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Bu c¢alismada, REBOUND paketi ile N-cisim simiilasyonlar1 kullanarak UZ
Lyr ve Z Dra sistemlerinin yoriinge kararlilig1 arastirilmustir. Ozellikle, Mean
Exponential Growth Factor of Nearby Orbits (MEGNO) ve Wisdom-Holman
Symplectic Integrator (WHFast) kullanilarak, ilave gezegensel cisimlere ev
sahipligi yapabilecek bu ¢ift yildiz sistemlerinin dinamik kararlilig1 analiz
edilmistir. UZ Lyr i¢in elde edilen sonuglar, sistemin yaklasik 10* yil sonra
dinamik olarak kararsiz hale geldigini ve MEGNO kararlilik haritasinin
gosterdigi gibi kaotik bir davraniga girdigini gostermektedir. Ancak daha kisa
zaman Olgeklerinde sistem yari-kararli gériinmektedir. Sonuclar, kisa vadeli
simiilasyonlara dayanarak uzun vadeli yoriinge kararliligmi tahmin etmenin
dogasinda var olan zorluklar1 ortaya koymaktadir. Benzer sekilde, Z Dra
sistemi icin, Onceki c¢alismalarda Onerilen dort model incelenmistir.
Simiilasyonlarimiz, tek 1stk zaman etkisi (LTT) iceren modellerin kararh
kaldigi, iki LTT'li modellerin ise hem WHFast hem de MEGNO analizlerinde
kisa zaman 6lgeklerinde belirgin bir kararsizlik sergiledigini gostermektedir.
Sonuglar, ilave cisimlerin gdzlemlenen zamanlama degisimlerine daha iyi bir
ampirik uyum saglayabilecegini, ancak bu tiir konfigiirasyonlarm genellikle
dinamik olarak Kkararsiz oldugunu gostermektedir. Bu ¢ahisma, ikili
sistemlerde ek cisimlerin potansiyel varligini degerlendirirken uzun vadeli
dinamik analizin 6nemini vurgulamaktadir.
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In this study, the orbital stability of the UZ Lyr and Z Dra systems was
investigated using the REBOUND package with N-body simulations. In
particular, the dynamical stability of these binary star systems, each potentially
hosting additional planetary bodies by using the Mean Exponential Growth
Factor of Nearby Orbits (MEGNO) and the Wisdom-Holman Symplectic
Integrator (WHFast) was analyzed. The results for UZ Lyr show that the system
becomes dynamically unstable after about 10* years, entering a chaotic regime
as indicated by the MEGNO stability map. On shorter timescales, however, the
system appears to be quasi-stable. The results reveal the inherent difficulties in
forecasting long-term orbital stability based on short-term simulations.
Similarly, four models proposed in previous studies were examined for the Z
Dra system. Our simulations show that models containing a single light-time
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effect (LTT) remain stable, whereas models with two LTT terms exhibit
pronounced instability on short timescales in both WHFast and MEGNO
analyses. The results suggest that while additional bodies may provide a better
empirical fit to observed timing variations, such configurations are often
dynamically unstable. This study highlights the importance of long-term
dynamical analysis when evaluating the potential presence of additional objects
in binary systems.

To Cite: Er H., Kenger ME., Ozdénmez A., Tekkesinoglu M. Dynamical Stability Analysis of UZ Lyr And Z Dra Binary

Systems with Potential Additional Bodies. Osmaniye Korkut Ata Universitesi Fen Bilimleri Enstitiisii Dergisi 2025; 8(4): 1711-

1726

1. Introduction
The exoplanet field has made remarkable progress (Mayor and Queloz, 1995; Beuermann et al., 2010;

Doyle et al., 2011; Horner et al., 2012; Lohr et al., 2014; Nasiroglu et al., 2017; Sonbas et al., 2022; Er
et al., 2024a) since the groundbreaking detection of the planet around the millisecond pulsar PSR
B1257+12 nearly three decades ago (Wolszczan and Frail, 1992). Over 5000 exoplanets have been
confirmed various methods, leading to significant advances in both ground- and space-based
instruments. In addition, more than 7000 exoplanet candidates are currently awaiting confirmation,
demonstrating the rapid and continuing progress in our understanding of planetary systems other than
our own. Among exoplanet detection methods, the most notable method for detecting the existence of
additional bodies in orbits around binary stars is the timing method (Gozdziewski et al., 2012; Marsh et
al., 2014; Gozdziewski et al., 2015; Deeg and Belmonte 2018; Ozdonmez et al., 2023). A circumbinary
planet orbiting a binary system can induce sinusoidal variations in the O—C diagram, the differences
between observed (O) and calculated (C) eclipse timings, due to the light travel time (LTT) effect (Irwin,
1952; Beuermann et al., 2012; Er et al., 2021).

There are several categories of eclipsing binary (EB) systems, primarily classified according to their
Roche lobe configurations into three main groups: detached, semi-detached, and contact binaries (Kopal
1959). In classical Algol-type systems, the components are generally in close and exhibit a semi-
detached, where one star fills its Roche lobe while the other does not. Typically, the primary star is a
more massive main-sequence star of spectral type B—A that remains within its Roche lobe, whereas the
less massive secondary is often an F—K type subgiant that fills its Roche lobe (Wang and Zhu 2019; Ma
et al.,, 2022). The O-C diagrams of Algol-type binaries reveal variations caused by different
mechanisms, demonstrating the diverse applications of LTT effect analyses in these systems (Zasche et
al., 2008; Yuan and Qian 2019; Shi et al., 2021; Bakis et al., 2022; Yildirim et al., 2023). The LTT effect
can reveal the presence of substellar mass orbital companions such as planets and brown dwarfs in such
systems (Lee et al., 2009; Qian et al., 2012; Wolf et al., 2021). However, definitive claims about CBPs
require independent evidence, as other mechanisms such as the Applegate mechanism, apsidal motion,
mass transfer, and angular momentum loss due to magnetic braking can also cause variations in orbital
periods (Applegate, 1992; Claret and Giménez, 2010; Parsons et al., 2010; Schreiber et al., 2010;
Zorotovic and Schreiber, 2013; Almeida et al., 2019; Burdge et al., 2019; Almeida et al., 2020).
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UZ Lyr was considered an Algol-type eclipsing binary system (Nijland, 1931). However, it is labelled
as “forgotten” by Koch et al., (1979) because a detailed light curve analysis of the system was not
available. The system has been included in the catalogues of variable stars (Malkov et al., 2006; Pigulski
et al., 2009) and has since been studied as photometric and spectroscopic by various researchers (Prsa
etal., 2011; Slawson et al., 2011; Armstrong et al., 2014; Frasca et al., 2016; Matson et al., 2017; Roobiat
and Pazhouhesh, 2022). The orbital period variation of UZ Lyr was first proposed by Rafert (1982).
Hoffman et al., (2006) and later Gies et al., (2015) analyzed the O-C diagram and suggested that the
observed period variations could be due to a third body or stellar spots. Borkovits et al., (2016) suggested
that the third body could have a period of ~15.16 yr and a minimum mass of 0.17M,. Recently, Roobiat
and Pazhouhesh (2022) constructed the most recent O-C diagram of the system to study its orbital period
variation. The O-C diagram of the system was modelled using several approaches, including linear,
parabolic, and cubic functions, in addition to one or two LTTs. It was concluded that the best fit was
obtained with a linear function combined with two LTTs.

The eclipsing binary Z Dra (V=10.8", P=1.357456%) was first discovered by Ceraski (1903) using
photographic observations of Blajko (1903) and identified as an Algol-type variable. The system was
studied photometrically and spectroscopically by many researchers, and physical parameters such as
mass and radius were determined (Dugan, 1912; Dugan, 1915; Struve, 1947; Ishchenko, 1947; Hill et
al., 1975; Terrell, 2006). The orbital period variation of the system was first discovered by Dugan, 1915
and was later confirmed by many studies (Kopal, 1936; Ishchenko, 1947; Kreiner, 1971; Frieboes-Conde
and Herczeg, 1973; Herczeg and Frieboes-Conde, 1974; Rafert, 1982). Khaliullina (2016) investigated
the orbital period variation of the system by adding a sinusoidal term to the quadratic model and detected
a cyclic variation with a period of 60.2 years, which was attributed to the presence of a third body with
mass of M5 > 0.70M. Finally, Yuan et al., (2016) published new minimum times for Z Dra between
April 2014 and February 2015 using different telescopes. To investigate the cyclic behavior in the
system, Yuan et al., (2016) modelled the updated O-C diagram with different models by adding
additional object(s) to the quadratic and cubic terms. To explain the observed timing variations, Yuan
et al., (2016) investigated three different models and analysed the Z Dra O-C diagram. According to
their results, the model that best fit the data included two additional companions with orbital periods of
~59.4 and 29.8 years. In other words, the combination of these two periodicities best fitted the cyclic
variations in the O-C residuals among the three solutions they examined. This implies that the most
plausible explanation for the observed light travel time effects in the system is the presence of two
companions with these particular periods.

Although it is possible to derive a statistical model that describes the O-C diagram, the orbits of the
systems must be stable for at least several thousand years (Mai and Mutel, 2022). Essentially, for an
orbital solution to be physically plausible, it must both statistically replicate the O-C variations and
maintain dynamic stability over thousands of years. Understanding the nature of these systems requires

studying their stability and dynamics. In recent years, significant progress has been made in detecting
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additional bodies in binary systems through the analysis of orbital period variations (Brown-Sevilla et
al., 2021; Gajdos$ and Vanko, 2023; Er et al., 2024). However, many studies have primarily relied on
statistical models to fit these variations, often without performing long-term dynamical stability
assessments. The results of our simulations reveal that while additional bodies may statistically account
for the observed timing variations, their corresponding orbital configurations may be dynamically
unstable. Thus, our study provides a critical methodological improvement and deeper insight into the
complex dynamical behavior of binary systems, underscoring the necessity of coupling statistical
modelling with long-term dynamical analyses (Horner et al., 2012; Mai and Mutel, 2022).

This study aims to investigate the orbital stability for Z Dra and UZ Lyr, respectively, for which
dynamical stability simulations have not been performed in the literature, using new system parameters
derived from the LTT models reported by Yuan et al., (2016) and Roobiat and Pazhouhesh (2022).

2. Materials and Methods

We used the N-body orbital integration package of REBOUND (Rein and Liu, 2012) to examine the
orbital stability of the proposed planetary system. This package consists of a Mean Exponential Growth
Factor of Nearby Orbits (MEGNO, Cincotta and Simd, 2000) indicator and a Wisdom—Holman
symplectic integrator (WHFast, Rein and Tamayo, 2015). MEGNO is an important tool for studying the
dynamics of planetary systems and other celestial bodies. By generating MEGNO stability maps, it is
possible to examine how two initially close orbits behave over time based on a set of parameters such
as semi-major axis and eccentricity (Cincotta and Sim6, 2000; Rein and Tamayo, 2015; Livesey et al.,
2024).

The following formula defines the MEGNO time-averaged value:

1 t
@) = — f Y(thdt'
t

t—toJg,
Here, t, and t denote the start and end times of the integration, respectively. Y is a time-weighting factor
derived from the variational equations applied to the orbit, which is used to determine whether the
system behaves chaotically or regularly (for further details, see Morbidelli 2002; Hinse et al., 2010;
Livesey et al., 2024). If the MEGNO indicator (Y) is < 2, the system is stable, while values above 2
indicate chaos, with a value of 10 being assigned when a particle is ejected or collides (Cincotta and
Simo, 2000; Gozdziewski et al., 2001; Brown-Sevilla et al., 2021; Gajdos and Vaiiko, 2023; Ozdénmez
et al., 2023; Livesey et al., 2024). WHFast is an advanced version of the symplectic Wisdom-Holman
integrator (Wisdom and Holman, 1991), optimized for systems with a dominant central body and minor
perturbations to Keplerian orbits. This integrator supports the kernel method as well as first- and second-
order symplectic correctors. WHFast efficiently integrates orbits over a specified duration,

demonstrating the evolution of orbital parameters such as the semi-major axis and eccentricity as
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functions of time. This is crucial for analyzing planetary interactions, predicting when a planet may

escape the system or collide, and assessing the long-term stability of orbits (Wisdom and Holman, 1991).

3. Results

We used the N-body orbital integration package of REBOUND (Rein and Liu, 2012) to investigate the
orbital stability of the UZ Lyr and Z Dra systems, where possible additional objects may exist.
Dynamical stability simulations were performed using the best-fit planetary masses and orbital elements
determined by Roobiat and Pazhouhesh (2022) for UZ Lyr and Yuan et al., (2016) for Z DRA in Tables
1l and 2. In Tables 1 and 2, the parameters are defined as follows: P; represents the orbital period of the
ith body, while es;denotes its orbital eccentricity and w3 indicates the longitude of pericentre
(periastron). The parameter Ksis defined as the semi-amplitude of the LTT signal observed in the O-C
diagram, which arises due to the gravitational perturbation by the ith body. Moreover, a,,sin;represents
the projected semi-major axis of the binary system around the barycentre, and Ms ,,;,,is the minimum
mass of the ith body as derived from the LTT model. The central binary star is regarded as a single mass
in both simulations of the two systems, and all orbits were restricted to co-planar. The choice of
parameters for our N-body simulations was guided by the two previous observational studies. The orbital
parameters used in our analysis were obtained from LTT models fitted to the O-C diagrams, with the
semi-major axis (a) and eccentricity (e) being the most critical parameters; these values were taken
directly from published LTT solutions. The integration timestep was set to 0.01% of the shortest orbital
period (in years) to preserve the symplectic nature of the Wisdom-Holman integrator and to minimise
the accumulation of numerical errors (Wisdom and Holman, 1991; Rein and Tamayo, 2015). We
systematically evaluated alternative initial conditions and configurations. Specifically, the semi-major
axis and eccentricity were varied over 50 equally spaced intervals within a defined range (Ngrid), and
the effects of these variations on the dynamical behavior of the system were analysed using MEGNO
stability maps. This comprehensive exploration of the parameter space allowed us to account for
potential uncertainties and to determine the sensitivity of the long-term stability results to the chosen
initial conditions and observational constraints. Under these conditions, dynamic stability simulations
were first performed with a time interval of 107 yr to obtain both the MEGNO value and the orbital
stability timeline. In the event of structural instability in the system's orbit over shorter time periods, the
application of MEGNO was performed for analysis at these shorter timescales.

Figure 1 shows that the system consisting of the parameters of the best-fit model (linear function with
two LTTs) proposed by Roobiat and Pazhouhesh (2022) for UZ Lyr, exhibits chaotic orbital behavior,
with its configurations becoming destabilized and significantly perturbed after about 10 years. In Figure
2, the system is in the unstable region ({Y) = 2) in the MEGNO stability map analyzed in the 10° year
time interval, while it is in the stable region ({(Y) < 2) in the 10* year MEGNO stability map in Figure
3.
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Table 1. Orbital parameters of UZ Lyr obtained from two LTT models by Roobiat and Pazhouhesh (2022).

Parameters
P;(yr) 23.140(20)
es 0.06(2)
w3(°) 63(2)
K;(day) 0.00523(39)

aq;sin; (au) 13.645(17)
M3 min(Mg)  0.31494(13)

Py(yr) 360(85)
e, 0.60(11)
w4 (°) 56(6)
K,(day) 0.05011(69)

aq,35in; (au) 88.344(21)
Mymin(Mp)  0.55187(29)
Rebound Parameters

Time-Step (yr) 0.02
Ngrid 50

Table 2. Orbital parameters of Z Dra obtained from the two LTT models with the quadratic term (solution 3 in
them) and the two LTT models with the cubic term (solution 4 in them) by Yuan et al., (2016)

Parameters Solution 3 Solution 4
P;(yr) 29.81+0.08  29.05+0.08
e 0.43 +£0.01 0.11+£0.03
w3(°) 285.6 +£3.9 83.1+26
M3 min(Mg) 0.39+0.03  0.33+0.04
A3(au, iz = 12.74+£0.3 123+0.2
90°)
P,(yr) 59.41£0.12 58.07+0.12
ey 0.62 £0.02 0.56+0.01
w4 (°) 76.8 £4 240.5+1.6
My min (MO) 0.77 £0.02 0.77 £0.03

As(au, iy 223403 21.9+0.2
=90")

Rebound Parameters

Time-Step (yr) 0.03 0.03
Ngrid 50 50
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Figure 1. Orbital stability analysis of the UZ Lyr system based on the two-companion LTT model proposed by
Roobiat & Pazhouhesh (2022). This simulation, performed with the WHFast integrator over 107 years, illustrates
the long-term dynamical evolution of the system. (a) shows the time evolution of the eccentricities for the inner
(blue) and outer (orange) companions over 10 Myr, while (b) presents the corresponding variations in their semi-
major axes. Note that the outer companion is eventually ejected from the system, whereas the inner companion
maintains a stable orbit. These results suggest that the UZ Lyr system is unlikely to sustain a dynamically stable
configuration with two additional bodies.
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Figure 2. MEGNO chaos parameter surface map for a range of eccentricity and semi-major axis values for the
inner companion (left panel) and the outer companion (right panel) of the two-companion LTT solution by
Roobiat & Pazhouhesh (2022) for a duration of 1 Myr. The white circles denote the best-fit model parameters
along with their uncertainties (refer to Table 1). In this context, the white circles indicate that, for this solution,
both companions are located in highly chaotic regions of the parameter space.
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Figure 3. MEGNO chaos parameter surface map for a duration of 10* year for the inner companion (left panel)
and the outer companion (right panel) corresponding to the two-companion LTT solution by Roobiat &
Pazhouhesh (2022). Here, the white circles again mark the best-fit parameters (and their uncertainties) as listed
in Table 1. In contrast to Figure 2, the white circles in this figure fall within regions that are comparatively
stable, suggesting a more regular orbital behavior for the alternative solution.

Since Yuan et al., (2016) modelled the updated O-C diagram of Z Dra with 4 different functions by
adding additional object(s) to the quadratic and cubic terms, we also performed dynamic stability
simulations on 4 different models. Solutions 1 and 2 by Yuan et al., (2016) involve single LTT models,
and we conclude that they are stable, as expected for a system with a single LTT. However, dynamic
stability simulation graphs are not presented in this study because Yuan et al., (2016) stated that these
two solutions are not very compatible with the O-C diagram and that the best solution is solution 3
(quadratic term + two LTT). When other models are examined, it becomes clear that the system exhibits
instability on short timescales for both solution 3 and solution 4, as shown in Figure 4. Moreover, an
analysis of the MEGNO stability map, as illustrated in Figure 5, indicates that the system parameters of

both solutions are situated within unstable regions.
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Figure 4. Orbital stability timeline for the Z Dra system using two LTT models (Solutions 3 and 4) from Yuan et
al. (2016). The left panel shows the stability timeline for Solution 3, while the right panel presents that for
Solution 4. In both cases, short-timescale interactions lead to rapid mutual perturbations, resulting in
either collisions or ejections from the system. This outcome demonstrates that the Z Dra configuration,
as modelled by these solutions, is dynamically unstable.
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Figure 5. Orbital stability analysis of the Z Dra system using the two LTT models provided by Yuan et al.
(2016). The upper panel illustrates the stability timeline for Solution 3, and the lower panel shows the results for
Solution 4. In both models, the short-term dynamics reveal that the inner and outer companions are quickly
ejected from the system. The accompanying MEGNO stability maps, constructed according to the two-
companion solution, further underscore instability of the system. On short timescales, both inner and outer
bodies escape the system in both solutions.
4. Discussion and Conclusions
The dynamic stability of UZ Lyr and Z Dra was analyzed using N-body simulations of REBOUND
(Rein and Liu, 2012), focusing on the possible presence of additional objects in these systems. The
simulation timescales were chosen using a stepwise approach with increasing time intervals to
thoroughly capture the long-term dynamic behavior of the system. We first examined the stability of the
system over a relatively short timescale (about 10° years). If the system remained stable over this
interval, we extended the integration period to longer durations (10%, 10°, 10° years) and continued this
process until the system either exhibited chaotic behavior. If instability occurred before the maximum
planned duration was reached, the simulation was terminated early. When the dynamic stability
simulation results for the UZ Lyr system based on the model parameters proposed by Roobiat and
Pazhouhesh (2022) are examined, the eccentricity of the inner planet approaches 1.0. This suggests that
the inner planet is moving towards orbital instability, which could disrupt the overall balance of the
system. The eccentricity of the outer planet initially remained constant at about 0.6 but decreased over
time to the level of 0.2. The semi-major axis of the inner planet shows only minor variations and remains
relatively stable at a low level. On the other hand, the semi-major axis of the outer planet exhibited
oscillatory behavior in the early stages of the simulation and later detached from the system. The
dynamic stability simulation results for the UZ Lyrae system indicate significant instability. The orbit
of the system becomes chaotic after about 10* years. This behavior is consistent with expectations for
systems experiencing nonlinear perturbations from multiple bodies. Further analysis using the MEGNO
strengthens this instability. The MEGNO value exceeds 2 in a 10° year stability map, indicating that the
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system is entering a chaotic regime. Interestingly, in a shorter 10 year simulation, the MEGNO remains
below 2, indicating that the system initially appears stable. This suggests that while UZ Lyr is
dynamically stable on short timescales, its long-term evolution is dominated by chaotic interactions that
lead to instability. This chaotic transition is likely driven by several intertwined mechanisms. First, the
cumulative effect of gravitational perturbations from the additional companion gradually alters the
orbital elements of UZ Lyr, such as the eccentricity, the semi-major axes and the argument of pericentre.
These small perturbations, while negligible in the short term, can lead to significant changes over time
due to the system's sensitivity to initial conditions. Second, overlapping mean-motion resonances and
secular resonances are expected to play a significant role in destabilizing the system. The sensitivity of
chaotic systems to initial conditions means that even minor variations within the observational
uncertainties can lead to markedly different evolutionary outcomes. Furthermore, unstable orbits are not
always implied by a chaotic system. However, chaotic time evolution is always implied by unstable
orbits. The integration length is the crucial factor to take into account. There is a chance that the quasi-
period will be incorrectly concluded if the dynamical system's chaotic onset moment necessitates a
significantly longer time span than the integration time. Thus, it is important to integrate the system long
enough for it to potentially display chaotic behavior (Horner et al., 2012, 2013; Hinse et al., 2014). Our
results show that short-term stability can be misleading, because a configuration that appears stable over
a limited number of orbits may be dynamically unstable on astrophysically important timescales. Long-
term integrations are therefore important to reliably assess the feasibility of multibody configurations in
binary systems. More precise orbital parameters are needed to improve our orbital stability models. This
finding highlights the challenges of definitively characterizing systems with multiple potential
additional objects. Short-term stability does not guarantee long-term stability, and systems can transition
from quasi-stable to unstable on different timescales, depending on the specific configurations of
additional bodies. These results are also seen in other systems (Gozdziewski et al., 2001; Horner et al.,
2013; Borkovits et al., 2016; Brown-Sevillaet al., 2021; Er et al., 2021; Mai and Mutel, 2022; Ozdénmez
etal., 2023).

The Z Dra system presents a more complex scenario due to the variety of models proposed by Yuan et
al., (2016), who tested four different solutions for the O-C diagram. Of these, solutions 1 and 2 represent
single LTT models. As expected for single LTT systems, both solutions remain dynamically stable in
our simulations. This is consistent with the general expectation that simple perturbations from a single
additional body are less likely to induce chaotic behavior in such systems. It is important to note,
however, that Yuan et al., (2016) concluded that these solutions do not fit the O-C diagram satisfactorily,
suggesting that they are less likely to represent the true configuration of Z Dra. In contrast, solutions 3
and 4, which involve two LTTs, exhibit pronounced instability on short timescales. The presence of two
additional bodies significantly perturbs the system, pushing it into a chaotic regime. This instability is
confirmed by the MEGNO simulation, where both solutions exhibit values indicative of unstable orbits.

According to our numerical simulations, the system disintegrates rapidly, with the hypothetical
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companions either colliding with the central binary or being ejected in a matter of thousands of years.
These findings suggest that either the proposed companions do not exist, or they must occupy a markedly
different orbital configuration than previously proposed. The results suggest that while adding more
bodies may provide a better empirical fit to the O-C diagram, it also leads to dynamic instability.
Therefore, while models with two LTTs may provide better agreement with observations, they are
unlikely to be physically realistic on long timescales due to the rapid onset of chaotic behavior. Future
studies, particularly for UZ Lyr, should include additional observational data to revise the system

parameters and orbital stability.
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