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Graphical/Tabular Abstract (Grafik Özet) 

A matheuristic method integrating MILP and genetic algorithm is proposed for scheduling 

unrelated parallel machines with setup times. The matheuristic algorithm finds near-optimal 

solutions for large-scale problems within 904–1378 seconds, while the exact model fails to reach 

optimality within 18,000 seconds. / Hazırlık süreli özdeş olmayan paralel makinelerin 

çizelgelenmesi için MILP ve genetik algoritmayı entegre eden bir matsezgisel yöntem 

önerilmektedir. Matsezgisel algoritma, büyük ölçekli problemler için 904–1378 saniye içinde 

optimal çözüme yakın sonuçlar üretirken, matematiksel model 18.000 saniye içinde optimalliğe 

ulaşamamaktadır. 

  

Figure A: Comparison of the mathematical model and matheuristic algorithm (solution quality 

and time for different problem sizes). / Şekil A: Matematiksel model ile matsezgisel algoritmanın 

karşılaştırılması (farklı problem boyutları için çözüm kalitesi ve süresi). 

Highlights (Önemli noktalar)  

 A mathematical model is proposed for capacity balancing and variation minimization. / 

Kapasite dengeleme ve varyasyon minimizasyonu için bir matematiksel model 

önerilmektedir. 

 Two customized genetic algorithm-based mathematical heuristic algorithms are 

presented. / Genetik algoritma tabanlı iki özelleştirilmiş matsezgisel algoritma 

sunulmaktadır. 

 The constrained mutation operator enhances solution feasibility. / Sınırlandırılmış 

mutasyon operatörü çözüm geçerliliğini artırmaktadır. 

 Near-optimal solutions are obtained for large-scale problems in short time. / Büyük 

ölçekli problemlerde kısa sürede optimal çözüme yakın sonuçlar elde edilmektedir. 

Aim (Amaç): This study aims to minimize capacity imbalance and variation in job characteristics 

in unrelated parallel machine scheduling with sequence-dependent setup times. / Bu çalışma, sıra 

bağımlı hazırlık süreli özdeş olmayan paralel makine çizelgelemesinde kapasite dengesizliğini ve 

iş özelliklerindeki varyasyonu en aza indirmeyi amaçlamaktadır. 

Originality (Özgünlük): The study integrates a MILP model with a problem-specific genetic 

algorithm-based matheuristic, introducing constrained mutation and customized chromosome 

structure. / Çalışma, probleme özgü genetik algoritma tabanlı bir matsezgisel yöntem ile MILP 

modelini entegre ederek sınırlandırılmış mutasyon ve özelleştirilmiş kromozom yapısı sunmaktadır. 

Results (Bulgular): While the mathematical model yields optimal results for small problems, 

matheuristic algorithms provide near-optimal solutions for large problems in significantly shorter 

time. / Matematiksel model küçük problemler için optimal çözümler üretirken, matsezgisel 

algoritmalar büyük problemler için çok daha kısa sürede optimal çözüme yakın sonuçlar 

sunmaktadır. 

Conclusion (Sonuç): The proposed hybrid approach shows strong potential in real-world 

production planning by exhibiting satisfactory performance in terms of accuracy and speed. / 

Önerilen hibrit yaklaşım, doğruluk ve hız konularında gayet yeterli performans sergileyerek gerçek 

dünya üretim planlamasında güçlü bir potansiyel göstermektedir. 
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Abstract 

Scheduling of unrelated parallel machines with sequence-dependent setup times presents 

significant theoretical and practical challenges due to its combinatorial complexity and frequent 

occurrence in various production environments. This study addresses a scheduling problem 

specific to tire manufacturing, focusing on capacity balancing and variation minimization in 

unrelated parallel machines with sequence-dependent setup times. For small and medium-sized 

problem sets consisting of 9 to 13 jobs, optimal solutions were obtained using a mathematical 

model. However, when the number of jobs increased to 14 or more, the solution time exceeded 

18000 seconds, and optimality could not be achieved. Therefore, two genetic algorithm-based 

matheuristic algorithms (𝑀𝐴1 and 𝑀𝐴2) with problem-specific customized chromosome 

structures are proposed for large-scale problem sets. Additionally, the classical random mutation 

operator is modified into a constrained random mutation operator tailored to the problem. 

Experimental results and statistical analyses (𝑝 < 0.05) show that the 𝑀𝐴1 algorithm performs 

better than 𝑀𝐴2 in terms of solution quality and find solutions similar to the best feasible 

solutions produced by the mathematical model within a significantly shorter time frame, 

averaging between 904 and 1378 seconds for large-scale problems. The study offers notable 

advantages in terms of both solution time and quality in solving real-world problems. The 

proposed matheuristic algorithm contributes to the literature through its problem-specific 

chromosome design, initial population generation method, and constrained random mutation 

operator. 

 

Sıra Bağımlı Hazırlık Süreli Özdeş Olmayan Paralel Makine Çizelgelemede 

Kapasite Dengeleme ve Varyasyon Minimizasyonu: Matematiksel Model ve 

Matsezgisel Yaklaşım 
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Öz 

Sıra bağımlı hazırlık sürelerine sahip özdeş olmayan paralel makinelerin çizelgelenmesi, 

kombinatoryal karmaşıklığı ve pek çok üretim sürecinde yaygın olarak karşılaşılması nedeniyle 

hem teorik hem de pratik düzeyde önemli zorluklar barındırmaktadır. Bu çalışmada, sıra bağımlı 

hazırlık sürelerine sahip özdeş olmayan paralel makineler için lastik imalatında kapasite 

dengeleme ve varyasyon minimizasyonu özelinde bir çizelgeleme problemi ele alınmaktadır. 

Probleme yönelik 9 ila 13 işten oluşan küçük ve orta ölçekli problem setlerinde matematiksel 

model ile optimal çözümler üretilmiş; ancak, iş sayısı 14 ve üzerine çıktığında çözüm süresi 

18000 saniyeyi aşmış ve optimum çözümlere ulaşılamamıştır. Bu nedenle, büyük problem setleri 

için probleme özgü özelleştirilmiş kromozom yapısıyla genetik algoritma tabanlı iki farklı 

matsezgisel algoritma (𝑀𝐴1 ve 𝑀𝐴2) önerilmektedir. Ayrıca, mutasyon aşamasında klasik 

rastgele mutasyon operatörü, probleme özgü olarak modifiye edilerek sınırlandırılmış rastgele 

mutasyon operatörü olarak kullanılmaktadır. Deneysel sonuçlar ve istatistiksel analizler 

(𝑝<0.05), 𝑀𝐴1 algoritmasının çözüm kalitesi açısından 𝑀𝐴2’ye göre daha başarılı olduğunu ve 

büyük problem setlerinde matematiksel modelin 18000 saniyede bulabildiği en iyi uygun 

çözümlere benzer çözümleri ortalama 904–1378 saniye gibi oldukça kısa sürelerde bulabildiğini 

göstermektedir. Çalışma, çözüm süresi ve kalitesi açısından gerçek hayat problemlerinin 

çözümünde önemli avantajlar sunmaktadır. Önerilen matsezgisel algoritma, probleme özgü 

olarak tasarlanan kromozom yapısı, başlangıç popülasyonu oluşturma yöntemi ve sınırlandırılmış 

rastgele mutasyon operatörü ile benzer problemlerin çözümüne yönelik literatüre önemli katkılar 

sunmaktadır. 
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1. INTRODUCTION (GİRİŞ) 

In today's highly dynamic and competitive 

manufacturing environments, efficient production 

scheduling is no longer a choice, it is a necessity for 

survival. Factories producing products in a wide 

variety of sizes and features, such as tires with 

varying dimensions and compound structures, must 

deal with an overwhelming number of constraints, 

including machine compatibility, sequence-

dependent setup times, and resource balancing. 

Failure to manage these complexities can result in 

serious inefficiencies, production delays, and rising 

costs. 

Parallel machine scheduling problems, particularly 

those involving unrelated machines and sequence-

dependent setup times, are among the most 

challenging classes of combinatorial optimization 

problems. Existing studies in the literature have 

generally focused on minimizing time-based 

performance metrics like makespan or tardiness [1-

4], leaving a research gap in addressing capacity 

balancing and variation reduction in job 

characteristics. For instance, balancing workload 

across machine groups and minimizing product 

variation within each machine are critical to 

ensuring consistent quality and efficient operation. 

These multifaceted requirements necessitate novel 

approaches that blend exact optimization with 

flexible heuristics. To address this, a mixed-integer 

linear programming (MILP) model is proposed to 

obtain exact solutions for small and medium sized 

problems (9-13 jobs), while two genetic algorithm-

based matheuristic algorithms are developed to 

efficiently solve large-scale problems (14-20 jobs) 

where the mathematical model becomes 

computationally infeasible. 

The proposed methods have been evaluated through 

real-world case studies, and the results have been 

analyzed comparatively using statistical methods. 

This study not only makes a significant contribution 

to the existing solution approaches for parallel 

machine scheduling problems but also demonstrates 

the potential to guide time-critical real-world 

applications by providing fast and efficient 

solutions. In this context, the study is expected to 

make substantial contributions to the literature. The 

remainder of this paper is structured as follows: 

Section 2 reviews the relevant literature on parallel 

machine scheduling problems, emphasizing both 

mathematical models and matheuristic approaches. 

Section 3 provides a detailed description of the 

problem definition and introduces the proposed 

methods, including the mathematical model and the 

genetic algorithm-based matheuristic approach. 

Section 4 presents the experimental results, along 

with a comparative analysis of the proposed 

methods using statistical techniques. Finally, 

Section 5 concludes the paper with key findings and 

suggestions for future research directions.  

2. LITERATURE (LİTERATÜR) 

Parallel machine scheduling problems, due to their 

NP-hard nature, require complex mathematical 

models for their solutions. These models are often 

based on mixed-integer linear programming (MILP) 

or nonlinear programming approaches. Tavakkoli-

Moghaddam et al. [5] developed a two-level 

mathematical model that considers sequence-

dependent setup times in unrelated parallel 

machines, aiming to optimize makespan and 

tardiness. Akyol and Sarac [6] proposed a mixed 

integer programming model for the problem of 

scheduling jobs using shared resources on parallel 

machines. Safaei et al. [7] designed a multi-

objective optimization model for parallel machines, 

simultaneously optimizing tardiness and 

completion time. Yepes-Borrero et al. [8] applied 

mathematical models to multi-objective scheduling 

problems by incorporating resource constraints. 

Mathematical models are particularly preferred for 

small and medium scale problems due to their 

theoretical accuracy and potential to provide 

optimal solutions. However, the long solution times 

of mathematical models in large-scale problems 

have led to the development of heuristic, 

metaheuristic or matheuristic algorithms. These 

methods, while not guaranteeing optimality 

compared to mathematical models, significantly 

reduce solution times. Ji et al. [9] applied an 

adaptive large neighborhood search algorithm to 

parallel machine scheduling problems, providing 

solutions for large datasets. Ezugwu [10] achieved 

efficient results for complex scheduling problems 

using a firefly algorithm. Haddad et al. [11] 

combined genetic algorithms with variable 

neighborhood search methods to effectively explore 

large solution spaces, offering solutions for large-

scale problems. 

Genetic algorithms are widely used metaheuristic 

methods in parallel machine scheduling problems, 

generating solutions inspired by the fundamental 

principles of biological evolution. Vallada and Ruiz 

[12] demonstrated the effectiveness of genetic 

algorithms in unrelated parallel machines with 

sequence-dependent setup times. Ozcelik and Sarac 

[13] used genetic algorithm to minimize the 

makespan by taking into account the unavailable 

time periods in parallel machine scheduling 

problems. Zeidi and Hosseini [14] combined 
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genetic algorithms with simulated annealing to 

develop an approach aimed at minimizing total 

tardiness costs. Kim and Kim [15] achieved 

solutions by integrating genetic algorithms with 

sequence-dependent setup times. Antunes et al. [16] 

compared the performance of genetic algorithms 

with other metaheuristic methods for unrelated 

parallel machines and concluded that genetic 

algorithms outperform others, especially in large-

scale problems. Due to their ability to explore vast 

solution spaces and their rapid performance in 

large-scale problems, genetic algorithms are 

extensively employed in the literature. 

Matheuristic algorithms, which combine 

mathematical models and genetic algorithms, have 

the potential to balance solution quality and 

computational efficiency. These hybrid approaches 

integrate the precision advantage of mathematical 

models with the flexibility and speed of genetic 

algorithms. For instance, Chang et al. [17] applied 

hybrid approaches in complex manufacturing 

processes such as surface-mount technology to 

derive diverse solutions. The approach proposed in 

this study offers a novel framework that integrates 

mathematical model with genetic algorithms. The 

proposed matheuristic algorithms featuring 

problem-specific chromosome structure, a 

constrained mutation operator, and alternative 

crossover strategies are designed to deliver high 

quality solutions for large-scale problems within 

practical time limits. This integrated methodology 

presents both theoretical novelty and practical 

applicability for complex scheduling problems. 

3. PROBLEM DEFINITON and 

METHODOLOGY (PROBLEM TANIMI VE 

METODOLOJİ) 

The study presents a solution approach inspired by 

the machine scheduling problem encountered in a 

tire manufacturing facility. The facility operates 

with two distinct machine groups: one group 

consisting of four machines (𝑉1, V2, V3, V4) and 

another group with two machines (T1, T2). The tire 

production process is characterized by various 

constraints and parameters, which contribute to the 

complexity of the scheduling problem. 

The processing time for each job varies across 

machines, resulting in 𝑛 × 𝑚  distinct processing 

time combinations in a system with 𝑛 jobs and 𝑚 

machines. These processing times are represented 

by the 𝑃 matrix in this study. Additionally, every 

machine is not capable of performing every job. To 

address this, a compatibility matrix (𝑌) is defined, 

where binary values (0-1) indicate machine-job 

compatibility: 𝑌𝑖𝑗 = 1, denotes that job i can be 

processed on machine j, while 𝑌𝑖𝑗 =0 indicates that 

it cannot be processed. 

The characteristics of the jobs are defined by 

parameters such as aspect ratio (𝑇𝐺), rim size (𝐽𝐺), 

and mixture group (𝐾𝐺). These parameters 

represent the unique requirements of each job and 

vary across different jobs. Independently of the 

machines, jobs have sequence-dependent setup 

times, which are represented by the 𝑆 matrix. For 

example, in a system with 𝑛 jobs, there are 𝑛 × 𝑛 

distinct setup time values. Additionally, the 

production quantity for each job is defined as an 

integer in the 𝑈 matrix, where all values are strictly 

greater than zero. The problem also includes the 

following constraints: 

 Jobs cannot be split. 

 Each job must be processed on a single machine. 

 A machine cannot process more than one job 

simultaneously. 

 Jobs must be executed consecutively without 

skipping any in the sequence, ensuring no gaps 

in the sequence. 

 Each machine must operate within its daily 

working time limit and cannot exceed this 

constraint.  

The objective function of the problem aims to 

minimize the difference in capacity utilization rates 

between machine groups 𝑉 and 𝑇. Additionally, it 

seeks to minimize the variations in 𝑇𝐺, 𝐽𝐺, and 𝐾𝐺 

values among the jobs assigned to each machine. 

This approach strives to achieve balanced capacity 

utilization among machine groups and reduce 

variability in the assigned jobs. The objective 

function incorporates four distinct goals, each 

assigned weighted coefficients based on their 

importance. This weighting ensures that higher 

priority objectives are given more significance in 

the solution process and allows decision variables 

with different units to be effectively incorporated 

into the same objective function 

3.1. Mathematical Model (Matematiksel Model) 

To address the problem, a mixed-integer linear 

programming (MILP) model has been proposed. In 

the literature, various mathematical models for 

unrelated parallel machines with sequence-

dependent setup times focus on different objective 

functions and constraints, such as minimizing total 

tardiness [3, 14], optimizing constrained resource 

usage [5], employing compatibility matrices [18], 

and minimizing makespan [19, 20]. Unlike previous 

studies, the proposed mathematical model (𝑀𝑀) 
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introduces a multi-objective structure that 

emphasizes minimizing the difference in capacity 

utilization rates among machine groups and 

reducing parameter variability (𝑇𝐺, 𝐽𝐺, and 𝐾𝐺) 

within each machine. Furthermore, by 

simultaneously incorporating job characteristics, 

capacity utilization constraints, and compatibility 

matrix constraints, the proposed model 

distinguishes itself from existing approaches in the 

literature. 

Indices 

𝑖, 𝑏: jobs 

𝑗 ∶ machines 

𝑘: sequences 

Parameters 

𝑓: Maximum job sequence 

𝑣: Number of machines in group 𝑉  

𝑡: Number of machines in group 𝑇  

OT: Maximum operating time of machines 

𝑀: Big number 

𝑆𝑖𝑏: Setup time of job 𝑏 done after job 𝑖 

𝑃𝑖𝑗: Processing time of job 𝑖 on machine 𝑗 

𝑈𝑖: Amount of production job 𝑖 

𝑌𝑖𝑗: Matrix indicating whether job 𝑖 is compatible machine 𝑗 

𝑇𝐺𝑖: Aspect ratio of job 𝑖 

𝐽𝐺𝑖: Rim size of job 𝑖 

𝐾𝐺𝑖: Mixture type of job 𝑖 

𝑊1: Weight of the importance level of difference in capacity 

utilization rates 

𝑊2: Weight of the importance level of differences in aspect 

ratios 

𝑊3: Weight of the importance level of differences in rim sizes 

𝑊4: Weight of the importance level of differences in mixture 

types 

Decision variables 

𝑋𝑖𝑗𝑘:{
1,  if job 𝑖 assigned to machine 𝑗 in sequence 𝑘       

 0,  otherwise                                                                     
  

𝑍𝑖𝑏𝑗𝑘 : 

{
 1, if job 𝑏 is assigned to machine 𝑗 in sequence 𝑘 following job 𝑖
0, otherwise                                                                                   

 

𝐶𝑗𝑘: completion time of the job in sequence 𝑘 on machine 𝑗 

𝐷𝑗: Makespan of machine 𝑗 

𝑍𝑍𝑗: The capacity utilization rate of machine 𝑗 

𝑉: The capacity utilization rate of machine group 𝑉 

𝑇: The capacity utilization rate of machine group 𝑇 

𝑇𝐺_𝑚𝑎𝑥𝑗: Maximum aspect ratio on machine 𝑗 

𝑇𝐺_𝑚𝑖𝑛𝑗: Minimum aspect ratio on machine 𝑗 

𝑇𝐺_𝑑𝑖𝑓𝑗: Difference between 𝑇𝐺_𝑚𝑎𝑥𝑗 and 𝑇𝐺_𝑚𝑖𝑛𝑗 on 

machine j 

𝐽𝐺_𝑚𝑎𝑥𝑗: Maximum rim size on machine 𝑗 

𝐽𝐺_𝑚𝑖𝑛𝑗: Minimum rim size on machine 𝑗 

𝐽𝐺_𝑑𝑖𝑓𝑗: Difference between 𝐽𝐺_𝑚𝑎𝑥𝑗 and 𝐽𝐺_𝑚𝑖𝑛𝑗 on 

machine j 

𝐾𝐺_𝑚𝑎𝑥𝑗: Maximum mixture type value on machine 𝑗 

𝐾𝐺_𝑚𝑖𝑛𝑗: Minimum mixture type value on machine 𝑗 

𝐾𝐺_𝑑𝑖𝑓𝑗: Difference between 𝐾𝐺_𝑚𝑎𝑥𝑗 and 𝐾𝐺_𝑚𝑖𝑛𝑗 on 

machine j 

Formulation 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒     𝑊1 ∗ |𝑉 − 𝑇| + 𝑊2 ∗  ∑ 𝑇𝐺_𝑑𝑖𝑓𝑗

𝑗

+ 𝑊3

∗  ∑ 𝐽𝐺_𝑑𝑖𝑓𝑗

𝑗

 + 𝑊4 ∗ ∑ 𝐾𝐺_𝑑𝑖𝑓𝑗

𝑗

 
(1) 

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐: 

𝐷𝑗 ≥ 𝐶𝑗𝑘   ∀ 𝑗, 𝑘 (2) 

𝐶𝑗0 ≥ 𝑋𝑖𝑗0 ∗ 𝑃𝑖𝑗 ∗ 𝑈𝑖 ∀ 𝑖, 𝑗 (3) 

𝑍𝑖𝑏𝑗𝑘 ≤ (𝑋𝑖𝑗𝑘 + 𝑋𝑏𝑗𝑘+1)/2 
∀ 𝑖, 𝑏, 𝑗, 𝑘 ∶ 𝑘
≠ 𝑓 

(4) 

𝑍𝑖𝑏𝑗𝑘 ≥ (𝑋𝑖𝑗𝑘 + 𝑋𝑏𝑗𝑘+1) − 1 
∀ 𝑖, 𝑏, 𝑗, 𝑘 ∶ 𝑘
≠ 𝑓 

(5) 

𝐶𝑗𝑘+1 ≥ 𝐶𝑗𝑘 + 𝑃𝑏𝑗 ∗ 𝑈𝑏 ∗ 𝑍𝑖𝑏𝑗𝑘

+ 𝑆𝑖𝑏 ∗ 𝑍𝑖𝑏𝑗𝑘 

∀ 𝑖, 𝑏, 𝑗, 𝑘 ∶ 𝑘
≠ 𝑓 

(6) 

∑ ∑ 𝑋𝑖𝑗𝑘

𝑘𝑗

= 1 ∀𝑖 (7) 

∑ 𝑋𝑖𝑗𝑘

𝑘

≤ 𝑌𝑖𝑗 ∀ 𝑖, 𝑗 (8) 

∑ 𝑋𝑖𝑗𝑘

𝑖

≤ 1 ∀ 𝑗, 𝑘 (9) 

∑ 𝑋𝑏𝑗𝑘+1

𝑏

≤ ∑ 𝑋𝑖𝑗𝑘

𝑖

 ∀ 𝑗, 𝑘 ∶ 𝑘 ≠ 𝑓 (10) 

𝐷𝑗 ≤ OT ∀ 𝑗 (11) 

𝑍𝑍𝑗 = 𝐷𝑗/𝑂𝑇 ∀ 𝑗 (12) 

𝑉 = ∑ 𝑍𝑍𝑗

𝑗

/𝑣 ∀ 𝑗: 𝑗
= {1, 2, … , 𝑣} 

(13) 

𝑇 = ∑ 𝑍𝑍𝑗

𝑗

/𝑡 ∀ 𝑗: 𝑗
= {1, 2, … , 𝑡} 

(14) 

𝑇𝐺_𝑚𝑎𝑥𝑗 ≥ 𝑇𝐺𝑖 ∗ 𝑋𝑖𝑗𝑘 ∀ 𝑖, 𝑗, 𝑘 (15) 

𝑇𝐺_𝑚𝑖𝑛𝑗 ≤ 𝑇𝐺𝑖 ∗ 𝑋𝑖𝑗𝑘 + 𝑀 ∗ (1

− 𝑋𝑖𝑗𝑘) 

∀ 𝑖, 𝑗, 𝑘 
(16) 

𝑇𝐺_𝑚𝑖𝑛𝑗 ≥ 1 ∀ 𝑗 (17) 

𝑇𝐺_𝑑𝑖𝑓𝑗 = 𝑇𝐺_𝑚𝑎𝑥𝑗 − 𝑇𝐺_𝑚𝑖𝑛𝑗 ∀ 𝑗 (18) 

𝐽𝐺_𝑚𝑎𝑥𝑗 ≥ 𝐽𝐺𝑖 ∗ 𝑋𝑖𝑗𝑘 ∀ 𝑖, 𝑗, 𝑘 (19) 

𝐽𝐺_𝑚𝑖𝑛𝑗 ≤ 𝐽𝐺𝑖 ∗ 𝑋𝑖𝑗𝑘 + 𝑀 ∗ (1

− 𝑋𝑖𝑗𝑘) 

∀ 𝑖, 𝑗, 𝑘 
(20) 

𝐽𝐺_𝑚𝑖𝑛𝑗 ≥ 1 ∀ 𝑗 (21) 

𝐽𝐺_𝑑𝑖𝑓𝑗 = 𝐽𝐺_𝑚𝑎𝑥𝑗 − 𝐽𝐺_𝑚𝑖𝑛𝑗 ∀ 𝑗 (22) 

𝐾𝐺_𝑚𝑎𝑥𝑗 ≥ 𝐾𝐺𝑖 ∗ 𝑋𝑖𝑗𝑘 ∀ 𝑖, 𝑗, 𝑘 (23) 

𝐾𝐺_𝑚𝑖𝑛𝑗 ≤ 𝐾𝐺𝑖 ∗ 𝑋𝑖𝑗𝑘 + 𝑀 ∗ (1

− 𝑋𝑖𝑗𝑘) 

∀ 𝑖, 𝑗, 𝑘 
(24) 

𝐾𝐺_𝑚𝑖𝑛𝑗 ≥ 1 ∀ 𝑗 (25) 
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𝐾𝐺_𝑑𝑖𝑓𝑗 = 𝐾𝐺_𝑚𝑎𝑥𝑗

− 𝐾𝐺_𝑚𝑖𝑛𝑗 

∀ 𝑗 
(26) 

𝑋𝑖𝑗𝑘 ∈ {0,1} ∀ 𝑖, 𝑗, 𝑘 (27) 

𝐶𝑗𝑘 ≥ 0 ∀ 𝑗, 𝑘 (28) 

𝑍𝑖𝑏𝑗𝑘 ∈ {0,1} ∀ 𝑖, 𝑏, 𝑗, 𝑘 (29) 

𝐷𝑗 , 𝑍𝑍𝑗 , 𝑉, 𝑇 ≥ 0 ∀ 𝑗 (30) 

𝑇𝐺_𝑚𝑎𝑥𝑗 , 𝑇𝐺_𝑚𝑖𝑛𝑗 , 𝑇𝐺_𝑑𝑖𝑓𝑗

≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 
∀ 𝑗 (31) 

𝐽𝐺_𝑚𝑎𝑥𝑗 , 𝐽𝐺_𝑚𝑖𝑛𝑗 , 𝐽𝐺_𝑑𝑖𝑓𝑗

≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 
∀ 𝑗 (32) 

𝐾𝐺_𝑚𝑎𝑥𝑗 , 𝐾𝐺_𝑚𝑖𝑛𝑗 , 𝐾𝐺_𝑑𝑖𝑓𝑗

≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 
∀ 𝑗 (33) 

The objective function of the model is defined by 

Equation 1, aiming to minimize the absolute 

difference in capacity utilization between machine 

groups |𝑉 − 𝑇| and the variability in aspect ratio 

(𝑇𝐺), rim size (𝐽𝐺), and mixture group (𝐾𝐺) on each 

machine using weighted importance coefficients. 

Equation 2 determines the completion time of the 

last job on each machine, while Equation 3 defines 

the completion time of the first job. To arrange job 

sequences, Equations 4 and 5 use the 𝑍 variable to 

identify whether a specific job follows another, 

assigning a value of 1 or 0 accordingly. Equation 6 

calculates the completion time of a job by 

considering the sequence-dependent setup time 

from the previous job. Equation 7 ensures that each 

job is assigned to only one machine and in a specific 

order, while Equation 8 enforces that jobs are 

assigned only to machines capable of performing 

them, based on the compatibility matrix. To regulate 

sequencing, Equation 9 restricts each position on a 

machine to one job, and Equation 10 prohibits gaps 

in the sequence of jobs on a machine. Equation 11 

imposes a constraint to prevent machines from 

exceeding their daily operating time. Capacity 

utilization rates are computed for each machine 

using Equation 12, and for the 𝑉 and 𝑇 machine 

groups using Equations 13 and 14, respectively. The 

maximum and minimum values of 𝑇𝐺, 𝐽𝐺, and 𝐾𝐺 

parameters, along with their differences, are defined 

and minimized through Equations 15-26. Finally, 

Equations 27-33 specify sign constraints, 

establishing the permissible value ranges and types 

of the decision variables. 

The developed mathematical model provides 

effective solutions for small-scale problems; 

however, its practical applicability is limited for 

large-scale problems due to the exponential increase 

in solution times. This limitation arises because the 

problem belongs to the NP-hard class, where 

solution times grow exponentially with problem 

size. To address this, heuristic, metaheuristic, or 

matheuristic algorithms are commonly employed to 

achieve near-optimal solutions within shorter 

timeframes. In this context, a genetic algorithm-

based matheuristic approach has been developed to 

meet critical time-bound requirements, such as the 

efficient scheduling of daily production plans. 

3.2. Matheuristic Algorithm (Matsezgisel Algoritma) 

The matheuristic algorithm is designed to provide 

faster and more efficient solutions by integrating 

heuristic algorithms with mathematical models 

[21]. The proposed algorithm in this study is a 

genetic algorithm-based matheuristic approach. Its 

fitness function partially utilizes the modified 

version of the proposed mathematical model (𝑀𝑀). 

The matheuristic algorithm generates new 

chromosomes by maintaining the solution 

representation and applying feasible initial 

population, crossover, and mutation operations. In 

this study, two different crossover operators are 

employed, resulting in two distinct matheuristic 

algorithms (𝑀𝐴1 and 𝑀𝐴2). The sole difference 

between 𝑀𝐴1 and 𝑀𝐴2 is the crossover operator 

used; all other steps remain identical. These hybrid 

methods combine the speed and flexibility of 

genetic algorithms with the mathematical precision 

of linear models, offering a robust approach to 

solving complex problems such as unrelated 

parallel machines with sequence-dependent setup 

times. The algorithm’s flowchart is illustrated in 

Figure 1. 

 
Figure 1. Flowchart of the genetic algorithm-based 

matheuristic approach (Genetik algoritma tabanlı 

matsezgisel yaklaşımın akış şeması) 

In the matheuristic algorithm, an initial population 

[22] is generated by creating a problem-specific 

number of chromosomes, corresponding to the 

predefined population size. An example 

chromosome is illustrated in Figure 2. The 

chromosome structure developed specifically for 

the problem, represents a one-dimensional 
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machine-job assignment sequence 𝐴𝑖, which is sent 

to the mathematical model. In the chromosome, 

genes sequentially represent jobs, while the values 

of the genes denote the machines to which these 

jobs are assigned. This customized representation 

replaces the two-dimensional compatibility matrix 

𝑌𝑖𝑗 used in the mathematical model (𝑀𝑀) with a 

one-dimensional compatibility sequence 𝐴𝑖. When 

generating chromosomes for the initial population, 

gene values (machine assignments) are randomly 

assigned based on the compatibility matrix 𝑌𝑖𝑗. For 

instance, if the compatible machines for the first job 

are given by 𝑌1𝑗= [0, 1, 1, 0, 1], the corresponding 

set of suitable machines is {2, 3, 5}. Machine 

numbers are assigned to genes by randomly 

selecting values from this set.

 
Figure 2. Chromosome structure (solution representation) (Kromozom yapısı (çözüm gösterimi))

To adapt the mathematical model to the 

chromosome structure used in the matheuristic 

algorithm, the parameter 𝑌𝑖𝑗 is transformed into 𝐴𝑖, 

and one of the model's constraints, Equation 8, is 

replaced with the Equation 34. This new equation 

ensures that the machine-job assignments in the 

chromosomes generated by the matheuristic 

algorithm remain consistent with the compatibility 

constraints. The newly introduced parameter 𝐴𝑖 in 

the mathematical model helps reduce the solution 

space, enabling the algorithm to achieve near-

optimal solutions in a shorter time frame. 

∑ ∑ 𝑗 ∗ 𝑋𝑖𝑗𝑘

𝑘

=

𝑗

𝐴𝑖 ∀𝑖  (34) 

After generating the initial population and 

calculating fitness values in the matheuristic 

algorithm, the process continues with selection, 

crossover, and mutation stages. The selection phase 

determines which chromosomes will proceed to the 

next generation. In this study, the roulette wheel 

selection method is employed. This method 

calculates the selection probabilities of 

chromosomes based on their fitness values [23]. 

Among the candidate chromosomes, the one with 

the highest fitness value has the greatest probability 

of being selected. While chromosomes with higher 

fitness values have a greater probability of being 

selected, chromosomes with lower fitness values 

also retain a chance of selection, ensuring genetic 

diversity within the population. This approach 

allows the evolutionary process to avoid local 

optima and enables a broader exploration of the 

solution space. Figure 3 illustrates an example of the 

selection probabilities in a population of three 

chromosomes using the roulette wheel method. 

Fitness value reflects the quality of a chromosome’s 

solution to the problem, while probability represents 

its relative advantage within the population. For 

instance, Chromosome 3, having the highest fitness 

value, has a 60% probability of being selected, 

whereas Chromosome 1, with the lowest fitness 

value, has a 10% probability. This structure 

promotes the selection of high-quality 

chromosomes while preserving diversity within the 

population, supporting the principles of robust 

evolutionary search.

Figure 3. Roulette wheel selection method (Rulet tekerleği seçim yöntemi) 
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The crossover phase is a critical process where two 

new children are generated through the exchange of 

genes between two selected chromosomes. In this 

study, two different crossover operators, 

specifically designed to align with the solution 

representation, are utilized. The first operator is 

implemented in the 𝑀𝐴1 algorithm, and second 

operator is applied in the 𝑀𝐴2 algorithm to evaluate 

performance using an alternative crossover strategy. 

The effectiveness of both operators is analyzed 

through comparative evaluations presented in the 

experimental results section, where the performance 

differences between the algorithms are assessed 

using statistical methods. 

In the 𝑀𝐴1 algorithm, a uniform crossover operator 

[24] is employed. This operator performs crossover 

by exchanging genes between two chromosomes 

based on a predefined probability value. In this 

study, the probability value is set to 0.5. If a 

randomly generated number between 0 and 1 

exceeds 0.5, the genes are exchanged. Figure 4 

provides an example of the uniform crossover 

method. In the machine-job assignment 

representation used in this study, genes (jobs) are 

exchanged in the same order, ensuring no conflicts 

occur. However, if operators that alter the order of 

genes are used, there is a risk of assigning 

incompatible jobs to machines due to the crossover 

of genes in different positions. To mitigate such 

risks, carefully selected operators have been utilized 

in this study, ensuring the accuracy and validity of 

the solution process are preserved.

Chromosome 1 3 2 1 5 2 4 2 5 1 4 

                      

Chromosome 2 2 1 5 4 3 3 5 2 1 2 

                      

Probability 

value 
0.4 0.8 0.2 0.6 0.7 0.1 0.1 0.6 0.9 0.3 

                      

Child 1 3 1 1 4 3 4 2 2 1 4 

                      

Child 2 2 2 5 5 2 3 5 5 1 2 

Figure 4. Uniform crossover operator (Tekdüze çaprazlama operatörü)

In the 𝑀𝐴2 algorithm, a two-point crossover 

operator [25] is utilized. Figure 5 presents an 

example of the operator. In the method, two random 

points are selected on the chromosomes, and a 

segment is exchanged between the two 

chromosomes, resulting in the creation of two new 

child. The gene order is preserved in this operator, 

and no alterations are made to the sequence of 

genes. Consequently, there are no conflicts or 

inconsistencies in the fitness evaluation performed 

through the mathematical model. This ensures the 

integrity and validity of the solution process.

                      

Chromosome 1 3 2 1 5 2 4 2 5 1 4 

                      

Chromosome 2 2 1 5 4 3 3 5 2 1 2 

                      

                      

Child 1 2 1 5 5 2 4 2 5 1 2 

                      

Child 2 3 2 1 4 3 3 5 2 1 4 

Figure 5. Two-point crossover operator (İki noktalı çaprazlama operatörü)

The next phase of the algorithm, mutation, aims to 

enhance genetic diversity within the population and 

prevent convergence to local optima by introducing 

changes to genes with a low probability. Various 

operators representing different gene alteration 

strategies, such as swap, shift, and inversion, are 

commonly used in this stage [26]. However, the 

chromosome structure employed in the matheuristic 

algorithm is not compatible with methods that alter 

gene order. Another category of mutation operators, 

including random, uniform, and creep mutations, 

assigns random or bounded values to selected genes 

instead of altering their order [27]. In this study, the 

random mutation operator has been modified to 

align with the chromosome structure. In its standard 

form, random mutation replaces genes with values 
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randomly selected within predefined lower and 

upper bounds. However, this operator is not directly 

compatible with the chromosome structure used in 

the study, as the gene values cannot take any value 

within the specified range. To address the 

incompatibility, the mutation operator has been 

constrained and adapted to the compatibility matrix 

𝑌𝑖𝑗, similar to the approach used for generating the 

initial population. With this modification, the values 

assigned to the mutated genes are randomly selected 

from the feasible values determined by the 

compatibility matrix, ensuring the validity and 

integrity of the chromosome structure throughout 

the mutation process.

 

Figure 6. Constrained random mutation (Sınırlandırılmış rastgele mutasyon)

Figure 6 presents an example application of the 

constrained random mutation operator. For 

instance, in a chromosome with 10 genes, the 2nd 

and 6th genes are selected for mutation. To 

determine the possible values for these genes, 

compatibility arrays 𝑌2𝑗 and 𝑌6𝑗 first generated from 

the compatibility matrix. Arrays are then used to 

derive the sets of suitable machines for each 

selected gene. During the mutation process, a value 

is randomly assigned to each selected gene from its 

respective set of suitable machines. This method 

ensures that genes are replaced with random but 

constrained values, allowing the algorithm to 

produce valid and meaningful results within the 

solution space. 

Finally, the execution of the matheuristic algorithm 

terminates based on termination criteria such as the 

target fitness value or the maximum number of 

iterations. These criteria ensure that the algorithm 

either achieves a predefined performance threshold 

or completes the specified maximum number of 

steps. Thus, the algorithm operates efficiently in 

terms of computational time while striving to 

achieve the desired solution quality. 

4. EXPERIMENTAL RESULTS (DENEYSEL 

SONUÇLAR) 

In the experimental studies, various problem sets 

(𝑃𝑆) were derived based on a real-world daily 

machine scheduling problem from a tire 

manufacturing company. While preparing the 

problem sets, several constraints, such as time, 

quantities, and intervals observed in the company, 

were taken into account. The parameters for the 

problem sets, which were created based on different 

job sizes (𝑛), are summarized in Table 1. Each 

problem set also includes a setup time matrix (𝑆), a 

sequence representing production quantities (𝑈), a 

machine-job compatibility matrix (𝑃), an array of 

aspect ratios (𝑇𝐺), an array of rim widths (𝐽𝐺), and 

a mixture group (𝐾𝐺) sequence.

Table 1. Parameters of the problem sets (Problem setlerinin parametreleri) 

 𝒏 𝒗 𝒕 𝑻𝑮_𝒎𝒊𝒏, 𝑻𝑮_𝒎𝒂𝒙 𝑱𝑮_𝒎𝒊𝒏, 𝑱𝑮_𝒎𝒂𝒙 𝑲𝑮_𝒎𝒊𝒏, K𝑮_𝒎𝒂𝒙 

𝑷𝑺𝟏 9 4 2 25, 55 15, 17 1, 2 

𝑷𝑺𝟐 10 4 2 25, 55 15, 17 1, 2 

𝑷𝑺𝟑 11 4 2 25, 55 15, 17 1, 2 

𝑷𝑺𝟒 12 4 2 25, 55 15, 17 1, 2 

𝑷𝑺𝟓 13 4 2 25, 55 15, 17 1, 2 

𝑷𝑺𝟕 14 4 2 25, 55 15, 17 1, 2 

𝑷𝑺𝟖 15 4 2 25, 55 15, 17 1, 2 

𝑷𝑺𝟗 16 4 2 25, 55 15, 17 1, 2 

𝑷𝑺𝟏𝟎 17 4 2 25, 55 15, 17 1, 2 

𝑷𝑺𝟏𝟏 18 4 2 25, 55 15, 17 1, 2 

𝑷𝑺𝟏𝟐 19 4 2 25, 55 15, 17 1, 2 

𝑷𝑺𝟏𝟑 20 4 2 25, 55 15, 17 1, 2 
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The proposed matheuristic algorithms (𝑀𝐴1, 𝑀𝐴2) 

and the mathematical model (𝑀𝑀) were 

implemented using the Python programming 

language and executed on a computer equipped with 

an Intel Core i5 2.40 GHz processor and 8 GB of 

RAM. Initially, the mathematical model was tested 

on 13 different problem sets. All tests were limited 

to a maximum runtime of 18000 seconds (5 hours) 

and repeated multiple times. The objective function 

values (𝐶𝑣𝑎𝑙𝑢𝑒) and average solution times (𝐶𝑡𝑖𝑚𝑒) 

obtained from these tests are presented in Table 2. 

The test results indicate that the time required to 

obtain optimal solutions increases exponentially 

with the number of jobs. When the test duration 

reached the 18000 seconds, the process was 

automatically terminated. Consequently, optimal* 

solutions were achieved for problem sets with 9 to 

13 jobs, while optimal* solutions could not be 

obtained for problem sets with 14 to 20 jobs. 

Furthermore, the fact that even longer durations 

than 18000 seconds are required for daily 

scheduling applications highlights the practical 

limitations of the mathematical model. This 

underscores the necessity of employing alternative 

methods for daily operational planning, where quick 

and effective solutions are critical.

Table 2. Test results for the mathematical model (Matematiksel model için test sonuçları) 

 𝒏 MM - 𝑪𝒗𝒂𝒍𝒖𝒆 MM - 𝑪𝒕𝒊𝒎𝒆 

𝑷𝑺𝟏 9 2.5* 8.27 

𝑷𝑺𝟐 10 3.5* 28.42 

𝑷𝑺𝟑 11 4.5* 122.78 

𝑷𝑺𝟒 12 5.5* 1113.71 

𝑷𝑺𝟓 13 6.5* 2525.50 

𝑷𝑺𝟕 14 7.0 18000 

𝑷𝑺𝟖 15 7.0 18000 

𝑷𝑺𝟗 16 7.0 18000 

𝑷𝑺𝟏𝟎 17 8.5 18000 

𝑷𝑺𝟏𝟏 18 8.5 18000 

𝑷𝑺𝟏𝟐 19 9.0 18000 

𝑷𝑺𝟏𝟑 20 12.5 18000 

As an alternative to the mathematical model and to 

achieve rapid results in daily scheduling, the 

proposed matheuristic algorithm aims to provide 

near-optimal solutions within a short time frame. 

The matheuristic algorithm was configured with 

fixed parameters for all tests, which include a 

population size of 45, 30 iterations, a crossover rate 

of 0.9, and a mutation rate of 0.01. The runtime of 

the matheuristic algorithm was limited to 18000 

seconds and algorithm was executed multiple times, 

as with the mathematical model. During the testing 

process, results were obtained using two different 

crossover operators (uniform and two-point). The 

performance of these operators was evaluated in 

terms of average solution value and runtime, and the 

detailed results are presented in Table 3. The test 

results demonstrate that the matheuristic algorithm 

offers significant advantages over the mathematical 

model, particularly in time-constrained applications 

such as daily scheduling, by giving fast and 

effective solutions.

Table 3. Test results for the matheuristic algorithms (Matsezgisel algoritmalar için test sonuçları) 

 𝒏 MA1 - 𝑪𝒗𝒂𝒍𝒖𝒆 MA2 - 𝑪𝒗𝒂𝒍𝒖𝒆 MA1 - 𝑪𝒕𝒊𝒎𝒆 MA2 - 𝑪𝒕𝒊𝒎𝒆 

𝑷𝑺𝟏 9 2.5* 2.5* 571.17 578.91 

𝑷𝑺𝟐 10 3.5* 4 633.00 583.96 

𝑷𝑺𝟑 11 4.5* 5 668.84 663.47 

𝑷𝑺𝟒 12 5.5* 6 734.65 731.02 

𝑷𝑺𝟓 13 8 8 836.13 881.04 

𝑷𝑺𝟕 14 8 9.5 907.54 915.18 

𝑷𝑺𝟖 15 8.5 10.5 995.01 986.60 

𝑷𝑺𝟗 16 9 11.5 1084.32 1092.16 
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𝑷𝑺𝟏𝟎 17 9 12 1142.56 1102.91 

𝑷𝑺𝟏𝟏 18 9.5 12.5 1242.16 1257.00 

𝑷𝑺𝟏𝟐 19 11.5 15 1353.82 1325.42 

𝑷𝑺𝟏𝟑 20 14 15.5 1378.21 1399.33 

𝑀𝐴1 represents the matheuristic algorithm utilizing 

the uniform crossover operator, while 𝑀𝐴2 

represents the matheuristic algorithm employing the 

two-point crossover operator. Both methods were 

statistically compared in terms of the obtained 

solution values (𝐶𝑣𝑎𝑙𝑢𝑒) and solution times (𝐶𝑡𝑖𝑚𝑒). 
The statistical test results, conducted using the 

Wilcoxon signed ranks test method at a significance 

level of 𝑝 < 0.05, are presented in Table 4.

Table 4. Wilcoxon signed ranks test results (Wilcoxon işaretli sıralar testi sonuçları) 

 Pairs 𝒁 𝒑-value 

Pair 1 MA1 - 𝐶𝑣𝑎𝑙𝑢𝑒  & MA2 - 𝐶𝑣𝑎𝑙𝑢𝑒  -2.814 0.0049 

Pair 2 MA1 - 𝐶𝑡𝑖𝑚𝑒 & MA2 - 𝐶𝑡𝑖𝑚𝑒 -0.0784 0.9375 

Pair 3 MA1 - 𝐶𝑣𝑎𝑙𝑢𝑒  &MM - 𝐶𝑣𝑎𝑙𝑢𝑒  -2.536 0.0112 

Pair 4 MA2 - 𝐶𝑣𝑎𝑙𝑢𝑒  & MM - 𝐶𝑣𝑎𝑙𝑢𝑒  -2.941 0.0033 

The statistical test results indicate that a 𝑝-value less 

than 0.05 signifies a significant difference in the 

solution values obtained by the 𝑀𝐴1 and 𝑀𝐴2 

algorithms. This finding demonstrates that the 𝑀𝐴1 

algorithm outperforms 𝑀𝐴2 in terms of solution 

quality. However, when comparing solution times, 

the 𝑝-value greater than 0.05 indicates no 

statistically significant difference between the two 

algorithms' runtimes. These results suggest that the 

𝑀𝐴1 algorithm achieves lower solution values 

within the same solution time as 𝑀𝐴2. 

Consequently, the 𝑀𝐴1 algorithm emerges as a 

more effective solution method. 

When comparing the results of the 𝑀𝐴1 algorithm 

with the results of the mathematical model (𝑀𝑀), it 

is evident that the 𝑀𝐴1 algorithm can produce near-

optimal solutions in significantly shorter solution 

time. The comparative graphs presented in Figure 7 

clearly support this observation. An analysis of the 

graph in Figure 7.a reveals that the matheuristic 

algorithm generates solution values close to those of 

the mathematical model, demonstrating its 

effectiveness as a viable alternative in terms of 

solution quality.

 a)  b) 

  

Figure 7. a) Comparison of solution values: 𝑀𝑀 – 𝑀𝐴1, b) Comparison of solution times: 𝑀𝑀 – 𝑀𝐴1 (a) 

Çözüm değerlerinin karşılaştırılması: 𝑀𝑀 – 𝑀𝐴1 , b) Çözüm sürelerinin karşılaştırılması: 𝑀𝑀 – 𝑀𝐴1)

Figure 7.b compares the solution times of the two 

methods. Analyzing the graph reveals that for larger 

problem sets, where the number of jobs increases 

significantly, the solution time for the mathematical 

model (𝑀𝑀) escalates dramatically. In contrast, the 

𝑀𝐴1 algorithm consistently achieves results within 

shorter solution time. 

The experimental results demonstrate that the 

proposed matheuristic algorithms, particularly 

𝑀𝐴1, produce high quality solutions in significantly 

shorter times compared to the mathematical model, 

especially for large-scale problem instances. These 

findings align with previous studies [12-17] in the 

literature that emphasize the scalability and 

efficiency of genetic algorithm-based methods in 
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unrelated parallel machine scheduling problems 

with sequence dependent setup times. Unlike many 

prior works that focus primarily on minimizing 

makespan, the proposed approach incorporates 

multiple real-world constraints, such as capacity 

balancing and job diversity, making it more 

applicable to industrial environments. Furthermore, 

the use of a constrained random mutation operator 

and problem specific chromosome structure adds a 

layer of problem awareness that enhances search 

efficiency which are not commonly observed in 

standard genetic algorithm implementations. 

5. CONLUSION (SONUÇ) 

This study addresses a scheduling problem for 

unrelated parallel machines with sequence-

dependent setup times and develops both a 

mathematical model and matheuristic algorithms to 

solve it. The mathematical model provided optimal 

solutions for small and medium sized problems but 

demonstrated practical limitations due to its 

exponentially increasing solution time for large-

scale problems. To overcome this issue, genetic 

algorithm-based matheuristic methods were 

proposed and tested with two different crossover 

operators. 

Experimental results and statistical analyses 

revealed that the proposed matheuristic algorithms, 

particularly for large-scale problems, could produce 

near-optimal solutions in significantly shorter 

solution times compared to the mathematical model. 

The 𝑀𝐴1 algorithm outperformed the 𝑀𝐴2 

algorithm in terms of solution quality and 

demonstrated an ability to achieve results close to 

those of the mathematical model. However, no 

statistically significant difference was observed 

between the two matheuristic algorithms in terms of 

solution times. The proposed matheuristic 

algorithm produced results that are either identical 

or very close to the exact solutions obtained by the 

mathematical model for small and medium sized 

problems. For large scale problems, due to the time 

constraint (18000 seconds), the solution process of 

the mathematical model ended without proving 

optimality. Therefore, the solutions obtained by the 

mathematical model in large-scale problems were 

the best feasible solutions that were obtained within 

the specified time. The matheuristic algorithm, on 

the other hand, found solutions close to these best 

feasible solutions in large-scale problems in short 

periods of time, such as 904-1378 seconds. 

Therefore, the developed matheuristic approach is 

not only theoretically reliable but also practically 

suitable for generating fast and effective solutions 

in real-world production environments, particularly 

for daily scheduling tasks. 

Future studies may focus on enhancing the 

performance of the proposed matheuristic 

algorithms through adaptive parameter tuning, 

integration with other metaheuristic strategies, or 

the integration of local search components to further 

improve solution quality. In addition, alternative 

objective formulations and operator designs may be 

explored to better accommodate highly dynamic or 

large-scale problems. 
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