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Öz - Makine Öğrenmesi ve Derin Öğrenme Yaklaşımlarının Döviz Kuru 
        Tahmini Konusundaki Tahmin Yeteneği
   Bu çalışma, USD/TRY döviz kuru dalgalanmalarının tahmininde öngörü modellerinin etkinliğini 
değerlendirmektedir. Destek Vektör Makineleri (SVM), XGBoost, Uzun Kısa Süreli Bellek (LSTM) ve Kapalı 
Tekrarlayan Birim (GRU) modelleri 96 ve 21 özellik setiyle değerlendirilmiştir. Veriler 01.01.2010’dan 
30.04.2024’e kadar Bloomberg, TCMB ve BDDK'dan alınmıştır. Bulgular, LSTM ve GRU modellerinin 
geleneksel modellerden daha üstün olduğunu göstermektedir. GRU en yüksek öngörü doğruluğunu 
sergilerken, SVM yüksek boyutlu verilerle kötü performans göstermekte, XGBoost ise orta düzeyde 
tahmin gücü sunmaktadır. Bu çalışma, finansal zaman serisi tahmininde model ve özellik seçiminin 
önemini vurgulamakta ve gelişmiş sinir ağlarının avantajlarını ortaya koymaktadır. Sonuçlar, analistler 
ve politika yapıcılar için sağlam ekonomik tahmin modelleri geliştirmede değerli bilgiler sunmaktadır.
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Abstract
This study evaluates the efficacy of forecasting models in predicting USD/TRY exchange rate 

fluctuations. We assess Support Vector Machine (SVM), XGBoost, Long Short-Term Memory (LSTM), and 
Gated Recurrent Unit (GRU) models with 96 and 21 feature sets. Data from 01.01.2010 to 30.04.2024 were 
sourced from Bloomberg, CBRT, and BDDK. Findings indicate that LSTM and GRU models outperform 
traditional models, with GRU showing the highest predictive accuracy. SVM performs poorly with high-
dimensional data, while XGBoost offers moderate predictive power but lacks in capturing intricate 
patterns. This study highlights the importance of model and feature selection in financial time series 
forecasting and underscores the advantages of advanced neural networks. The results provide valuable 
insights for analysts and policymakers in developing robust economic forecasting models.
Keywords: Exchange Rate, Machine Learning, Deep Learning, Time Series Forecasting, 
	      Nelson Siegel Model, Yield Curve.
JEL Classification: C53, F31, G17, C45.

186



Predictive Abilities of Machine Learning and Deep Learning Approaches for Exchange Rate Prediction

Journal of BRSA Banking and Financial Markets 
Volume:18, Issue:2, 2024

1.	Introduction
Structural and long-term factors establish a framework for short-term fluctuations in exchange 

rates. To comprehend the short-term movements of exchange rates, it is essential to consider factors 
such as changes in monetary policy, production levels, and differences in interest and inflation rates. 
These elements dictate how exchange rates oscillate within a certain range. For an extended period, 
yield curve parameters — market information and sentiments embedded within term structures — 
have been integral in explaining the dynamics behind exchange rates. According to previous studies, 
there is a potential close relationship between macro-financial variables and yield curve parameters. 
Consequently, yield curve parameters are regarded as robust proxies for macro-financial variables 
and are utilized in analyzing exchange rates, either as substitutes or in conjunction with macro-
financial factors, provided the included factor is assumed to be mutually independent of yield curve 
parameters. Therefore, any model analyzing the relationship between interest rate differentials and 
exchange rate changes over different terms from 1 to 12 months should be specified within the 
framework developed by Chen and Tsang (2013) and subsequent studies. However, this framework 
must be modified and customized to account for the effects of currency substitution on the Turkish 
Lira (TL) demand function, the use of multiple monetary policy tools to implicitly manage the exchange 
rate, and the constraints imposed by FX (Foreign Exchange) reserves and the current account balance. 
Forecasting macroeconomic and financial time series is considered one of the most challenging 
applications of modern time series forecasting due to the inherently noisy, non-stationary, and 
chaotic nature of these series (G. Deboeck, 1994). This challenge is particularly pronounced when 
designing a model that includes periods of stress, as seen in Turkey or similar countries. Factors such 
as high volatility due to currency substitution, persistent current account deficits, and the use of 
multiple monetary policy tools must be taken into account. When forecasting such time series data, 
a common assumption is that the past behavior of the series contains all the information needed to 
predict its future behavior. Therefore, traditional attempts to forecast exchange rates have primarily 
focused on univariate time series analysis using approaches like Auto-Regressive Integrated Moving 
Average (ARIMA) and Random Walk (RW). The main issue with ARIMA is that it is a univariate model 
based on two key assumptions: the time series being forecasted is linear and stationary. Moreover, 
univariate time series models do not account for the effects of other parameters that might be 
crucial in determining the future value of a specific macroeconomic variable (Nyoni, Thabani, 2018). 
This paper aims to focus on multivariate time series forecasting. Additionally, in this paper, we study 
Support Vector Machines (SVM), XGBoost, and Neural Network models. Neural networks are known 
to be much more effective in mapping the dynamics of non-stationary time series due to their unique 
non-parametric, non-assumable, noise-tolerant, and adaptive properties. Neural networks are well-
known function approximators that can map any nonlinear function without any prior assumptions 
about the data. However, Multilayer Perceptron (MLP) models based on Artificial Neural Networks 
(ANNs) often face problems such as overfitting, error degradation during backpropagation, and the 
inability to automatically determine optimal time delays when fitting time series data (Kamruzzaman, 
2003). Therefore, we propose a Recurrent Neural Network using Long Short-Term Memory (LSTM), 
which can more effectively capture the nonlinearity and randomness of time series data, as well as 
overcome the problem of error corruption backpropagating through memory blocks. This shows 
superior capabilities for time series prediction with long temporal dependence. With the ability to 
memorize long historical data and automatically determine optimal time delays, LSTM and GRU RNN 
achieves higher prediction accuracy and generalizes well across different prediction intervals.

2.	Literature Review
Balance of payments (BOP) consists of two main components representing real and financial 

flows in an open economy: the current account and the financial account. When capital mobility is 
perfect, financial markets face no constraints, allowing for the free movement of financial capital 
across borders. Similarly, in the absence of trade barriers, the real flow of goods and services across 
borders encounters no restrictions. The relationship between interest rates and exchange rates can 
be directly constructed based on financial flows. According to the Uncovered Interest Rate Parity 
(UIRP) (Fama, 1984), if there is a gap between domestic and foreign interest rates over a given term, 
the domestic currency must appreciate or depreciate accordingly. The expected depreciation (or 
appreciation) is crucial when analyzing exchange rates based on UIRP. The flow of money in financial 
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markets is generally rapid, while cross-border flows from commercial activities are relatively slower. 
A country consistently running a current account deficit faces pressure for its currency to depreciate. 
Therefore, trade balance or current account balance is essential for assessing the fair level of the 
exchange rate, particularly in the medium to long term. Mathematically, UIRP can be expressed as:

where      is the domestic interest rate,      is the foreign interest rate,              is the expected future 
spot exchange rate, and      is the current spot exchange rate.

In practice, a trade deficit cannot be financed indefinitely by ongoing capital inflows because debt 
repayment requires achieving a current account surplus, even if asset sales or other extraordinary 
income sources might delay the point at which the position becomes unsustainable. Thus, relative 
interest rates combined with the trade balance determine the exchange rate level. When we look 
at the models we use in our article; Support Vector Machines (SVM) offer a novel approach for 
multivariate prediction and generalization. SVMs adopt a Structural Risk Minimization (SRM) 
approach, aiming to minimize the upper bound of generalization error rather than just the training 
error. This results in better generalization compared to traditional techniques (Vapnik, 1995). SVM 
regression is non-parametric due to its use of kernel functions, which allow it to model complex, 
nonlinear relationships.

In   -SVM regression (L1 loss), the objective is to find a function 𝑓 (𝑥)  that deviates from the 
actual values       by no more than 𝜖 and is as flat as possible. This is achieved by solving a  Lagrangian 
function subject to the Karush-Kuhn-Tucker (KKT) conditions (Karush, 1939; Kuhn & Tucker, 1951). 
The optimization problem can be formulated as:

Subject to:

where      is the weight vector,      is the bias,    are slack variables,      is the regularization parameter, 
and           is the feature mapping function.

However, SVMs often perform poorly if the training dataset is large or very noisy. On the other hand, 
SVMs can model nonlinear relationships thanks to their kernel functions (e.g., radial basis function, 
polynomial kernel). Extreme Gradient Boosting (XGBoost) is another powerful machine learning 
algorithm that uses decision trees and learns sequentially by correcting the mistakes of previous trees. 
XGBoost offers superior performance on larger datasets and high-dimensional data compared to SVM. 
Its boosting technique, known for fast computation capabilities, continuously increases model accuracy 
(Chen & Guestrin, 2016). The objective function of XGBoost can be defined as:

where    is a differentiable convex loss function that measures the difference between the prediction   	
        and the target      , and Ω is a regularization term to control the complexity of the model.
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Long Short-Term Memory (LSTM) networks, a type of Recurrent Neural Network (RNN), model 
dependencies between consecutive data points in time series data. Unlike XGBoost, which operates 
on independent data points, LSTMs incorporate time dependencies into the model, making them 
suitable for sequential data (Hochreiter & Schmidhuber, 1997).

LSTM networks are designed to avoid the long-term dependency problem, with the ability to 
remember information for extended periods. Each LSTM unit consists of a cell, an input gate, an 
output gate, and a forget gate, which regulate the flow of information. The cell state        is updated 
as follows (Hochreiter & Schmidhuber, 1997):

where      is the forget gate,     is the input gate, and      is the candidate cell state. The output      of 
the LSTM unit is given by:

where      is the output gate. The gates are defined as:

where     is the sigmoid activation function, tanh is the hyperbolic tangent function, and     and     	
    are weights and biases.

LSTMs’ ability to store and access long-term information helps mitigate the vanishing gradient 
problem, making them effective for time series analysis. On the other hand, Gated Recurrent 
Unit (GRU) networks, a type of Recurrent Neural Network (RNN), model dependencies between 
consecutive data points in time series data. Like LSTMs, GRUs incorporate time dependencies into 
the model, making them suitable for sequential data (Cho et al., 2014). GRUs are designed to simplify 
the architecture of LSTMs while maintaining similar performance and effectiveness in capturing long-
term dependencies.

Each GRU unit consists of an update gate and a reset gate, which regulate the flow of information. 
The GRU updates the hidden state ℎ𝑡  as follows:

where 𝑧𝑡  is the update gate and ℎ ̃𝑡 is the candidate hidden state. The update gate 𝑧𝑡  determines 
how much of the previous hidden state needs to be updated with new information, and it is defined 
as:

The candidate hidden state ℎ̃𝑡 is calculated using the reset gate 𝑟   , which determines how much 
of the previous hidden state to forget:
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The reset gate 𝑟  is defined as:

where 𝜎 is the sigmoid activation function, tanh is the hyperbolic tangent function, and 𝑊  and 𝑏  
are weights and biases.

GRUs simplify the architecture of LSTMs by combining the forget and input gates into a 
single update gate and omitting the cell state, making them more computationally efficient. This 
simplification helps maintain performance while reducing computational complexity, making GRUs 
effective for time series analysis. A visual comparison of different sequence models is given below.

Moreover, as the performance measurement metrics MSE and R-squared used in our article. 
R², also known as the coefficient of determination, measures the explanatory power of a regression 
model. It indicates how much of the total variance in the dependent variable can be explained by the 
independent variables. The value of R² ranges from 0 to 1, with values closer to 1 indicating that the 
model explains a larger portion of the variance in the dependent variable.

The Mean Squared Error (MSE) is a common measure used to evaluate the accuracy of a 
regression model. It calculates the average of the squares of the errors—that is, the average squared 
difference between the actual values and the predicted values.
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The R² (R-squared) value, also known as the coefficient of determination, is a statistical measure 
that represents the proportion of the variance for the dependent variable that’s explained by the 
independent variables in the model. It provides an indication of the goodness of fit and ranges from 
0 to 1, where higher values indicate a better fit.

Below are the formulas for MSE and R²:

where 𝑦𝑖  are the actual values, y^𝑖 are the predicted values, and 𝑛   is the number of data points.

Where: 

•	 SSres (Residual Sum of Squares): The sum of the squares of the residuals, 
•	 SStot (Total Sum of Squares): The total sum of squares, calculated as:

Here, 𝑦𝑖  are the actual values and 𝑦  is the mean of the actual values.

Mean Squared Error, measures the average squared difference between the actual and predicted 
values. It evaluates the performance of a model by calculating the mean of the squares of the errors. 
A smaller MSE indicates a better-performing model.

In conclusion, understanding the balance of payments and exchange rate dynamics, along 
with the application of advanced machine learning techniques like SVM, XGBoost, LSTM and GRU, 
provides a comprehensive framework for financial analysis and prediction. These methodologies, 
when combined, offer powerful tools for modeling complex economic relationships and forecasting 
future trends.

The study by Kaushik and Giri (2020) compares the performance of three different approaches 
for forecasting the USD/INR exchange rate: Vector Auto Regression (VAR), Support Vector Machine 
(SVM), and Long Short-Term Memory (LSTM). The analysis uses monthly historical data from April 
1994 to December 2018 and incorporates several macroeconomic variables such as CPI, interest 
rates, and money supply for both the U.S. and India. The authors found that traditional econometric 
models like VAR are outperformed by contemporary machine learning techniques. Specifically, 
the LSTM model, a deep learning approach, achieved the highest accuracy at 97.83%, followed by 
SVM with 97.17%, while VAR showed a lower accuracy of 96.31%. The results suggest that modern 
methods, particularly LSTM, are better suited for capturing non-linear relationships in time series 
data compared to traditional econometric models.

In the study by Goncu (2019), machine learning techniques such as Ridge regression, decision 
tree regression, support vector regression (SVR), and linear regression are used to predict the USD/
TRY exchange rate. The model incorporates macroeconomic variables including the domestic money 
supply, real interest rates, and the U.S. Federal Funds rate. The dataset consists of 148 monthly 
observations from January 2007 to May 2019. Among the techniques tested, Ridge regression 
outperforms the others with the lowest prediction errors and standard deviation, making it a useful 
tool for investors and policymakers. The study highlights the effectiveness of machine learning 
algorithms in capturing the relationship between macroeconomic factors and exchange rates, 
providing accurate predictions with potential policy implications, such as analyzing the impact of 
interest rate changes on exchange rates.
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In the study by Ajumi and Kaushik (2018), the authors provide a literature review on the 
application of machine learning and deep learning methods for exchange rate forecasting. They 
compare traditional time series models like ARIMA and GARCH with more advanced techniques such 
as Support Vector Machines (SVM), Neural Networks, and hybrid models. The review emphasizes the 
limitations of traditional models in capturing non-linear patterns in financial data, while highlighting 
the effectiveness of deep learning methods in improving prediction accuracy. The study concludes 
that machine learning models, particularly hybrid approaches combining different algorithms, tend 
to outperform traditional econometric models in exchange rate forecasting. The review also notes 
the increasing application of these methods in emerging economies, where exchange rate volatility is 
a major issue. However, the authors caution that no single forecasting model is consistently superior 
across different datasets and market conditions.

In the study by Dautel et al. (2020), the authors explore the application of deep recurrent neural 
networks (RNNs) in foreign exchange (Forex) rate forecasting, specifically comparing Long Short-Term 
Memory (LSTM) and Gated Recurrent Unit (GRU) architectures. The models are evaluated against 
simpler neural network structures such as feedforward neural networks (FNNs) and traditional RNNs. 
The findings suggest that while deep learning models, particularly LSTMs and GRUs, outperform 
simpler models in terms of directional accuracy, they do not always yield better profitability in 
trading strategies. Surprisingly, simpler architectures like FNNs can sometimes achieve similar or 
even superior trading performance. The study emphasizes the challenge of balancing statistical 
performance with practical economic outcomes in exchange rate forecasting.

In their 2020 study, Kim et al. investigate the predictive performance of the Nelson-Siegel model 
alongside several machine learning techniques—Recurrent Neural Networks (RNN), Long Short-Term 
Memory (LSTM), Support Vector Regression (SVR), and Group Method of Data Handling (GMDH)—
for forecasting the term structure of credit default swaps (CDS). Using CDS data from 2008 to 2019, 
the study analyzes the predictability of sovereign CDS spreads. The authors find that machine 
learning models consistently outperform the Nelson-Siegel model, with GMDH showing the highest 
prediction accuracy across multiple periods. Additionally, the study highlights the importance of 
distinguishing between volatile and stable periods when forecasting CDS term structures, noting 
that models performed worse during volatile periods, such as the 2008 financial crisis. This research 
underscores the value of data-driven methods over traditional model-driven approaches in predicting 
the future risk associated with credit defaults.

3.	Data and Methodology
In the aforementioned literature, it is possible to conduct an analysis using daily or monthly 

datasets. We opted to work with daily data in our study. Our dataset comprises daily data from 
2010 to 2024, sourced predominantly from Bloomberg, the Central Bank of the Republic of Turkey 
(CBRT), and the Banking Regulation and Supervision Agency (BDDK). Initially, the zero-coupon bond 
yields were calculated using the Fama-Bliss approach, followed by the estimation of the yield curve 
parameters using the Nelson-Siegel Model (NSM). 

Both the Fama-Bliss approach for calculating zero-coupon bond yields and the NSM for 
estimating yield curve parameters are widely recognized methods in the literature. For example, Kim, 
W. J., Jung, G., & Choi, S.-Y. (2020) utilized a similar approach, combining the NSM with machine 
learning techniques to forecast CDS term structures. We chose these methods because the NSM is 
a well-established technique for parametric modeling of yield curves, and the Fama-Bliss method 
is a reliable approach for calculating zero-coupon bond yields. Furthermore, our use of daily data 
allows us to assess the model's performance with high-frequency data, aligning with our objective to 
generate more precise and up-to-date forecasts.

The primary objective of our study is to capture the fluctuations of the Turkish Lira (TRY) against 
the US Dollar (USD) in out-of-sample data with a one-month forecast horizon. The target variable is 
the monthly change in the USD/TRY exchange rate one day ahead. Our dataset includes primarily 20 
variables, updated daily, categorized into three groups: 1) Turkey Macro Variables, 2) Turkey Financial 
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Variables, 3) the US Macro-financial Variables, and 4) Global Economic Indicators. Upon applying the 
Augmented Dickey-Fuller (ADF) test, we observed that some of our variables were non-stationary.

To address non-stationarity, we first applied the Box-Cox transformation to the non-stationary 
variables. Subsequently, we calculated the differences or percentage changes for certain variables. To 
enhance the predictive power regarding exchange rate movements, we generated new features by 
computing the differences or percentage changes over 15, 30, 45, 60, 75, and 90 days for all variables. 
In this study, feature engineering was employed to create lags of the raw data (15, 30, 45, 60, 75, and 
90 days), and analyses were conducted both with and without these lags to compare results. The target 
is the monthly change in the exchange rate 30 days ahead.

One of the main challenges in this analysis is the high volatility of the Turkish Lira and the frequent 
market interventions in recent times, which have significantly impacted our prediction metrics and 
deteriorated our adjusted R-squared values.

The data utilized in this study were gathered from multiple authoritative sources: Bloomberg 
for financial and economic data, the CBRT for macroeconomic indicators and financial statistics, 
and the BRSA for banking sector data. The data preprocessing involved several steps to ensure the 
robustness of the analysis. Zero-Coupon Bond Yields Calculation, utilized the Fama-Bliss approach to 
derive zero-coupon bond yields. Yield Curve Estimation, applied the Nelson-Siegel model to estimate 
yield curve parameters. To address non-stationarity, we conducted the following transformations: 
Box-Cox Transformation, applied to non-stationary variables to stabilize variance and make the data 
more normally distributed; Differencing and percentage change calculations, performed differencing 
or calculated percentage changes for non-stationary variables and we managed to maket he data 
stationary (see Appendix A for detailed test results).

Additionally, we engineered new features by calculating the differences or percentage changes 
over various time windows (15, 30, 45, 60, 75, and 90 days) to capture temporal dynamics and enhance 
predictive accuracy. In this study, feature engineering was employed to create lags of the raw data (15, 
30, 45, 60, 75, and 90 days), and analyses were conducted both with and without these lags to compare 
results. Furthermore, we dropped data with a correlation greater than 70% to avoid multicollinearity 
issues.

Our dataset comprises 5,114 daily observations from 2010 to 2024, containing key macro-financial 
variables across four categories: 1) Turkey Macro Variables, 2) Turkey Financial Variables, 3) US Macro-
financial Variables, and 4) Global Economic Indicators. Descriptive statistics for these variables are 
provided in Appendix B, giving a detailed overview of the dataset’s characteristics.

The descriptive analysis reveals that the dataset captures a wide range of financial market dynamics. 
For instance, the average CDS (credit default swap) spread during the sample period is 0.0003 with a 
skewness of 0.57, indicating slight asymmetry in the distribution. However, more interestingly, the XAU 
(gold prices) series exhibits extreme skewness (-6.09) and kurtosis (391.30), revealing the presence of 
significant outliers and reflecting the high volatility in gold prices during certain periods of the dataset. 
The maximum value of XAU reaches 928.78, which underscores sharp spikes in gold prices, particularly 
during global financial uncertainties.

Similarly, the VIX index, a common proxy for market volatility, has a mean value of 18.36 and a 
standard deviation of 7.03, reflecting the frequency of market stress events during the period, such as 
the European debt crisis and geopolitical tensions affecting Turkey. The VIX also shows positive skewness 
(2.27), indicating that market volatility spikes tend to be more pronounced than periods of relative calm. 
The BIST100 index, on the other hand, demonstrates relatively stable behavior with a near-zero mean and 
moderate fluctuations, as indicated by its small standard deviation and low skewness (-0.34).

The descriptive analysis of these variables highlights the complex and diverse nature of the 
dataset, which includes both stable indicators and highly volatile ones, making it a challenging 
dataset for predictive modeling. This variation across the dataset is crucial for testing the robustness 
and generalizability of the models.
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We implemented four predictive models to forecast the monthly change in the USD/TRY exchange 
rate: Support Vector Machine (SVM), XGBoost, LSTM Networks, and GRU. SVM is a supervised 
learning algorithm used for classification and regression analysis, known for its robustness but 
potential limitations with high-dimensional data. XGBoost is a powerful ensemble learning method 
that excels in handling large datasets and is known for its computational efficiency and ability to 
capture complex patterns through decision trees. LSTM and GRU are types of recurrent neural 
networks (RNNs) designed to learn long-term dependencies in sequential data, particularly useful 
for time-series forecasting tasks like exchange rate prediction.

The distribution of variables, provided in Appendix C, reveals important insights into the 
underlying characteristics of our dataset. Many of the variables, including CDS spreads, VIX, and 
BIST100, follow distributions that are approximately normal with moderate skewness. However, some 
variables, such as XAU (gold prices), exhibit significant skewness (-6.09) and extreme kurtosis (391.30), 
indicating the presence of substantial outliers and periods of extreme volatility. These findings reflect 
the nature of global financial markets during periods of uncertainty, which significantly impacted 
Turkey’s economy and financial indicators. The high volatility in gold prices, for instance, may be 
linked to global events such as the Eurozone crisis and geopolitical conflicts.

The outlier analysis in Appendix D further supports these observations, revealing extreme values 
in variables like XAU and the TRY1W Repo rate. These outliers highlight periods of sharp financial 
intervention or policy changes within the Turkish financial system. While these outliers provide 
valuable information about market stress and fluctuations, they also introduce challenges for model 
stability and accuracy. Spikes in variables such as the TRY1W Repo rate, in particular, reflect aggressive 
monetary policy actions by the Turkish Central Bank aimed at stabilizing the currency, which is critical 
for understanding broader fluctuations in the USD/TRY exchange rate.

The combination of diverse distributions and the presence of outliers across various 
macroeconomic and financial variables adds complexity to the predictive modeling process. These 
characteristics, ranging from moderate fluctuations to sharp market interventions, must be carefully 
accounted for in the modeling approach to ensure robust forecasting, particularly in periods of 
heightened market instability.

The models were developed using a time series analysis approach appropriate for our dataset, 
which comprises 5,114 observations. Instead of employing a sliding window approach, we divided 
the dataset into a training set comprising 95% of the data and a test set comprising the remaining 
5%. This division, consistent with time series analysis, ensures that the data remains in chronological 
order, preserving the temporal structure of the series for accurate forecasting.

The training set, spanning from 2010 to a specific cutoff date, was used to train the models. 
The remaining data from the cutoff date to 2024 formed the test set. This method ensured that the 
models were validated on out-of-sample data, maintaining the temporal integrity of the time series.

At the end of the training phase, each model’s performance was evaluated on the test set. This 
approach helped in capturing temporal dependencies and ensured that the models were robust 
across different time periods, providing reliable forecasts for the monthly change in the USD/TRY 
exchange rate.

The performance of these models was evaluated using MSE, and the predictive accuracy was 
assessed. The models were trained and validated on different subsets of the data to ensure robustness 
and generalizability. Despite the high volatility and frequent market interventions affecting the 
Turkish Lira, these models provided valuable insights into the exchange rate movements. One 
significant challenge encountered during the analysis was the high degree of market volatility, 
which introduces noise and reduces the predictability of exchange rate movements. In the context 
of Turkey, the exchange rate is particularly susceptible to both domestic and international political 
events, economic policy changes, and sudden shifts in investor sentiment. These factors contribute 
to the high volatility observed in the USD/TRY exchange rate.
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Frequent interventions by the Central Bank and other regulatory bodies further complicate the 
modeling process by introducing sudden and unpredictable shifts in the data. Such interventions, 
aimed at stabilizing the currency, can cause abrupt changes that are difficult to forecast with 
traditional models. The unpredictability and rapid changes in market conditions negatively impacted 
our adjusted R-squared values, reflecting the difficulty in achieving high predictive accuracy under 
such volatile conditions.

Moreover, we observed that the predictive performance varied significantly across the different 
models. While the SVM model offered robust predictions for certain periods, it struggled during 
times of extreme volatility. The XGBoost model, with its ensemble learning approach, demonstrated 
better adaptability to the fluctuating market conditions but still faced challenges in capturing the 
abrupt changes caused by regulatory interventions. The LSTM model, designed to handle sequential 
data, provided valuable insights into long-term dependencies but was also affected by the high 
noise levels in the data. In this study, we performed hyperparameter tuning for three different 
models: Support Vector Regression (SVR), XGBoost, and GRU. Hyperparameter tuning is a crucial 
step in machine learning as it involves optimizing the parameters that directly influence the model’s 
performance.

The goal is to find the best set of hyperparameters that yield the lowest MSE and highest 
R² score on the test dataset. For each model, we defined a grid of hyperparameters and used 
RandomizedSearchCV to perform the search. The best parameters were selected based on the 
performance metrics. Below, we present the hyperparameter values and the best hyperparameters 
found for each model.

The structural breaks and regime shifts in the exchange rate data, often driven by policy changes 
or external shocks, pose significant challenges for model stability and prediction accuracy. These 
breaks can lead to substantial model misspecification if not adequately accounted for, further 
complicating the forecasting task. In conclusion, the results of these models and their respective 
MSE values are discussed in the following sections. The study highlights the complexities involved 
in predicting exchange rate movements in a highly volatile and regulated market such as Turkey’s 
and underscores the need for advanced modeling techniques and continuous adaptation to evolving 
market conditions. Understanding the limitations and challenges inherent in such an environment is 
crucial for improving forecasting models and developing more resilient economic strategies.
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4.	Findings
The visual data in Appendix E showcases the interactions and trends of various financial indicators 

from 01.01.2010 to 30.04.2024, providing a comprehensive overview of the factors influencing the 
USD/TRY exchange rate. The Credit Default Swap (CDS) and Volatility Index (VIX) are pivotal measures 
of market risk and uncertainty. Spikes in these indices typically signal heightened market stress, often 
leading to depreciation of the TRY against USD. For instance, during periods of global economic 
turmoil or financial crises, both CDS and VIX spikes correlate with significant movements in the USD/
TRY exchange rate, reflecting increased risk aversion among investors. This heightened risk aversion 
drives investors towards safer assets, such as the USD, thereby weakening the TRY.

The BIST100 index and MXEF (Emerging Markets Index) illustrate similar patterns, underscoring 
that the performance of the Turkish stock market is closely linked to broader emerging market trends. 
A declining BIST100 index often coincides with a weaker TRY as foreign investors withdraw their funds, 
demand TRY to get long position in FX-denominated assets, and seek safer investments. This capital 
flight can exacerbate depreciation pressures on the TRY. The correlation between these stock indices 
and the USD/TRY exchange rate highlights the sensitivity of TRY to shifts in investor sentiment towards 
emerging markets, further influenced by geopolitical and economic developments.
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Gold (XAU) and Oil Prices provide insights into the commodity markets’ influence on the USD/
TRY exchange rate. Gold often acts as a safe-haven asset, with its price increasing during periods 
of market uncertainty, indirectly affecting the USD/TRY parity. As investors flock to gold in times of 
uncertainty, the corresponding increase in gold prices can signify broader market concerns, which often 
lead to a stronger USD and a weaker TRY. Conversely, oil price fluctuations have a direct impact on 
Turkey’s economy, given its status as an oil importer. Volatile oil prices can lead to economic instability, 
influencing the exchange rate through impacts on inflation, trade balances, and economic growth.

The EUR/USD exchange rate and the Economic Policy Uncertainty Index (USEPU) are also crucial. 
Increased policy uncertainty in the US, as reflected in the USEPU, can lead to fluctuations in the EUR/
USD rate, which in turn affects the USD/TRY exchange rate. A weaker USD relative to the EUR can lead 
to a stronger TRY, and vice versa, highlighting the interconnectedness of global currency markets.

This relationship underscores how economic policies and uncertainties in major economies ripple 
through to affect emerging market currencies like the TRY. Turkey’s FX revenue derived from export 
and tourism comes mostly from European countries while import and other FX expenditures weighted 
in USD payments. Therefore, any depreciation of USD against EUR would probably strengthen BOP 
position of Turkey.

The TRY1W Repo and Overnight Interest Rate are direct indicators of Turkey’s monetary policy 
stance. Changes in these rates influence short-term borrowing costs and liquidity. It is supposed that 
higher interest rates typically attract foreign investment, strengthening the TRY, while lower rates can 
lead to depreciation. The Central Bank’s policies on these rates reflect its broader economic strategy 
and response to inflationary pressures, capital flows, and economic growth.

The US10Y Treasury Yield provides insights into the US interest rate environment. Rising US Treasury 
yields can lead to capital outflows from emerging markets like Turkey, resulting in a weaker TRY as 
investors seek higher returns in US assets. The relationship between US10Y and USD/TRY is critical for 
understanding the impact of US monetary policy on the Turkish Lira. Higher US yields signify stronger 
economic conditions in the US, prompting a shift in investor preference towards USD-denominated 
assets and away from emerging market currencies.

The Level, Slope, and Curvature of the yield curve further inform expectations of future interest 
rates and economic conditions. Changes in these metrics can signal shifts in economic growth and 
inflation expectations, which influence investor behavior and subsequently, the USD/TRY exchange 
rate. For example, a steepening yield curve might indicate expectations of higher future economic 
growth and inflation, which could lead to changes in capital flows and exchange rate dynamics.

The interplay of global risk measures, commodity prices, monetary policies, and market sentiment 
collectively shape the dynamics of the exchange rate. This comprehensive analysis offers valuable 
insights for financial analysts and policymakers, enabling them to understand the multifaceted factors 
driving exchange rate fluctuations and to devise informed strategies to navigate the complex financial 
landscape. The ability to decipher these relationships is crucial for making predictive assessments and 
managing the risks associated with currency volatility.

The features presented in the table above constitute our primary variables. In this study, we utilized 
a total of 21 main features, each carefully selected for their relevance and potential impact on the 
prediction of the USD/TRY exchange rate. In addition to these primary features, we generated an 
additional 75 derived features. These derived features were created through various transformations 
and combinations of the primary features to enhance the model’s ability to capture complex patterns 
and interactions within the data.

Despite the extensive feature engineering, the effectiveness of these derived features on the 
performance of LSTM networks and Gated Recurrent Units (GRU) can be variable. LSTM and GRU 
models are inherently designed to capture temporal dependencies and long-term relationships in 
sequential data. Their architectures are specifically tailored to address issues like vanishing gradients 
and to remember information over long periods, which are crucial for time-series forecasting.
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However, the inclusion of a large number of derived features might not always significantly improve 
the performance of LSTM and GRU models. In some cases, the models may already effectively capture 
the necessary temporal patterns using the original set of features. The added complexity from the 
derived features could lead to overfitting, especially if the derived features do not provide additional 
informative value beyond what the primary features offer.

Furthermore, LSTM and GRU models can be sensitive to the quality and relevance of the input 
features. If the derived features introduce noise or redundant information, this could negatively impact 
the model’s ability to learn meaningful patterns. It is also possible that the models might inherently 
filter out less relevant features during training, thereby diminishing the impact of the additional derived 
features.

Therefore, while the derived features are intended to enhance the model’s ability to understand 
complex relationships within the data, their actual impact on the performance of LSTM and GRU 
models may vary. It is essential to conduct thorough experimentation and validation to determine the 
true efficacy of these features in improving model predictions. In this study, one of the key explanations 
we sought to observe was precisely this variability in the impact of derived features on the performance 
of LSTM and GRU models.

The table provide a detailed comparison of LSTM and GRU models when applied to datasets with 
96 and 21 features. For both datasets, the LSTM models exhibit larger output shapes and significantly 
higher parameter counts compared to the GRU models.

In the case of the dataset with 96 features, the LSTM model has a total of 103,061 parameters, 
with 102,661 of these being trainable and 400 non-trainable. On the other hand, the GRU model for 
the same dataset has a total of 40,541 parameters, with 40,261 trainable and 280 non-trainable. This 
highlights that the LSTM model is more complex and parameter-intensive than the GRU model for 
this feature set.

Similarly, for the dataset with 21 features, the LSTM model again shows a higher complexity with 
a total of 85,061 parameters (84,661 trainable and 400 non-trainable), whereas the GRU model has 
31,541 parameters (31,261 trainable and 280 non-trainable).

These comparisons indicate the greater computational complexity and potential for capturing 
intricate patterns with LSTM models, albeit at the cost of increased computational resources 
compared to GRU models. The visual representations are provided below.
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The comparative analysis of various forecasting models for exchange rate prediction highlights 
the efficacy of multivariate time series forecasting methods when dealing with noisy, non-stationary, 
and chaotic financial time series data. The study evaluates four models: SVM, XGBoost, LSTM, and 
GRU, using two different feature sets comprising 96 and 21 features, respectively.
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For the feature set consisting of 96 features, the SVM model yields a MSE of 0.000061428 and 
an R² value of -10.1373. This negative R² value suggests that the SVM model performs poorly, failing 
to capture the underlying dynamics of exchange rate fluctuations, likely due to the complexity and 
high dimensionality of the feature set. The model’s inability to effectively process the large number 
of features results in poor predictive performance, as evidenced by the high MSE and substantially 
negative R² value, indicating that the model’s predictions are worse than a simple mean-based 
prediction.

The XGBoost model, on the other hand, performs significantly better with an MSE of 0.000003212 
and an R² of 0.4177. This indicates moderate predictive power and a better handling of the feature set 
compared to SVM. XGBoost’s ability to handle large feature sets through boosting and regularization 
techniques helps it capture the relevant patterns and dependencies in the data, leading to improved 
predictive accuracy. However, while the R² value is positive, it still suggests that there is room for 
improvement in capturing the full complexity of the exchange rate movements.

The LSTM model shows further improvement with an MSE of 0.000001639 and an R² of 0.7029, 
demonstrating its capability to capture long-term dependencies and nonlinear patterns in the data. 
LSTM’s architecture, which includes memory cells to store information over long periods, allows it 
to effectively learn and model the temporal dependencies present in exchange rate time series data. 
This results in a substantial improvement in predictive performance compared to SVM and XGBoost, 
as indicated by the lower MSE and higher R² value.

The GRU model outperforms the other models with the lowest MSE of 0.000001181 and the 
highest R² of 0.7859. GRU’s simpler architecture compared to LSTM, while still retaining the ability to 
capture long-term dependencies, enables it to achieve superior performance in time series prediction 
tasks. The model’s ability to effectively process and learn from the feature set results in the highest 
predictive accuracy among the models evaluated, as evidenced by the lowest MSE and highest R² 
value.

When utilizing the reduced feature set of 21 features, the SVM model achieves an MSE 
of 0.000049790 and an R² of -8.0514. Although this indicates poor performance, it represents a 
slight improvement compared to its performance with the larger feature set. This suggests that 
SVM struggles with high-dimensional data but can achieve marginally better results with a reduced 
number of features. However, the negative R² value still indicates that the model’s predictions are 
not reliable.

The XGBoost model shows an MSE of 0.000003674 and an R² of 0.3322, which, while slightly 
lower than its performance with 96 features, still indicates reasonable predictive power. XGBoost’s 
robustness to overfitting and its ability to handle smaller feature sets effectively contribute to its 
relatively good performance. However, the decrease in R² value compared to the larger feature set 
suggests that some important information may be lost when reducing the number of features.

The LSTM model excels with an MSE of 0.000001005 and an R² of 0.8172, further solidifying its 
ability to model complex time series data effectively. LSTM’s performance improvement with the 
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reduced feature set indicates its strength in capturing the essential patterns and dependencies in 
the data without relying on a large number of features. This results in higher predictive accuracy, as 
evidenced by the lower MSE and higher R² value compared to the larger feature set.

The GRU model continues to demonstrate superior performance with an MSE of 0.000000977 and 
an R² of 0.8224, confirming its robustness and accuracy in forecasting tasks. GRU’s ability to maintain 
high performance with a reduced number of features highlights its efficiency and effectiveness in 
processing and learning from the data. The lowest MSE and highest R² value among the models 
evaluated indicate that GRU is the most accurate and reliable model for predicting exchange rates 
in this study.

These results underscore the importance of selecting appropriate models and feature sets for 
time series forecasting in financial contexts. Neural network models, particularly LSTM and GRU, 
exhibit superior performance due to their ability to capture nonlinearity and temporal dependencies 
inherent in exchange rate data. The findings align with the literature that emphasizes the strengths of 
recurrent neural networks in handling complex, non-stationary financial time series and their potential 
for enhancing predictive accuracy in economic and financial forecasting. This study demonstrates 
that while traditional models like SVM may struggle with high-dimensional data, advanced models 
like LSTM and GRU can effectively leverage both large and small feature sets to provide accurate and 
reliable predictions.
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The two figures provided compare the actual values against the predictions made by GRU, LSTM, 
and XGBoost models for two different feature sets (96 features and 21 features).

In the first figure, representing the predictions with 96 features, the actual values (blue solid 
line) are plotted against the predictions made by GRU (green dashed line), LSTM (orange dashed 
line), and XGBoost (red dashed line). The GRU model closely follows the actual values for most 
of the time series, capturing the trends and fluctuations reasonably well, especially in periods of 
significant changes. The LSTM model also performs well, mirroring the actual values with slight 
deviations, indicating its effectiveness in modeling temporal dependencies. The XGBoost model, 
while capturing the general direction of the trends, shows more pronounced deviations and a higher 
level of noise compared to the neural network models, reflecting its lower performance as indicated 
by the quantitative metrics in the table.

In the second figure, which shows the predictions with 21 features, the GRU model again demonstrates 
a strong predictive capability, closely aligning with the actual values and effectively capturing both minor 
and major fluctuations. The LSTM model continues to perform well, with predictions that generally follow 
the actual values, though with occasional deviations that suggest it may struggle slightly more with the 
reduced feature set. The XGBoost model shows more significant deviations from the actual values, with a 
higher level of volatility and less accurate trend capture, indicating that it is less effective in handling the 
reduced feature set compared to the neural network models.

Overall, both figures illustrate the superior performance of the GRU and LSTM models in capturing 
the dynamics of exchange rate movements, particularly when using a larger feature set. The XGBoost 
model, while still useful, exhibits more noise and less accuracy in its predictions, highlighting the 
advantages of neural network models for this type of time series forecasting.

5.	Conclusion
This study provides a comprehensive analysis of the predictive ability of various forecasting models 

for the USD/TRY exchange rate, utilizing a dataset comprising multiple macro-financial series. It 
addresses the challenges posed by the noisy, non-stationary, and chaotic nature of financial time series 
data. By evaluating four models—Support Vector Machine (SVM), XGBoost, Long Short-Term Memory 
(LSTM), and Gated Recurrent Unit (GRU)—using two distinct feature sets (96 and 21 features), we gain 
significant insights into their performance and suitability for exchange rate forecasting.
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Our findings demonstrate that neural network models, particularly LSTM and GRU, offer superior 
performance in capturing the intricate dynamics of exchange rate movements. The GRU model, with 
its simpler architecture and fewer parameters compared to LSTM, consistently outperforms the other 
models, achieving the lowest Mean Squared Error (MSE) and the highest R² values. This emphasizes 
GRU’s efficiency and effectiveness in handling time series prediction tasks, especially in the context of 
financial data with long-term dependencies and nonlinearity.

In contrast, the SVM model performs poorly, particularly with the higher-dimensional feature set, 
reflecting its limitations in processing complex and high-dimensional data. The XGBoost model, while 
providing moderate predictive power, struggles to match the accuracy and reliability of the neural 
network models. This suggests that traditional machine learning approaches may not fully capture the 
temporal dependencies and nonlinearity inherent in exchange rate data.

The study also underscores the importance of feature engineering and careful selection of input 
variables. The models’ performance varies depending on the number and type of features used, with 
the reduced feature set (21 features) in some cases improving results by reducing overfitting and 
focusing on the most relevant predictors. However, the robustness of the neural network models, 
particularly LSTM and GRU, across both feature sets highlights their flexibility and adaptability in time 
series forecasting.

In line with existing literature on the strengths of recurrent neural networks in handling complex, 
non-stationary financial data, our results suggest that neural networks, especially GRU and LSTM, 
are particularly effective for exchange rate forecasting. These insights offer valuable implications for 
financial analysts and policymakers aiming to develop more accurate and reliable forecasting models 
in volatile and dynamic market environments.

Future studies could explore hybrid models that combine neural networks with other machine 
learning techniques to further enhance predictive accuracy. Additionally, incorporating alternative 
macroeconomic indicators or experimenting with different temporal granularities (e.g., weekly or 
quarterly data) could yield further improvements in forecasting exchange rates.
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