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A matheuristic method integrating MILP and genetic algorithm is proposed for scheduling
unrelated parallel machines with setup times. The matheuristic algorithm finds near-optimal
solutions for large-scale problems within 904-1378 seconds, while the exact model fails to reach
optimality within 18,000 seconds. / Hazirlik siireli dzdes olmayan paralel makinelerin
cizelgelenmesi icin MILP ve genetik algoritmayr entegre eden bir matsezgisel yontem
onerilmektedir. Matsezgisel algoritma, biiyiik olgekli problemler i¢in 904—1378 saniye iginde
optimal ¢oziime yakin sonuglar iiretirken, matematiksel model 18.000 saniye icinde optimallige
ulasamamaktadir.

16 20000
14 ~ 18000
B 4 16000
5 s 14000
810 2 12000
El 8 10000
6 O 8000
4 6000
3 4000

£ 2000 ———
0 0

9 10 11 12 13 14 15 16 17 18 19 20 9 10 11 12 13 14 15 16 17 18 19 20

n n

——MAI C_value =——MM C_value ~=MAIC_time =——MM C_time

Figure A: Comparison of the mathematical model and matheuristic algorithm (solution quality
and time for different problem sizes). / Sekil A: Matematiksel model ile matsezgisel algoritmanin
karsilastiriimasi (farki problem boyutlari i¢in ¢éoziim kalitesi ve stiresi).

Highlights (Onemli noktalar)

» A mathematical model is proposed for capacity balancing and variation minimization. /
Kapasite dengeleme ve varyasyon minimizasyonu i¢in bir matematiksel model
onerilmektedir.

» Two customized genetic algorithm-based mathematical heuristic algorithms are
presented. / Genetik algoritma tabanli iki ozellestirilmis matsezgisel algoritma
sunulmaktadr.

» The constrained mutation operator enhances solution feasibility. / Simirlandiriimg
mutasyon operatorii ¢oziim gegerliligini artirmaktadir.

» Near-optimal solutions are obtained for large-scale problems in short time. / Biiyiik
olgekli problemlerde kisa siirede optimal ¢oziime yakin sonuglar elde edilmektedir.

Aim (Amag): This study aims to minimize capacity imbalance and variation in job characteristics
in unrelated parallel machine scheduling with sequence-dependent setup times. / Bu ¢alisma, sira
bagiml hazirlik siireli ozdes olmayan paralel makine cizelgelemesinde kapasite dengesizligini ve
is ozelliklerindeki varyasyonu en aza indirmeyi amaglamaktadir.

Originality (Ozgiinliik): The study integrates a MILP model with a problem-specific genetic
algorithm-based matheuristic, introducing constrained mutation and customized chromosome
structure. / Calisma, probleme ézgii genetik algoritma tabanli bir matsezgisel yontem ile MILP
modelini entegre ederek sinirlandirilmis mutasyon ve ozellestirilmis kromozom yapisi sunmaktadir.

Results (Bulgular): While the mathematical model yields optimal results for small problems,
matheuristic algorithms provide near-optimal solutions for large problems in significantly shorter
time. | Matematiksel model kiigiik problemler icin optimal ¢oziimler iiretirken, matsezgisel
algoritmalar biiyiik problemler icin ¢ok daha kisa siirede optimal ¢oziime yakin sonuglar
sunmaktadir.

Conclusion (Sonug¢): The proposed hybrid approach shows strong potential in real-world
production planning by exhibiting satisfactory performance in terms of accuracy and speed. /
Onerilen hibrit yaklasim, dogruluk ve hiz konularinda gayet yeterli performans sergileyerek gercek
diinya iiretim planlamasinda giiclii bir potansiyel géstermektedir.
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Scheduling of unrelated parallel machines with sequence-dependent setup times presents
significant theoretical and practical challenges due to its combinatorial complexity and frequent
occurrence in various production environments. This study addresses a scheduling problem
specific to tire manufacturing, focusing on capacity balancing and variation minimization in
unrelated parallel machines with sequence-dependent setup times. For small and medium-sized
problem sets consisting of 9 to 13 jobs, optimal solutions were obtained using a mathematical
model. However, when the number of jobs increased to 14 or more, the solution time exceeded
18000 seconds, and optimality could not be achieved. Therefore, two genetic algorithm-based
matheuristic algorithms (MA1 and MAZ2) with problem-specific customized chromosome
structures are proposed for large-scale problem sets. Additionally, the classical random mutation
operator is modified into a constrained random mutation operator tailored to the problem.
Experimental results and statistical analyses (p < 0.05) show that the MA1 algorithm performs
better than MA2 in terms of solution quality and find solutions similar to the best feasible
solutions produced by the mathematical model within a significantly shorter time frame,
averaging between 904 and 1378 seconds for large-scale problems. The study offers notable
advantages in terms of both solution time and quality in solving real-world problems. The
proposed matheuristic algorithm contributes to the literature through its problem-specific
chromosome design, initial population generation method, and constrained random mutation
operator.

Sira Bagimh Hazirlik Siireli Ozdes Olmayan Paralel Makine Cizelgelemede
Kapasite Dengeleme ve Varyasyon Minimizasyonu: Matematiksel Model ve
Matsezgisel Yaklasim
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Sira bagimli hazirlik siirelerine sahip 6zdes olmayan paralel makinelerin c¢izelgelenmesi,
kombinatoryal karmagikligi ve pek ¢ok iiretim siirecinde yaygin olarak karsilagilmasi nedeniyle
hem teorik hem de pratik diizeyde 6nemli zorluklar barindirmaktadir. Bu ¢aligmada, sira bagimli
hazirlik siirelerine sahip 6zdes olmayan paralel makineler igin lastik imalatinda kapasite
dengeleme ve varyasyon minimizasyonu 6zelinde bir ¢izelgeleme problemi ele alinmaktadir.
Probleme yonelik 9 ila 13 isten olusan kiigiik ve orta Slgekli problem setlerinde matematiksel
model ile optimal ¢dzlimler iiretilmis; ancak, is sayisi 14 ve {izerine ¢iktiginda ¢oziim siiresi
18000 saniyeyi agmis ve optimum ¢dzliimlere ulagilamamistir. Bu nedenle, bilyiik problem setleri
icin probleme 06zgili 6zellestirilmis kromozom yapisiyla genetik algoritma tabanli iki farkli
matsezgisel algoritma (MA1 ve MA2) onerilmektedir. Ayrica, mutasyon asamasinda klasik
rastgele mutasyon operatorii, probleme 6zgii olarak modifiye edilerek sinirlandirilmis rastgele
mutasyon operatorii olarak kullanilmaktadir. Deneysel sonuglar ve istatistiksel analizler
(p<0.05), MA1 algoritmasinin ¢6ziim kalitesi agisindan MA2’ye gore daha basarili oldugunu ve
biiyiik problem setlerinde matematiksel modelin 18000 saniyede bulabildigi en iyi uygun
coziimlere benzer ¢oziimleri ortalama 904—1378 saniye gibi oldukea kisa siirelerde bulabildigini
gostermektedir. Caligma, ¢6ziim siiresi ve kalitesi agisindan gergek hayat problemlerinin
¢dziimiinde 6nemli avantajlar sunmaktadir. Onerilen matsezgisel algoritma, probleme &zgil
olarak tasarlanan kromozom yapisi, baslangi¢ popiilasyonu olusturma yontemi ve sinirlandirilmig
rastgele mutasyon operatoril ile benzer problemlerin ¢dziimiine yonelik literatiire 6nemli katkilar
sunmaktadir.
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1. INTRODUCTION (GIRiS)

In today's highly dynamic and competitive
manufacturing environments, efficient production
scheduling is no longer a choice, it is a necessity for
survival. Factories producing products in a wide
variety of sizes and features, such as tires with
varying dimensions and compound structures, must
deal with an overwhelming number of constraints,
including machine compatibility, sequence-
dependent setup times, and resource balancing.
Failure to manage these complexities can result in
serious inefficiencies, production delays, and rising
costs.

Parallel machine scheduling problems, particularly
those involving unrelated machines and sequence-
dependent setup times, are among the most
challenging classes of combinatorial optimization
problems. EXxisting studies in the literature have
generally focused on minimizing time-based
performance metrics like makespan or tardiness [1-
4], leaving a research gap in addressing capacity
balancing and variation reduction in job
characteristics. For instance, balancing workload
across machine groups and minimizing product
variation within each machine are critical to
ensuring consistent quality and efficient operation.
These multifaceted requirements necessitate novel
approaches that blend exact optimization with
flexible heuristics. To address this, a mixed-integer
linear programming (MILP) model is proposed to
obtain exact solutions for small and medium sized
problems (9-13 jobs), while two genetic algorithm-
based matheuristic algorithms are developed to
efficiently solve large-scale problems (14-20 jobs)
where the mathematical model becomes
computationally infeasible.

The proposed methods have been evaluated through
real-world case studies, and the results have been
analyzed comparatively using statistical methods.
This study not only makes a significant contribution
to the existing solution approaches for parallel
machine scheduling problems but also demonstrates
the potential to guide time-critical real-world
applications by providing fast and efficient
solutions. In this context, the study is expected to
make substantial contributions to the literature. The
remainder of this paper is structured as follows:
Section 2 reviews the relevant literature on parallel
machine scheduling problems, emphasizing both
mathematical models and matheuristic approaches.
Section 3 provides a detailed description of the
problem definition and introduces the proposed
methods, including the mathematical model and the
genetic algorithm-based matheuristic approach.

Section 4 presents the experimental results, along
with a comparative analysis of the proposed
methods using statistical techniques. Finally,
Section 5 concludes the paper with key findings and
suggestions for future research directions.

2. LITERATURE (LITERATUR)

Parallel machine scheduling problems, due to their
NP-hard nature, require complex mathematical
models for their solutions. These models are often
based on mixed-integer linear programming (MILP)
or nonlinear programming approaches. Tavakkoli-
Moghaddam et al. [5] developed a two-level
mathematical model that considers sequence-
dependent setup times in unrelated parallel
machines, aiming to optimize makespan and
tardiness. Akyol and Sarac [6] proposed a mixed
integer programming model for the problem of
scheduling jobs using shared resources on parallel
machines. Safaei et al. [7] designed a multi-
objective optimization model for parallel machines,
simultaneously ~ optimizing  tardiness  and
completion time. Yepes-Borrero et al. [8] applied
mathematical models to multi-objective scheduling
problems by incorporating resource constraints.
Mathematical models are particularly preferred for
small and medium scale problems due to their
theoretical accuracy and potential to provide
optimal solutions. However, the long solution times
of mathematical models in large-scale problems
have led to the development of heuristic,
metaheuristic or matheuristic algorithms. These
methods, while not guaranteeing optimality
compared to mathematical models, significantly
reduce solution times. Ji et al. [9] applied an
adaptive large neighborhood search algorithm to
parallel machine scheduling problems, providing
solutions for large datasets. Ezugwu [10] achieved
efficient results for complex scheduling problems
using a firefly algorithm. Haddad et al. [11]
combined genetic algorithms with variable
neighborhood search methods to effectively explore
large solution spaces, offering solutions for large-
scale problems.

Genetic algorithms are widely used metaheuristic
methods in parallel machine scheduling problems,
generating solutions inspired by the fundamental
principles of biological evolution. Vallada and Ruiz
[12] demonstrated the effectiveness of genetic
algorithms in unrelated parallel machines with
sequence-dependent setup times. Ozcelik and Sarac
[13] used genetic algorithm to minimize the
makespan by taking into account the unavailable
time periods in parallel machine scheduling
problems. Zeidi and Hosseini [14] combined
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genetic algorithms with simulated annealing to
develop an approach aimed at minimizing total
tardiness costs. Kim and Kim [15] achieved
solutions by integrating genetic algorithms with
sequence-dependent setup times. Antunes et al. [16]
compared the performance of genetic algorithms
with other metaheuristic methods for unrelated
parallel machines and concluded that genetic
algorithms outperform others, especially in large-
scale problems. Due to their ability to explore vast
solution spaces and their rapid performance in
large-scale problems, genetic algorithms are
extensively employed in the literature.

Matheuristic algorithms, which combine
mathematical models and genetic algorithms, have
the potential to balance solution quality and
computational efficiency. These hybrid approaches
integrate the precision advantage of mathematical
models with the flexibility and speed of genetic
algorithms. For instance, Chang et al. [17] applied
hybrid approaches in complex manufacturing
processes such as surface-mount technology to
derive diverse solutions. The approach proposed in
this study offers a novel framework that integrates
mathematical model with genetic algorithms. The
proposed  matheuristic  algorithms  featuring
problem-specific ~ chromosome  structure, a
constrained mutation operator, and alternative
crossover strategies are designed to deliver high
quality solutions for large-scale problems within
practical time limits. This integrated methodology
presents both theoretical novelty and practical
applicability for complex scheduling problems.

3. PROBLEM DEFINITON and
METHODOLOGY  (PROBLEM TANIMI VE
METODOLOJI)

The study presents a solution approach inspired by
the machine scheduling problem encountered in a
tire manufacturing facility. The facility operates
with two distinct machine groups: one group
consisting of four machines (V1, V2, V3, V4) and
another group with two machines (T1, T2). The tire
production process is characterized by various
constraints and parameters, which contribute to the
complexity of the scheduling problem.

The processing time for each job varies across
machines, resulting in n x m distinct processing
time combinations in a system with n jobs and m
machines. These processing times are represented
by the P matrix in this study. Additionally, every
machine is not capable of performing every job. To
address this, a compatibility matrix (Y) is defined,
where binary values (0-1) indicate machine-job

compatibility: Y;; = 1, denotes that job i can be
processed on machine j, while Y;; =0 indicates that
it cannot be processed.

The characteristics of the jobs are defined by
parameters such as aspect ratio (TG), rim size (JG),
and mixture group (KG). These parameters
represent the unique requirements of each job and
vary across different jobs. Independently of the
machines, jobs have sequence-dependent setup
times, which are represented by the S matrix. For
example, in a system with n jobs, there are n X n
distinct setup time values. Additionally, the
production quantity for each job is defined as an
integer in the U matrix, where all values are strictly
greater than zero. The problem also includes the
following constraints:

e Jobs cannot be split.

e Each job must be processed on a single machine.

e A machine cannot process more than one job
simultaneously.

e Jobs must be executed consecutively without
skipping any in the sequence, ensuring no gaps
in the sequence.

e Each machine must operate within its daily
working time limit and cannot exceed this
constraint.

The objective function of the problem aims to
minimize the difference in capacity utilization rates
between machine groups V and T. Additionally, it
seeks to minimize the variations in TG, JG, and KG
values among the jobs assigned to each machine.
This approach strives to achieve balanced capacity
utilization among machine groups and reduce
variability in the assigned jobs. The objective
function incorporates four distinct goals, each
assigned weighted coefficients based on their
importance. This weighting ensures that higher
priority objectives are given more significance in
the solution process and allows decision variables
with different units to be effectively incorporated
into the same objective function

3.1. Mathematical Model (Matematiksel Model)

To address the problem, a mixed-integer linear
programming (MILP) model has been proposed. In
the literature, various mathematical models for
unrelated parallel machines with sequence-
dependent setup times focus on different objective
functions and constraints, such as minimizing total
tardiness [3, 14], optimizing constrained resource
usage [5], employing compatibility matrices [18],
and minimizing makespan [19, 20]. Unlike previous
studies, the proposed mathematical model (MM)
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introduces a multi-objective  structure that
emphasizes minimizing the difference in capacity
utilization rates among machine groups and
reducing parameter variability (TG, JG, and KG)
within ~ each  machine.  Furthermore, by
simultaneously incorporating job characteristics,
capacity utilization constraints, and compatibility
matrix  constraints, the proposed  model
distinguishes itself from existing approaches in the
literature.

Indices
i, b: jobs
Jj : machines
k: sequences

Parameters

f: Maximum job sequence

v: Number of machines in group V

t: Number of machines in group T

OT: Maximum operating time of machines
M: Big number

Sip: Setup time of job b done after job i
P;j: Processing time of job i on machine j
U;: Amount of production job i

Y;;: Matrix indicating whether job i is compatible machine j
TG;: Aspect ratio of job i

JG;: Rim size of job i

KG;: Mixture type of job i

W;: Weight of the importance level of difference in capacity
utilization rates

W,: Weight of the importance level of differences in aspect
ratios

W5: Weight of the importance level of differences in rim sizes

W,: Weight of the importance level of differences in mixture
types

Decision variables
3 { 1, if job i assigned to machine j in sequence k
Uk 0, otherwise

Zipjk:

{ 1, if job b is assigned to machine j in sequence k following job i

0, otherwise
Cjx: completion time of the job in sequence k on machine j
D;: Makespan of machine j
ZZ;: The capacity utilization rate of machine j
V: The capacity utilization rate of machine group V
T: The capacity utilization rate of machine group T
TG_max;: Maximum aspect ratio on machine j
TG_min;: Minimum aspect ratio on machine j

TG_dif;: Difference between TG_max; and TG_min; on
machine j

JG_max;: Maximum rim size on machine j
JG_min;: Minimum rim size on machine j

JG_dif;: Difference between JG_max; and JG_min; on

machine j

KG_max;: Maximum mixture type value on machine j
KG_min;: Minimum mixture type value on machine j

KG_dif;: Difference between KG_max; and KG_min; on

machine j

Formulation

minimize Wy * |V =T[4+ W, * ZT(;_difj + Ws

J
« Y J6_dif, + W, x ) KG_dif,
J J

subject to:
D; = Cj

Gjo = Xijo * Pij * U;
Zinje < (Xijie + Xpjs1)/2

Zinjie = (Xijie + Xpjrerr) — 1

Ciks1 = Cjie + Pyj x Up * Zipjic
+ Sip * Zipjk
St
T

ZXijk <Y

3
in,-k <1

7
Zijk+1 < injk
b 7

D; < 0T

TG_max; = TG * X;jx

TG_min; S TGy * Xjj + M = (1
= Xiji)

TG_min; = 1

TG_dif; = TG_max; — TG_min;

JG_max; = JG; * X;j

JG_min; < JG; * X + M+ (1
— Xiji)

JG min; =1

JG_dif; = JG_max; — JG_min;

KG_max; = KG; * X;j

KG_minj < KG; * Xjj + M = (1
— Xiji)

KG min; =1
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KG_dif; = KG_max; v j

— KG_min; (26)
Xij € {0,1} Vi jk (27)
Ci 2 0 vk (28)
Zipjk € 10,1} Vi,b,jk (29)
D;,Z2;,V,T 20 vj (30)
TG_max;, TG_min;, TG_dif; ,
- ]r - ]! - ]
> 0 and integer vJ (31)
]G_maxj,]G_min]-,]G_difj .
> 0 and integer vJ (32)
KG i, KG_min;, KG_dif; .
_max; _min; Lf] vj (33)

> 0 and integer

The objective function of the model is defined by
Equation 1, aiming to minimize the absolute
difference in capacity utilization between machine
groups |V —T| and the variability in aspect ratio
(TG), rimsize (JG), and mixture group (KG) on each
machine using weighted importance coefficients.
Equation 2 determines the completion time of the
last job on each machine, while Equation 3 defines
the completion time of the first job. To arrange job
sequences, Equations 4 and 5 use the Z variable to
identify whether a specific job follows another,
assigning a value of 1 or 0 accordingly. Equation 6
calculates the completion time of a job by
considering the sequence-dependent setup time
from the previous job. Equation 7 ensures that each
job is assigned to only one machine and in a specific
order, while Equation 8 enforces that jobs are
assigned only to machines capable of performing
them, based on the compatibility matrix. To regulate
sequencing, Equation 9 restricts each position on a
machine to one job, and Equation 10 prohibits gaps
in the sequence of jobs on a machine. Equation 11
imposes a constraint to prevent machines from
exceeding their daily operating time. Capacity
utilization rates are computed for each machine
using Equation 12, and for the V and T machine
groups using Equations 13 and 14, respectively. The
maximum and minimum values of TG, JG, and KG
parameters, along with their differences, are defined
and minimized through Equations 15-26. Finally,
Equations 27-33  specify sign  constraints,
establishing the permissible value ranges and types
of the decision variables.

The developed mathematical model provides
effective solutions for small-scale problems;
however, its practical applicability is limited for
large-scale problems due to the exponential increase
in solution times. This limitation arises because the
problem belongs to the NP-hard class, where
solution times grow exponentially with problem
size. To address this, heuristic, metaheuristic, or
matheuristic algorithms are commonly employed to

achieve near-optimal solutions within shorter
timeframes. In this context, a genetic algorithm-
based matheuristic approach has been developed to
meet critical time-bound requirements, such as the
efficient scheduling of daily production plans.

3.2. Matheuristic Algorithm (Matsezgisel Algoritma)

The matheuristic algorithm is designed to provide
faster and more efficient solutions by integrating
heuristic algorithms with mathematical models
[21]. The proposed algorithm in this study is a
genetic algorithm-based matheuristic approach. Its
fitness function partially utilizes the modified
version of the proposed mathematical model (MM).

The matheuristic algorithm generates new
chromosomes by maintaining the solution
representation and applying feasible initial

population, crossover, and mutation operations. In
this study, two different crossover operators are
employed, resulting in two distinct matheuristic
algorithms (MA1 and MAZ2). The sole difference
between MA1 and MA2 is the crossover operator
used; all other steps remain identical. These hybrid
methods combine the speed and flexibility of
genetic algorithms with the mathematical precision
of linear models, offering a robust approach to
solving complex problems such as unrelated
parallel machines with sequence-dependent setup
times. The algorithm’s flowchart is illustrated in
Figure 1.

Initial populatlon A; (Machine-job sc_qucncc)

——— Ve ~
( < s + = < & ) \\\
Calculate the fitness value R
l g ““ Mathematical ““
\ | \ Model /
Selection \ i

"
ion

L J
P T Scheduling solation
Crossover

Mutation
y \
/T ermination

criteria
N satisfied?
_
Figure 1. Flowchart of the genetic algorithm-based
matheuristic approach (Genetik
matsezgisel yaklagimin akig semast)

Best matheuristic
solution

—No—< o Yes- >

algoritma tabanli

In the matheuristic algorithm, an initial population
[22] is generated by creating a problem-specific
number of chromosomes, corresponding to the
predefined  population size. An example
chromosome is illustrated in Figure 2. The
chromosome structure developed specifically for
the problem, represents a one-dimensional
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machine-job assignment sequence A;, which is sent
to the mathematical model. In the chromosome,
genes sequentially represent jobs, while the values
of the genes denote the machines to which these
jobs are assigned. This customized representation
replaces the two-dimensional compatibility matrix
Y;; used in the mathematical model (MM) with a

one-dimensional compatibility sequence A;. When

r(—Plfhu:hine 3

generating chromosomes for the initial population,
gene values (machine assignments) are randomly
assigned based on the compatibility matrix Y;;. For
instance, if the compatible machines for the first job
are given by Y;;= [0, 1, 1, 0, 1], the corresponding
set of suitable machines is {2, 3, 5}. Machine
numbers are assigned to genes by randomly
selecting values from this set.

I
3 1

N

Job 1 Job 2

Figure 2. Chromosome structure (solution representation) (Kromozom yapisi (¢6ziim gosterimi))

To adapt the mathematical model to the
chromosome structure used in the matheuristic
algorithm, the parameter Y;; is transformed into 4;,
and one of the model's constraints, Equation 8, is
replaced with the Equation 34. This new equation
ensures that the machine-job assignments in the
chromosomes generated by the matheuristic
algorithm remain consistent with the compatibility
constraints. The newly introduced parameter A4; in
the mathematical model helps reduce the solution
space, enabling the algorithm to achieve near-
optimal solutions in a shorter time frame.

ZZ] * Xijk = A;
K

J

Vi (34)

After generating the initial population and
calculating fitness values in the matheuristic
algorithm, the process continues with selection,
crossover, and mutation stages. The selection phase
determines which chromosomes will proceed to the
next generation. In this study, the roulette wheel
selection method is employed. This method

chromosomes based on their fitness values [23].
Among the candidate chromosomes, the one with
the highest fitness value has the greatest probability
of being selected. While chromosomes with higher
fitness values have a greater probability of being
selected, chromosomes with lower fitness values
also retain a chance of selection, ensuring genetic
diversity within the population. This approach
allows the evolutionary process to avoid local
optima and enables a broader exploration of the
solution space. Figure 3 illustrates an example of the
selection probabilities in a population of three
chromosomes using the roulette wheel method.
Fitness value reflects the quality of a chromosome’s
solution to the problem, while probability represents
its relative advantage within the population. For
instance, Chromosome 3, having the highest fitness
value, has a 60% probability of being selected,
whereas Chromosome 1, with the lowest fitness
value, has a 10% probability. This structure
promotes the selection of  high-quality
chromosomes while preserving diversity within the
population, supporting the principles of robust

calculates the selection  probabilities of evolutionary search.

Fines gy | R
Chromosome 113 | 2| 1|5|2[4 (2|5 1[4] | 10 0.1
Chromosome 2|2 | 1[5]4]3[3]5]2[1]2] | 30 | 03 |
Chromosome3| 4| 2[3]1]5]4[5[3[3]1] | 60 | 06 |

Chromosome 2

Figure 3. Roulette wheel selection

30%

method (Rulet tekerlegi segim yontemi)
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The crossover phase is a critical process where two
new children are generated through the exchange of
genes between two selected chromosomes. In this
study, two different crossover operators,
specifically designed to align with the solution
representation, are utilized. The first operator is
implemented in the MA1 algorithm, and second
operator is applied in the MA2 algorithm to evaluate
performance using an alternative crossover strategy.
The effectiveness of both operators is analyzed
through comparative evaluations presented in the
experimental results section, where the performance
differences between the algorithms are assessed
using statistical methods.

In the MA1 algorithm, a uniform crossover operator
[24] is employed. This operator performs crossover

by exchanging genes between two chromosomes
based on a predefined probability value. In this
study, the probability value is set to 0.5. If a
randomly generated number between 0 and 1
exceeds 0.5, the genes are exchanged. Figure 4
provides an example of the uniform crossover
method. In  the machine-job  assignment
representation used in this study, genes (jobs) are
exchanged in the same order, ensuring no conflicts
occur. However, if operators that alter the order of
genes are used, there is a risk of assigning
incompatible jobs to machines due to the crossover
of genes in different positions. To mitigate such
risks, carefully selected operators have been utilized
in this study, ensuring the accuracy and validity of
the solution process are preserved.

Chromosomel‘S‘Z‘1‘5‘2‘4‘2‘5‘1‘4‘

Chromosome2|2‘1‘5‘4|3|3|5|2|1‘2‘

Probability

0.4
value

0.8]0.2

06(0.7/01]01{06(09]|03

Child 1

H B OB I

Child 2

B HB BB

Figure 4. Uniform crossover operator (Tekdiize caprazlama operatdrii)

In the MA2 algorithm, a two-point crossover
operator [25] is utilized. Figure 5 presents an
example of the operator. In the method, two random
points are selected on the chromosomes, and a
segment is exchanged between the two
chromosomes, resulting in the creation of two new

child. The gene order is preserved in this operator,
and no alterations are made to the sequence of
genes. Consequently, there are no conflicts or
inconsistencies in the fitness evaluation performed
through the mathematical model. This ensures the
integrity and validity of the solution process.

Chromosomel‘ 3 ‘ 2 ‘ 1

sT2[+]2]5|1]4]

Chromosome2| 2 ‘ 1 | 5

a]3]3|s|2]1]2]

Child 1 |2‘1|5

[5[2[4]2]+ O

Child 2 ‘3‘2‘1

S - | ]

Figure 5. Two-point crossover operator (iki noktal gaprazlama operatorii)

The next phase of the algorithm, mutation, aims to
enhance genetic diversity within the population and
prevent convergence to local optima by introducing
changes to genes with a low probability. Various
operators representing different gene alteration
strategies, such as swap, shift, and inversion, are
commonly used in this stage [26]. However, the
chromosome structure employed in the matheuristic

algorithm is not compatible with methods that alter
gene order. Another category of mutation operators,
including random, uniform, and creep mutations,
assigns random or bounded values to selected genes
instead of altering their order [27]. In this study, the
random mutation operator has been modified to
align with the chromosome structure. In its standard
form, random mutation replaces genes with values
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randomly selected within predefined lower and
upper bounds. However, this operator is not directly
compatible with the chromosome structure used in
the study, as the gene values cannot take any value
within the specified range. To address the
incompatibility, the mutation operator has been
constrained and adapted to the compatibility matrix

Job 2

Y;;, similar to the approach used for generating the
initial population. With this modification, the values
assigned to the mutated genes are randomly selected
from the feasible values determined by the
compatibility matrix, ensuring the validity and
integrity of the chromosome structure throughout

the mutation process.

Job 6

Chromosome 3 2 1 5

Lbvzj—lu. 1,1,0,1]

Set of

suitable = {2, 3,5}

machines

Yei=[1,0,0,1,0]

Set of
suitable = {1, 4}
machines

Mutated 3 5 1 5

Chromosome

2 1 2 5 1 4

Figure 6. Constrained random mutation (Sinirlandirilmis rastgele mutasyon)

Figure 6 presents an example application of the
constrained random mutation operator. For
instance, in a chromosome with 10 genes, the 2nd
and 6th genes are selected for mutation. To
determine the possible values for these genes,
compatibility arrays Y, ; and Y ; first generated from
the compatibility matrix. Arrays are then used to
derive the sets of suitable machines for each
selected gene. During the mutation process, a value
is randomly assigned to each selected gene from its
respective set of suitable machines. This method
ensures that genes are replaced with random but
constrained values, allowing the algorithm to
produce valid and meaningful results within the
solution space.

Finally, the execution of the matheuristic algorithm
terminates based on termination criteria such as the
target fitness value or the maximum number of
iterations. These criteria ensure that the algorithm
either achieves a predefined performance threshold
or completes the specified maximum number of

steps. Thus, the algorithm operates efficiently in
terms of computational time while striving to
achieve the desired solution quality.

4. EXPERIMENTAL RESULTS (DENEYSEL
SONUCLAR)

In the experimental studies, various problem sets
(PS) were derived based on a real-world daily
machine scheduling problem from a tire
manufacturing company. While preparing the
problem sets, several constraints, such as time,
guantities, and intervals observed in the company,
were taken into account. The parameters for the
problem sets, which were created based on different
job sizes (n), are summarized in Table 1. Each
problem set also includes a setup time matrix (S), a
sequence representing production quantities (U), a
machine-job compatibility matrix (P), an array of
aspect ratios (TG), an array of rim widths (JG), and
a mixture group (KG) sequence.

Table 1. Parameters of the problem sets (Problem setlerinin parametreleri)

n v |t | TGmin, TG.max | JG min,JG_ max | KG_ min, KG_max
PS, 9 4 | 2 25, 55 15,17 1,2
PS, 10 4 | 2 25, 55 15,17 1,2
PS; 11 4 | 2 25, 55 15,17 1,2
PS, 12 4 | 2 25, 55 15,17 1,2
PSs 13 4 | 2 25,55 15,17 1,2
PS, 14 4 | 2 25,55 15,17 1,2
PSg 15 4 | 2 25,55 15,17 1,2
PS, 16 41 2 25,55 15, 17 1,2
PSqo 17 4 | 2 25,55 15, 17 1,2
PS4 18 41 2 25,55 15, 17 1,2
PS,, 19 41 2 25,55 15, 17 1,2
PSy;3 20 41 2 25,55 15, 17 1,2
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The proposed matheuristic algorithms (MA1, MA2)
and the mathematical model (MM) were
implemented using the Python programming
language and executed on a computer equipped with
an Intel Core i5 2.40 GHz processor and 8 GB of
RAM. Initially, the mathematical model was tested
on 13 different problem sets. All tests were limited
to a maximum runtime of 18000 seconds (5 hours)
and repeated multiple times. The objective function
values (Cpqe) @and average solution times (Ciime)
obtained from these tests are presented in Table 2.

The test results indicate that the time required to
obtain optimal solutions increases exponentially

with the number of jobs. When the test duration
reached the 18000 seconds, the process was
automatically terminated. Consequently, optimal*
solutions were achieved for problem sets with 9 to
13 jobs, while optimal* solutions could not be
obtained for problem sets with 14 to 20 jobs.
Furthermore, the fact that even longer durations
than 18000 seconds are required for daily
scheduling applications highlights the practical
limitations of the mathematical model. This
underscores the necessity of employing alternative
methods for daily operational planning, where quick
and effective solutions are critical.

Table 2. Test results for the mathematical model (Matematiksel model igin test sonuglari)

MM - Cyarue MM - Ciime

PS, 9 25 8.27
PS, 10 35" 28.42
PS; 11 45 122.78
PS, 12 55" 1113.71
PS; 13 6.5 2525.50
PS; 14 7.0 18000
PSg 15 7.0 18000
PS, 16 7.0 18000
PS1o 17 85 18000
PS., 18 85 18000
PS,, 19 9.0 18000
PSy3 20 125 18000

As an alternative to the mathematical model and to
achieve rapid results in daily scheduling, the
proposed matheuristic algorithm aims to provide
near-optimal solutions within a short time frame.
The matheuristic algorithm was configured with
fixed parameters for all tests, which include a
population size of 45, 30 iterations, a crossover rate
of 0.9, and a mutation rate of 0.01. The runtime of
the matheuristic algorithm was limited to 18000
seconds and algorithm was executed multiple times,
as with the mathematical model. During the testing

process, results were obtained using two different
crossover operators (uniform and two-point). The
performance of these operators was evaluated in
terms of average solution value and runtime, and the
detailed results are presented in Table 3. The test
results demonstrate that the matheuristic algorithm
offers significant advantages over the mathematical
model, particularly in time-constrained applications
such as daily scheduling, by giving fast and
effective solutions.

Table 3. Test results for the matheuristic algorithms (Matsezgisel algoritmalar igin test sonuglarr)

n MAL-Cpaiue | MA2-Cogiye | MAL-Ciime | MA2-Ciime
PS, 9 25" 25" 571.17 578.91
PS, 10 35" 4 633.00 583.96
PS; 1 45" 5 668.84 663.47
PS, 12 5.5 6 734.65 731.02
PS; 13 8 8 836.13 881.04
PS, 14 8 95 907.54 915.18
PSg 15 85 105 995.01 986.60
PS, 16 9 115 1084.32 1092.16
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PSqg 17 9 12 1142.56 1102.91
PS4 18 9.5 12.5 1242.16 1257.00
PS4, 19 11.5 15 1353.82 1325.42
PSq3 20 14 15.5 1378.21 1399.33

MAT1 represents the matheuristic algorithm utilizing
the uniform crossover operator, while MA2
represents the matheuristic algorithm employing the
two-point crossover operator. Both methods were
statistically compared in terms of the obtained

solution values (Cyq14e) @nd solution times (Ceime)-
The statistical test results, conducted using the
Wilcoxon signed ranks test method at a significance
level of p < 0.05, are presented in Table 4.

Table 4. Wilcoxon signed ranks test results (Wilcoxon isaretli siralar testi sonuclari)

Pairs z p-value
Pair 1 MAI - Cyaue & MA2 - Cpaiue -2.814 0.0049
Pair 2 MAI - Ciime & MA2 - Crime -0.0784 0.9375
Pair 3 MAI - Coaiue &MM - Coaine -2.536 0.0112
Pair 4 MA2 - Coaie & MM - Cpine -2.941 0.0033

The statistical test results indicate that a p-value less
than 0.05 signifies a significant difference in the
solution values obtained by the MA1 and MA2
algorithms. This finding demonstrates that the MA1
algorithm outperforms MA2 in terms of solution
quality. However, when comparing solution times,
the p-value greater than 0.05 indicates no
statistically significant difference between the two
algorithms' runtimes. These results suggest that the
MA1 algorithm achieves lower solution values
within the same solution time as MA2.
Consequently, the MA1 algorithm emerges as a
more effective solution method.

When comparing the results of the MA1 algorithm
with the results of the mathematical model (M M), it
is evident that the MA1 algorithm can produce near-
optimal solutions in significantly shorter solution
time. The comparative graphs presented in Figure 7
clearly support this observation. An analysis of the
graph in Figure 7.a reveals that the matheuristic
algorithm generates solution values close to those of
the mathematical model, demonstrating its
effectiveness as a viable alternative in terms of
solution quality.
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0
9 10 11 12 13 14 15 16 17 18 19 20
n
——MAI1 C_value —MM C_value
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20000
18000
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14000
£ 12000
‘:l 10000
O 8000
6000
4000
2000

~—=MAI C_time =——MM C_time

Figure 7. a) Comparison of solution values: MM — MA1, b) Comparison of solution times: MM — MA1 (a)
Coziim degerlerinin kargilagtirilmasi: MM — MA1 , b) C6ztim siirelerinin karsilastirilmasi: MM — MA1)

Figure 7.b compares the solution times of the two
methods. Analyzing the graph reveals that for larger
problem sets, where the number of jobs increases
significantly, the solution time for the mathematical
model (M M) escalates dramatically. In contrast, the
M A1 algorithm consistently achieves results within
shorter solution time.

The experimental results demonstrate that the
proposed matheuristic algorithms, particularly
MA1, produce high quality solutions in significantly
shorter times compared to the mathematical model,
especially for large-scale problem instances. These
findings align with previous studies [12-17] in the
literature that emphasize the scalability and
efficiency of genetic algorithm-based methods in
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unrelated parallel machine scheduling problems
with sequence dependent setup times. Unlike many
prior works that focus primarily on minimizing
makespan, the proposed approach incorporates
multiple real-world constraints, such as capacity
balancing and job diversity, making it more
applicable to industrial environments. Furthermore,
the use of a constrained random mutation operator
and problem specific chromosome structure adds a
layer of problem awareness that enhances search
efficiency which are not commonly observed in
standard genetic algorithm implementations.

5. CONLUSION (soNuU()

This study addresses a scheduling problem for
unrelated parallel machines with sequence-
dependent setup times and develops both a
mathematical model and matheuristic algorithms to
solve it. The mathematical model provided optimal
solutions for small and medium sized problems but
demonstrated practical limitations due to its
exponentially increasing solution time for large-
scale problems. To overcome this issue, genetic
algorithm-based  matheuristic  methods  were
proposed and tested with two different crossover
operators.

Experimental results and statistical analyses
revealed that the proposed matheuristic algorithms,
particularly for large-scale problems, could produce
near-optimal solutions in significantly shorter
solution times compared to the mathematical model.
The MA1 algorithm outperformed the MA2
algorithm in terms of solution quality and
demonstrated an ability to achieve results close to
those of the mathematical model. However, no
statistically significant difference was observed
between the two matheuristic algorithms in terms of
solution times. The proposed matheuristic
algorithm produced results that are either identical
or very close to the exact solutions obtained by the
mathematical model for small and medium sized
problems. For large scale problems, due to the time
constraint (18000 seconds), the solution process of
the mathematical model ended without proving
optimality. Therefore, the solutions obtained by the
mathematical model in large-scale problems were
the best feasible solutions that were obtained within
the specified time. The matheuristic algorithm, on
the other hand, found solutions close to these best
feasible solutions in large-scale problems in short
periods of time, such as 904-1378 seconds.
Therefore, the developed matheuristic approach is
not only theoretically reliable but also practically
suitable for generating fast and effective solutions

in real-world production environments, particularly
for daily scheduling tasks.

Future studies may focus on enhancing the
performance of the proposed matheuristic
algorithms through adaptive parameter tuning,
integration with other metaheuristic strategies, or
the integration of local search components to further
improve solution quality. In addition, alternative
objective formulations and operator designs may be
explored to better accommodate highly dynamic or
large-scale problems.
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