and F1. ANN 

model has the highest AUC, while SVM has the highest F1.  The superiority of SVM and ANN over 

other models can be explained by their high ability to adapt to nonlinear problems on 

multidimensional data (Vapnik, 1995; LeCun et al., 2015). On the other hand, the strong performance 
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of the RF model can be attributed to its ensemble learning structure, which effectively reduces 

overfitting and handles high-dimensional, nonlinear data (Breiman, 2001; Chi et al., 2022). 

The main motivation and the contribution of the study is the extraction of gene profiles causing 

ATL from the ML methods. For this purpose, genes that are highly correlated with ATL positive 

status were selected from top tree performing models (ANN, SVM, RF). Then, different variable 

importance calculations were made on each model. IGR and TreeSHAP (Inan and Rahman, 2023) 

were used for RF, SHAPLEY (Wang et al., 2024) and KernelSHAP (Ekanayake et al., 2022) was 

used for ANN and SVM. As a result of these calculations, the top ten genes found significant for each 

model are presented through tables 3-5.  

 

Table 3. Top ten significant genes found by ANN model. The genes found to be significant by all models are 

shown in bold italics. 

 SYMBOL GENE NAME 

1 ARHGAP20 Rho GTPase Activating Protein 20 

2 FMNL2 Formin Like 2 

3 PLK3 Polo-like kinase 3 

4 SPHK2 Sphingosine Kinase 2 

5 ZBTB40 Zinc Finger And BTB Domain Containing 40 

6 ZSCAN18 Zinc finger and SCAN domain-containing 18 

7 CDHR1 Cadherin Related Family Member 1 

8 PRPSAP2 Phosphoribosyl Pyrophosphate Synthetase 
Associated Protein 2 

9 TIAM2 TIAM Rac1 Associated GEF 2 

10 STAT4 Signal Transducer and Activator of Transcription 4 

 

The first three genes found to be important by the ANN model are known to be closely 

associated with leukemia ATL and cancer mechanisms. The ARHGAP20 gene encodes a Rho 

GTPase-activating protein that regulates cytoskeletal dynamics and cell motility. In chronic 

lymphocytic leukemia (CLL), ARHGAP20 expression was unexpectedly higher in cases (Liu et al., 

2021). FMNL2 is an actin nucleating protein that promotes cell migration and invasion. While 

specific studies on FMNL2 in leukemia are limited, its role in cytoskeletal regulation implicates it in 

various cancers (Zhu et al., 2011). PLK3 is a serine/threonine kinase involved in cell cycle regulation 

and DNA damage response. Although direct studies linking PLK3 to leukemia are scarce, its function 

in cell cycle control suggests potential involvement in hematologic malignancies (Zhang et al., 2021;) 

Hukasova, 2017; Xie et al., 2001) 

The top ten significant genes found by RF model is presented in Table 4. 

 

 



Karadeniz Fen Bilimleri Dergisi 15(3), 1046-1069, 2025 1061 

Table 4. Top ten significant genes found by RF model. The genes found to be significant by all models are 

shown in bold italics. 

 SYMBOL GENE NAME 

1 ZSCAN18 Zinc finger and SCAN domain-containing 18 

2 STAT4 Signal Transducer and Activator of Transcription 4 

3 ITK IL2-inducible T-cell kinase 

4 PLK3 Polo-like kinase 3 

5 CDKN1A Cyclin-dependent kinase inhibitor 1A 

6 DEFA4 Alpha-defensing 4 

7 BCL11B B-cell chronic lymphocytic leukemia/lymphoma 11B 

8 RGS16  G-protein signaling regulator 16 

9 NELL2 Neural EGFL like 2 

10 PGRMC2 Progesterone receptor membrane component 2 

 

Top three genes in Table 4, ZSCAN18, STAT4 and ITK, are associated with leukemia in the 

literature. ZSCAN18 is a member of the zinc finger protein family that regulates gene expression and 

therefore plays a role in hematopoiesis (Hall, 2021). STAT4 is involved in many cytokine and growth 

factor signaling pathways that may affect leukemia cell survival, proliferation and apoptosis (Frank, 

1999; Rajasingh et al., 2006). It is also involved in immune response regulation. Recent studies have 

identified STAT4 as a prognostic biomarker in AML, where its expression correlates with disease 

progression (Li et al., 2024). lITK is an important tyrosine kinase in T-cell receptor signaling and is 

associated with T-cell acute lymphoblastic leukemia (T-ALL) (Cordo et al., 2022). Aberrant ITK 

activity has been implicated in T-cell malignancies, including ATL, by promoting uncontrolled T-

cell proliferation and survival Abnormal activation or mutations of these genes may be involved in 

the pathogenesis of the disease. Therefore, it may be useful to target these features of genes to propose 

new therapeutic strategies. 

The top ten significant genes found by SVM model is presented in Table 5. 

 

Table 5. Top ten significant genes found by SVM model. The genes found to be significant by all models are 
shown in bold italics. 

 SYMBOL GENE NAME 

1 CCR7 C-C motif chemokine receptor 7 

2 HIP1R Huntingtin interacting protein 1 related 

3 LYSMD2 LysM domain containing 2 

4 PLK3 Polo-like kinase 3 

5 ZSCAN18 Zinc finger and SCAN domain-containing 18 

6 NELL2 Neural EGFL like 2 

7 CXorf57 Chromosome X open reading frame 57 

8 ZNF502 Çinko parmak protein 502 

9 ITPKB Inositol-trisphosphate 3-kinase B 

10 CDKN1A Cyclin-dependent kinase inhibitor 1A 
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The first three genes found significant by SVM were CCR7, HIP1R and LYSMD2, 

respectively. CCR7, which plays an important role in the spread of leukemia cells, is a chemokine 

receptor in lymphocyte migration and homing processes (Choi et al., 2020; Legler et al., 2014). CCR7 

is frequently expressed in ATL cells, facilitating their migration to lymphoid tissues through 

interactions with its ligands, CCL19 and CCL21. Gain-of-function mutations in CCR7 have been 

observed in ATL patients, leading to enhanced downstream signaling and potentially contributing to 

disease progression (Sakamoto et al., 2022).HIP1R is associated with cytoskeleton and vesicular 

traffic and may be involved in cell growth and cancer development (Hyun and Ross, 2004; Saralamma 

et al., 2020). LYSMD2 is a LysM domain-containing protein and is involved in immune responses 

and cellular processes (Miao et al., 2023; Sundaramurthi et al., 2023).  

The intersection set of genes found to be significant by all three models showed that PLK3, 

ZSCAN18 and NELL2 genes were prominent in ATL diagnosis.  These genes are implicated in 

various malignancies, including cancer, leukemia, and ATL. 

Among these genes, PLK3 is a cell cycle regulator and plays a role in DNA damage response 

processes (Helmke et al., 2016; Hukasova, 2017) . It is a serine/threonine kinase involved in cell cycle 

regulation and stress response. Unlike its family members PLK1 and PLK2, which are often 

overexpressed in cancers, PLK3 acts as a tumor suppressor (Goroshchuk et al., 2019). It mediates 

apoptosis and responds to DNA damage and oxidative stress. Aberrant expression of PLK3 has been 

observed in various tumors, suggesting its role in tumorigenesis. In acute leukemia, PLK3's tumor-

suppressive function underscores its potential as a therapeutic target (Helmke et al., 2016).  

The effects of different protein isoforms of the ZSCAN family on cancer cell growth and 

proliferation are being investigated. It is a validated prognostic marker in renal cell carcinoma 

(KIRC), and breast cancer where higher expression correlates with favorable outcomes (Wang et al., 

2023). Therefore, it can be considered as an important cancer marker (Li et al., 2023). However, its 

role in leukemia and ATL remains unclear due to limited data. 

NELL2 is a secreted glycoprotein involved in neural development and chromatin remodeling. 

In Ewing sarcoma, NELL2 autocrine signaling enhances cell proliferation by inhibiting cdc42 and 

promoting BAF complex assembly (Nakamura et al., 2015). This signaling pathway also upregulates 

EWS-FLI1 transcriptional output. Although NELL2 is not a prognostic marker in glioblastoma, its 

expression is elevated in thyroid carcinoma, suggesting its involvement in certain cancers (Jayabal et 

al., 2021). 

Beyond the genes commonly identified across all models, several others—including BCL11B, 

CDKN1A, DEFA4, RGS16, SPHK2, —were also found to be associated with leukemia and ATL, 

underscoring their potential relevance in disease pathogenesis. 
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BCL11B is a transcription factor essential for T-cell development, it exhibits reduced 

expression in ATL cases. Studies have shown that ectopic expression of BCL11B suppresses the 

growth of ATL-derived cell lines, suggesting its role as a tumor suppressor in ATL pathogenesis 

(Kurosawa et al., 2013). 

CDKN1A is typically overexpressed in HTLV-1-infected cell lines and its expression is 

downregulated in primary ATL cells (Watanabe et al., 201). This downregulation is often due to 

promoter methylation, implicating epigenetic modifications in ATL development (Cordo et al., 

2022). 

DEFA4 encodes an antimicrobial peptide predominantly expressed in neutrophils. Elevated 

DEFA4 expression has been reported in acute myeloid leukemia (AML) patients, suggesting its 

potential as a biomarker for disease progression (Zhao et al., 2023). 

RGS16 modulates G-protein-coupled receptor signaling pathways. Altered RGS16 expression 

has been associated with various hematological malignancies, including leukemia, indicating its role 

in leukemogenesis (LeBlanc et al., 2020).  

SPHK2 is involved in sphingolipid metabolism and has been found to be overexpressed in large 

granular lymphocyte leukemia. SPHK2 promotes cell survival through upregulation of anti-apoptotic 

proteins like Mcl-1, highlighting its potential as a therapeutic target (LeBlanc et al., 2020). 

A deeper study of these genes may help better understand the mechanisms of the disease and 

their genetic interactions. The results of this study represent an important step forward in 

understanding the complexity of ATL and identifying potential therapeutic targets through detailed 

analysis of genetic data. 

Despite the promising diagnostic performance of the proposed models and the identification of 

meaningful gene signatures, this study has several limitations. Firstly, the methodology was evaluated 

using a single publicly available dataset (GSE33615), which may not fully capture the diversity of 

ATL cases across different populations. Secondly, although interpretability was enhanced through 

model-specific variable importance measures (e.g., SHAP, Information Gain Ratio), these methods 

do not entirely explain complex gene-gene interactions or account for biological noise in gene 

expression data. Additionally, the models assume the availability and accuracy of all relevant 

features, which may not always be feasible in real-world clinical datasets. These limitations suggest 

that external validation and further biological investigation are essential for confirming the robustness 

and clinical applicability of the findings 
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5. Conclusions and Recommendations 

 

ATL is a highly aggressive disease caused by human T-cell leukemia virus type I (HTLV-1) 

with an extremely unfavorable prognosis. It is usually diagnosed after symptoms become apparent, 

which can make it difficult to control the disease and provide effective treatment. It is therefore 

critical to find models and biomarkers that can be used for early diagnosis of the disease.  

There are different studies using ML for early diagnosis of the related disease. When these 

studies are analyzed, it is observed that the most preferred methods are tree-based methods such as 

DT and RF and black box-based methods such as SVM. Some of these studies show that ATL 

derivatives are very difficult to diagnose (Chong et al., 2020). For this reason, current studies have 

used a single classifier model and the diagnostic performance has been the focus of the study. The 

underlying reasons for the model's diagnostic performance are not analyzed. 

In this study, the diagnostic performances of several machine learning methods (Naive Bayes, 

K-Nearest Neighbor, Support Vector Machine, Random Forest, C4.5, Logistic Regression, Linear 

Discriminant Analysis and Artificial Neural Network), which are frequently used in the literature for 

ATL diagnosis, were first compared according to precision, recall, AUC and F1 score metrics on the 

Gene Expression Omnibus GSE33615 dataset. Among these, Artificial Neural Network stood out 

with an AUC of 0.98 and an F1 score of 0.93. It was followed by SVM with an AUC of 0.97 and 

0.957 F1 score. 

To fill the gap in the literature, the main contribution of this study is to reveal the gene profiles 

that have an effect on ATL diagnosis. For this purpose, the ten most significant gene profiles affecting 

the diagnosis were extracted from the top tree performing models (ANN, SVM and RF) by using 

different variable importance calculations. Examining the intersection set of these genes, PLK3, 

ZSCAN18 and NELL2 stood out in distinguishing the ATL positive class. It is seen that both the 

individual gene clusters of the models (Table 3, Table 4, and Table 5) and the genes in the intersection 

set are in accordance with cancer and leukemia studies in the literature. Among these genes, PLK3 is 

a cell cycle regulator and plays a role in DNA damage response processes. ZSCAN18 is a 

transcription factor containing zinc finger and SCAN domains that may play a role in transcriptional 

regulation and cell differentiation. This protein regulates gene expression by binding to DNA and 

shows RNA polymerase II-specific transcription factor activity (Wang et al., 2023). NELL2 is the 

gene encoding a protein that plays an important role in nervous system development and synaptic 

plasticity. This protein is active in cell signaling and neuronal differentiation processes (Nakamura et 

al., 2015).Therefore, PLK3, ZSCAN18, NELL2 can be considered as a significant cancer marker. 

Beyond the genes commonly identified across all models, several others—including BCL11B, 
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CDKN1A, DEFA4, RGS16, SPHK2, —were also found to be associated with leukemia and ATL, 

underscoring their potential relevance in disease pathogenesis. 

The effects of the identified genes on cancer biology and their contribution to potential 

treatment strategies are highly valuable. A detailed understanding of the effects of these genes on 

cancer development and responses to treatment may enable the development of more effective and 

personalized treatment methods. It is important to evaluate the effects of these genes on cancer 

development, metastasis processes and responses to treatment in more depth. For this reason, it may 

be recommended to examine the functions and interactions of these genes in more detail in future 

studies. 

 

6. Future Work 

 

For future research, expanding the methodological framework to include ensemble and deep 

learning-based models could further improve diagnostic accuracy and reveal more complex patterns 

in gene expression. Although deep learning approaches, such as convolutional and recurrent neural 

networks, offer significant predictive capabilities, their lack of transparency limits clinical usability. 

Therefore, integrating explainable AI techniques into such models (e.g., attention mechanisms, 

integrated gradients) may help address this issue. Additionally, hybrid ensemble strategies that 

combine the strengths of interpretable and high-performing models should be explored to achieve 

both accuracy and transparency in ATL diagnostics. This direction may contribute to developing 

more generalizable, reliable, and clinically relevant decision support tools. 

Moreover, future studies should aim to increase the availability of datasets specific to ATL in 

order to evaluate model performance across diverse and unseen data. In cases where new datasets 

cannot be obtained, data augmentation techniques may be employed to expand the sample size and 

enhance the robustness and generalizability of the models 
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