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ÖZET 
Geçirgen heterojen ortamdaki akışkanın matematiksel modellemesi, Resin Transfer Molding, Injection Molding, 
vs. gibi birçok imalat proseslerinde önemli bir yer tutar. Bu araştırmada, Local Volume Averaging Technique 
metodu ile elde edilen 3 boyutlu, zamana bağlı izotermal olmayan genel bir matematiksel model elde edildi. Model, 
ortalama hız, basınç, polimerik gerilmeleri ve sıcaklık değerlerini kütle, momentum ve enerji korunum kanunlar ile 
polimerik gerilme modellerini kullanarak elde etmektedir. Polimerik akışkan gerilmeleri için lineer (UCM ve 
Oldroyd-B modelleri) ve lineer olmayan (Giesekus ve PTT modelleri) modeller kullanılarak  polimerik akışkanın 
viskoelastik karakteristikleri ortaya konulabilir. 

GOVERNING EQUATIONS FOR QUASI-LINEAR AND NONLINEAR 
VISCOELASTIC FLUID FLOWS AND HEAT TRANSFER THROUGH 

STATIONARY POROUS MEDIA 

ABSTRACT 
Mathematical modeling involving porous heterogeneous media is important in a number of composite 
manufacturing processes, such as resin transfer molding (RTM), injection molding and the like. In this research, a 
mathematical model by utilizing the local volume averaging technique to establish 3-D, time dependent and non-
isothermal governing equations is presented. The developments should be able to predict the averaged velocity, 
pressure, polymeric stress and temperature fields by modeling the conservation laws (e.g. mass, momentum and 
energy) of the flow field coupled with constitutive equations for polymeric stress field. The governing equations 
of the flow are averaged for the fluid phase. Furthermore, the model target a variety of viscoelastic models (e.g. 
Newtonian model,  Upper-Convected-Maxwell Model, Oldroyd-B model, Giesekus model and PTT modl) to 
provide a fundamental understanding of the elastic effects on the flow field. The present research is focused on 
non-isothermal considerations and a variety of constitutive models accounting for the viscoelastic flow behaviors.  

 
Key Words: Mathematical modeling, porous media,non-isothrmal viscoelastic fluid flows 

1.INTRODUCTION AND MOTIVATION  
 Flow through heterogeneous porous media is, in general, of importance in many practical industrial 
applications. Some of the examples include composites process modeling, petroleum industrial applications, 
groundwater flow, chemical reactors, heat exchangers and the like. As related to composites process modeling 
applications, which is the main motivation of the current research, flow reinforced polymeric composite 
materials are increasingly being used in many applications. Liquid Composite Molding (LCM) processes such as 
Resin Transfer Molding (RTM) and Structural Reaction Injection Molding (SRIM) are two manufacturing 
methods to fabricate composite structures.  

In recent years, RTM and its derivative processes have been gaining popularity in the aerospace, 
infrastructure, automotive, and military industries. The selection of a manufacturing technique for producing 
polymeric composite parts must be based on consideration of a number of factors, including the size and shape 
of the part, microstructural control, reinforcement and matrix type, required performance, market economics, and 
so on. RTM appears uniquely capable of satisfying the low-cost/high-volume parts of the automotive industry as 
well as the higher performance/lower volume parts of the aerospace industry. Moreover, variations of the RTM 
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process make it well suited for the production of large, complex, thick-sectioned structures for infrastructure and 
military applications. For example, the glass-fiber/vinyl-ester bridge deck and the lower hull of the Army 
Composite Armored Vehicle (CAV). The automotive industry has used resin transfer molding (RTM) for 
decades. 

 
Perhaps the greatest benefit of RTM relative to other polymer composite manufacturing techniques such 

as autoclave curing, filament winding, hand-layup and pultrusion is the separation of the molding process from 
the design of the fiber architecture. Having the fiber preform stage separate from the injection and cure stages 
enables the designer to create uniquely tailored material to fit precisely a specific demand profile. This is 
accomplished by combining a variety of fiber types and forms. In fact, liquid molding enables attainment of high 
levels of microstructural control and part complexity compared with processes such as injection molding and 
compression molding. Other benefits afforded by RTM include; low capital investment, good surface quality, 
tooling flexibility, large and complex shapes, parts integration, range of available resin systems, range of 
reinforcements, controllable fiber volume fraction and the like. 
 In RTM processes, dry reinforcement (i.e., unimpregnated) is pre-shaped and oriented into a skeleton of 
the actual part known as the preform, which is inserted into a matched die mold. The mold is then closed, and a 
low-viscosity reactive fluid is injected into the tool. The air is displaced and escapes from vent ports placed at 
the high points. During this time, known as the injection or infiltration stage, the resin "wets out" the fibers. Heat 
applied to the mold activates polymerization mechanisms that solidify the resin in the step known as cure. The 
resin cure begins during filling and continues after the filling process. Once the part develops sufficient strength, 
it is moved or demolded. Flow progression and distribution, and fiber impregnation during the process are 
influenced by elastic effects of the polymeric fluid and the drag force exerted by the fluid as it flows through the 
fiber network.  

So far, computational models for the flow through porous media have been strictly restricted to 
Newtonian flows and even to this day, Darcy’s law has been adapted as the primary governing mathematical 
model because of its simplicity. As has been stated in the literature, this type of formulation is very much 
inadequate in terms of representing the physics of the problem in several situations causing inaccurate 
simulations. Extensions to Darcy’s model in the form of Brikman’s equation [37] and the like also exist, but 
have been primarily centered on Newtonian flows. Quite often, the resin is non-Newtonian. In particular, the 
resin is characterized as viscoelastic and not much work appears in the literature, which accounts for such flows 
through complex porous preforms. This is the focus of the present research and attention is focused on 
isothermal considerations and a variety of constitutive models accounting for the viscoelastic flow behaviors. 

2.PREVIOUS WORK 
 The liquid fluid flow through porous media has been previously studied by researchers interested in 
geological problems [1, 2]. The governing equation to model the flow through porous media is the empirical 
Darcy's law [3, 4] which states the flow rate of Newtonian fluids through saturated porous media to be 
proportional to the pressure drop across the medium. 
 Recently, this law is being used in modeling the flow of polymeric composite materials. It is assumed 
that the fiber network is constrained in such a way that it acts as an incompressible porous medium [5, 6]. 
Research has consistently used Darcy's law as the governing equation for low Deborah numbers [7]. Relatively 
very little experimental research has been conducted to support the use of Darcy's law in fiber composite 
processes involving non-Newtonian resins and in developing an objective and effective method for measuring 
the fiber permeabilities and the dependence of permeability on the fluid, local pressure and nature of porous 
media [8, 9, 10]. 
 Kozeny [11] proposed an expression for the permeability based on an idealized porous medium 
geometry and assumed that a porous medium can be represented by an assemblage of channels of various cross-
sections. The permeability, then, can be obtained in terms of a hydraulic radius. Carman [12] developed a 
modification to Kozeny's theory using the specific surface area of the porous medium particles. The resulting 
expression, the Carman-Kozeny equation, gives the permeability as a function of the porosity of the medium 
[13]. 
 Almost a century after Darcy proposed his equation, Brinkman [27] described a more accurate equation 
and model flow through porous media. Other relevant early works appear by Lundgren [28], Beavers and Joseph 
[29], Beavers et al [30], and Sparrow and Loeffler [31]. 
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 The capillary model was originally used for flow through isotropic porous medium, and its extension to 
flow across cylinders is developed by only redefining the hydraulic radius (Lam and Kardos [14]; Dave et al. 
[15]). The anisotropy of the medium was not included explicitly. Therefore, no consistent experimental results 
have been obtained using this approach [Lam and Kardos [14]; Skartis and Kardos [16]; Chimleewski et al. [17]; 
Gutowski et al. [18]. Bruschke [19] has shown that the results of the capillary model deviate significantly from 
the numerical solution for flow across an aligned bed of cylinders. 
 A more realistic approach to predict the permeability used for Darcy's law is to consider the geometry as 
an array of aligned cylinders and calculate the drag forces across them. Flow perpendicular to regular cylinder 
arrays has been analyzed extensively for Newtonian fluids, using a number of different mathematical treatments 
[20-23]. The effect of random fiber spacing has been addressed by a limited number of authors [24-26]. 
 There are analytical and computational methods to approximate the permeabilities used in Darcy’s law. 
Sangani and Acrivos [32] and Gebart [33] used analytical expressions for the permeability in the transverse 
direction of a unidirectional mat. Self-consistent method to predict permeability analytically in aligned fiber 
bundles has been developed by Berdichevsky and Cai [34] and Cai and Berdichevsky [35]. Some researchers 
[36, 37] have also performed experimental techniques to determine permeability for anisotropic mats. As an 
alternative to the analytical representations of the permeability, computational methods have been used using the 
unit cell. After obtaining an approximation for the permeability, a second level analysis for which the solid 
circular fibril used for the unit cell is replaced with a porous tow and Brinkman’s theory is used is performed 
[38]. Several researchers [38, 39] incorporeted Gebart’s geometrical assumptions as related to packing of the 
fabric preform structure and Darcy’s law in their calculations. 
 The method of multiple scales has been considered as an alternative to approximate the details of the 
flow [40, 41]. The method has been used primarily by mathematicians and is referred to by “homogenization” 
[42]. Some references have referred to this method as the “asymptotic expansion” technique [43] and the “two-
space method” [41]. The implementation of the method of multiple scales to porous media flow has been carried 
out by Keller [41].  Ene [42] assumed the flow through porous media is governed by an elliptic differential 
equation. Recently, Chang and Kikuchi [43, 40] applied the homogenization technique to the porous media flow 
They first calculated the permeability from the first homogenization level. Using this value of the permeability, 
they solved the homogenized forms of the flow equations. 
 Vafai and his coworkers [44, 45, 46, 47, 48, 49] employed a general model for the momentum equation 
based on the local volume averaging technique. In their work, they investigated the effects of a solid boundary 
and inertial forces on flow and heat and mass transfer in porous media. They also studied the effects of variable 
porosity  

3.GOVERNING CONSERVATION EQUATIONS 
In order to develop a mathematical development for flow through porous media, it is useful to give a 

formal description of the microscopic geometry of the porous medium. Following Tucker and Dessenberg [50] 
who wrote a review chapter on governing equations for flow and heat transfer, this is done by defining phase 
functions, as follows:  

                            ⎩
⎨
⎧=

                                                 phaseother any in  lies  if           0
                                                             fluid in the lies  if           1)(f x

xxX
         (1)

 

The solid phase function can also be defined in a similar fashion. If the solid media is not stationary, the 
phase functions will be time-dependent as well. When solving real flow problems, the character of the porous 
medium is never considered in detail, but the phase functions are necessary functions to obtain the governing 
conservation and constitutive equations of the flow field. The two phases under consideration will be indicated 
by subscripts “f” for the fluid phase and “s” for the solid phase. Terms associated with either phase will be 
denoted with the corresponding subscript, while the terms associated with both phases will have no subscript. 
For example, ρ is the density of both phases, while ρf is the density of the fluid and σs is the total stress tensor in 
the solid. 

 
3.1. The Local volume averaging technique 

The basic concepts in porous media theory are the local volume averaging technique and the use of 
averaged variables instead of instantaneous ones in field equations. Rather than modeling the microscopic resin 
flow around each fiber, porous media theory predicts averaged velocity, pressure and stress fields for the flow 
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phase. Any average of any variable can be related to a point in the medium. The point x that has the average 
value is determined by the location of the averaging volume V (Figure 1). 

 

 
 
Figure 1 Microscopic View of a Porous Medium, showing the averaging volume V and its surface S associated 

with a point x 
 

This approach is similar to the averaging procedure used in continuum mechanics for homogenous materials. 
Instead of computing the position and velocity of every atom in a gas (i.e. the Lagrangian viewpoint), one 
develops the continuum theories to calculate the velocity, pressure and temperature for small regions that contain 
many atoms (i.e. the Eularian viewpoint). Within the mathematical aspects of continuum mechanics, it is 
possible to consider the velocity at a point. However, the results of continuum mechanics loose their meaning 
when the size of the point approaches the mean free path-line (streak-lines) of an atom. Similarly, porous media 
theory gives the averaged velocity, pressure and stress at each point, but these results lose their meanings when 
we examine the material on the scale of the individual pores and fibers. When the porous solid mat has a regular 
structure, like a woven fabric, then a unit cell like the one shown in Figure 2 (a) can be used as the representative 
volume. If the medium has a random structure then, the representative volume will contain many particles in an 
averaged sense (Figure 2 (b)). Details and derivations can be found in Referance [51]. 
 
 

 
 

Figure 2 (a) A unit cell (heavy line) 
in a 2 : 2 twill weave fabric 
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Figure 2 (b) A unit cell (heavy line) 

 
for many particles in an averaged sense 

To obtain a relationship between the phase average and the intrinsic phase average, first we define the 
volume fractions of the phases as 

∫==
V

VXVV
V d1

f
f

fε   and ∫==
V

dVVVV
V

s
s

s
1

ε    (2) 

where the fluid portion εf is often called the porosity and the solid fraction is εs. From these definitions, we see 
that the phase and intrinsic averages are now related by 

BB ff
f

f =ε         (3) 
 
The derivations that follow assumes that the solid phase is not moving (i.e. stationary solid phase), there is no 
mass transfer between the solid and the fluid and the densities of the solid and fluid are constant. The averaging 
technique is outlined in Figure 3. 

 

 
 

Figure 3 Outline of procedure for deriving balance equations for resin transfer molding 
 
3.2 The conservation of mass: Continuity equation 

The continuity equation or conservation of mass equation states that matter is conserved. Since the solid 
phase does not move, it automatically satisfies the continuity, and we need to develop an equation for the fluid 
only. Following Alakus [51], the continuity equation is obtained as 
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0f =⋅∇ v          (4) 

where vf  is the velocity vector of the flow field. This is the continuity equation used in calculations of fluid 
flow through porous medium. 
 
 
3.3 The Conservation of momentum equations 

The equation of motion (conservation of momentum) balances the forces applied to each material 
particle against the particle’s acceleration. For each point in a homogenous material the equation of motion 
(microscopic conservation of momentum equation) is 

( ) ( ) gσvvv ρρρ
+⋅∇=⋅∇+

∂
∂

t
      (5) 

where σ is the total fluid stress tensor which is comprised of the pressure and viscous and polymeric stresses,  
and g is the gravitational body force per unit mass. Following Alakus [51], the averaged momentum equations 
are given by 
 

[ ]vMvv
v

fDfff
f

f
f

f :1
∇⋅∇+⎥

⎦

⎤
⎢
⎣

⎡
⋅∇+

∂
∂

ρ
ε

ρρ
t

 

v
v

τ f
ff

fff

f

f
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−⋅∇+∇−=

S

b
SP

ρη
εε   (6) 

where Pf is the intrinsic phase pressure of the fluid, η is the viscosity,   b is a dimensionless material parameter, 
MD is a fourth-order “dispersive viscosity” tensor and its value would depend on the average velocity v f  and 

other flow parameters such as viscosity, porosity, particle shape and size, etc and the quantity S ( ≡ εf lo
2 k* ) is 

called the permeability. This equation assumes a general non-Newtonian fluid with constant viscosity and 
density flowing in an isotropic porous medium. It reduces to the isotropic version of the Brinkman equation for 
slow Newtonian flows. It should be noted that one must either have an expression for the inertial dispersion 
tensor MD or else ignore dispersion entirely. 
 
3.4 The Conservation of energy equation 

 The averaged energy equation and relevant boundary conditions with detailed  explanation and notation 
for flow through porous media have been presented by Tucker and Dessenberger [50] as; 
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4. CONSTITUTIVE EQUATIONS FOR TOTAL EXTRA STRESS FIELD: FLOW MODELS 
The present model deals with both Newtonian and non-Newtonian (e.i. viscoelastic) fluid flows through 

porous media. The former include fluids that are characteristics of water and most gases. The latter include fluids 
with a complicated molecular structure, e.g. polymers, emulsions and rubber, and have a great deal of industrial 
significance. 
4.1. Volume-Averaged Constitutive Equations   
  

The averaged Newtonian stres field is given by [51] 

( ) ⎟⎠⎞⎜
⎝
⎛ ∇+∇= vv f

T
ff ητ                                                                                        (8) 
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where τf is the total extra stress, ( )vvγ f
T

f ∇+∇=&  is the rate of strain tensor, η is the viscosity. The phase 

average of UCM and Oldroyd-B models [52] for the fluid phase to obtain the averaged UCM and Oldroyd-B 
constitutive model  [51] is obtained as follows: The Elastic-Viscous-Split-Stress (EVSS) formulation of the 
UCM and Oldroyd-B models are derived based on the change of variables as follows. Define the elastic stress as 
Let σ denote the Cauchy (total) stress tensor, then the extra stress Tf is defined by ff TIσ +−= p where p is 
the indeterminate pressure and the extra-stress Tf is given by a differential constitutive model. For EVSS 
formulation, γTT &η+= 1f  and  
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where γD &
2
1

=  is the deformation rate tensor, β is the ratio of the retardation time to the relaxation time; 

β=λ2/λ1 . When β=0 the EVSS form of the UCM model is recovered. By definition 
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t

 is the Upper-Convected derivative of the polymeric stress, vf is the velocity 

vector, λ1 is relaxation time and η is the total viscosity.  
 

Following [51], the averaged Giesekus constitutive model[52] is given by  
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where α is a dimensionless Giesekus model mobility factor , η2 is the solvent viscosity, η1 is the polymeric 
viscosity and η =η1+η2 is the total viscosity and κ=η2/η . 
 

The volume averaged PTT model is obtained in a similar fashion [51] as follows: 
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 where, εm is a model parameter. 
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4.2 Boundary Conditions 
  

Let Ω be the flow domain and ∂Ω be its boundary. On ∂Ω, we identify several partial boundaries as 
follows: 
(1) ∂ΩT, on which one imposes essential boundary conditions for the stress tensor at the inlet 

      fINLETf TT =     on       ∂ΩT                                                                                          (12) 
 
(2) ∂ΩV, with essential boundary conditions for the velocity fields   

   inf Uv =  on      ∂ΩVin                                                                                            (13) 

     0v =f    on      ∂ΩVwall                                                                                         (14) 
 
(3) ∂ΩN, with homogeneous natural boundary conditions   
    0=⋅nσ  on ∂ΩN                                                                                           (15) 

 
where Uin is the prescribed velocity field and its boundary is ∂ΩVin. ∂ΩT is the boundary on which the extra stress 
tensor is imposed as a boundary condition for the stress field.  Boundary conditions used for the calculations are 
shown in Figure 4. 
 
 

 
 

Figure 4. Typical boundary conditions used for calculations of viscoelastic fluid flows 

5. CONCLUSIONS 
 
 In this research, a set of balance equations specific to non-ısothermal viscoelastic flow through porous 
media has been extracted from the general equations, derived using the local averaging technique. The 
advantages of this approach are that notions such as average pressure, average velocity and average temperature 
can be precisely defined and the governing equations are derived from the accepted principles of conservation 
laws. Mass and momentum equations have been obtained for both quasi-linear and nonlinear viscoelastic fluids 
of constant parameters and density in a stationary porous medium. A general energy balance has also been given 
and the resulting energy equation is based on the assumption of local thermal equilibrium. Using this model, the 
average temperature of both the fluid and solid is determined from the solution of  a single energy equation.  
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