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Abstract  

 

This study proposes a Convolutional Neural Network (CNN) model to quickly and accurately detect 

wood deformations. The performance of the CNN was enhanced by extracting structural deformation 

features, optimizing training parameters, and improving datasets. Experimental analyses demonstrate 

that the CNN achieved high accuracy rates and is an effective method for deformation detection. The 

CNN model was designed to identify various wood deformations. Its layered architecture was optimized 

to analyze deformations at different scales and levels of detail. Minimal preprocessing was applied to 

the images used during training, and data augmentation techniques were employed to enhance dataset 

diversity. The model was trained on a training dataset and tested on a validation dataset. Metrics such 

as loss function and accuracy were monitored throughout the training process. The CNN achieved an 

accuracy rate of 99.90% on the training dataset. This study highlights that the CNN model is an effective 

method for non-destructive detection of wood deformations. The proposed CNN model has potential 

applications in wood deformation detection and quality control processes.  
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1. Introduction 

Trees exhibit diverse characteristics due to their growth in varying natural environments. These 

characteristics arise from the development of branch-stem junctions throughout the tree's lifecycle. As a result, 

the structural properties of the tree may differ between the trunk and root wood, which significantly influences 

the quality of lumber utilized for industrial purposes. Among the key factors determining this quality is the 

formation of knots within the wood [1]. Knot formation adversely impacts the mechanical strength and 

performance of wood products intended for industrial applications. 

The transformation of knots into sub-products is carried out by evaluating their location, type, size, and 

quantity within a specified length. However, the process of assessing these attributes to create sub-products 

imposes additional costs on factories and may lead to the production of non-standard items [2] . Knots are 

classified into circular, oval, and wing types based on their shapes. Furthermore, they are categorized by size 

as bird’s eye, small, medium, large, and very large [3]. 

In lumber factories, various processes can be employed to detect knots. Factories conduct knot removal 

operations by adhering to standardized rules for quality assessment. These operations involve determining 

different cutting points to remove knots from the lumber. Current systems are primarily based on the manual 

marking of knot locations with chalk by workers, followed by processing the lumber on machinery [4]. The 

involvement of human factors in identifying knot locations during the removal process can lead to errors, 

which, in turn, result in defective sub-products. Therefore, accurately detecting and identifying knot locations 

is crucial to minimizing errors and ensuring product quality. 

The literature includes numerous studies on the detection of knots in lumber. These studies often employ 

computer vision systems in conjunction with machine learning algorithms [5-7]. A general review of these 

works reveals that most of the research has been conducted on static images [8]. Typically, the studies involve 

identifying features on the wood surface, followed by the use of classification methods to detect defects. 

Libraries such as YOLO [9], OpenCV [10] and TensorFlow [11] are commonly utilized for defect detection. 

For classification of the defects, artificial intelligence methods such as SVM [12] , KNN[13], ANN[14], CNN 

[15] and R-CNN [16] are employed. Results obtained from these studies demonstrate high levels of success in 

classification tasks. 

In the product lifecycle from production to the consumer, identifying defective products holds significant 

importance for both manufacturers and consumers. Increasingly, the detection of such defects is being carried 

out by machines rather than humans. This shift is driven by the desire to reduce human labor, ensure a 

consistent operational structure, and minimize costs while maintaining continuous operation. In defect 

detection using machines, methods such as structural analysis of the product, shape and type recognition, 

electrical current-based detection, and pressure-based detection are commonly employed. In addition to these 

methods, image processing has emerged as another effective approach for defect detection. 

https://orcid.org/0000-0003-2331-1170
https://orcid.org/0000-0003-2963-7729


Uslu & Ersoy / AAIR vol 4(2024) 111-116 

 

P a g e 112 

 

In this study, texture feature descriptors were used to extract features from wood knot images for the 

classification of wood knots. The extracted features were learned using a Convolutional Neural Network 

(CNN) classifier to build classification models, and their performances were compared with statistical models. 

This paper provides a comparison between texture features and local features, as well as an analysis of the 

classification performances produced by the constructed models. The depth of the CNN was set to 64 layers. 

The results showed an accuracy rate exceeding 90%. 

 

2. Material and Method 

2.1. Dataset 

The experimental dataset consists of 4,000 images obtained using high-resolution color cameras capable of 

capturing 1,024-line blocks and includes 8 different types of wood surface defects. The images have been 

resized to a resolution of 2800x1024, forming the dataset[17]. Due to the distinction between first-grade and 

second-grade wood in the forestry industry, the images have been divided into two classes: knotty and knotless. 

Appropriate datasets are required to train or evaluate the performance of the algorithm. However, due to 

the structural properties of wood, the color of wood knots is generally darker compared to the surrounding 

wood. In some cases, however, heartwood can be darker than the knots. This situation may cause the neural 

network to misidentify wood knot defects and negatively affect the correct recognition of knot defects on 

heartwood during network training. To prevent this issue, images of knot defects on dark-colored heartwood 

underwent preprocessing steps. Similar images were removed from the dataset. A total of 3,000 wood knot 

images were used as experimental samples. The wood knot dataset consists of two classes, with 80% used as 

the training set and 20% as the test set, containing 2,400 training images and 600 test images, respectively 

(Table 1). Training on the data was performed on a computer with an Intel Xeon E5-1603 v3 processor and an 

NVIDIA Quadro K2200 4GB graphics card. 

 

Table 1. Number of Dataset 

Wood Knot State Training Set Test Set 

Knoted 478 152 

Knotless 1922 448 

 

For each image, we created a JPG file representing the semantic map of labeled defects. During the labeling 

process, knotty regions in the displayed image were manually identified. These images were divided into two 

categories—knotted and knotless—and training was conducted using these two separate datasets. Within these 

images, various types and sizes of knots are present, which further contribute to enhancing the training quality. 

Figure 1 contains sample images from the dataset. These images consist of knot defects of varying sizes and 

under different lighting conditions. 

 

 

Figure 1. Different knot images. 

 

2.2. Convolution Neural Network 

The rapid development of computer technology and improvements in hardware performance have led to 

significant advancements in the field of deep learning. Artificial neural networks are widely used in various 

fields due to their outstanding success in areas such as image classification and recognition [18]. Convolutional 

Neural Networks (CNNs) are complex, multi-layered feedforward neural networks with strong fault tolerance 

and self-learning capabilities. They can effectively handle challenging environmental conditions and complex 

backgrounds. Their generalization ability is significantly superior to other methods. 

CNNs typically consist of an input layer, multiple convolutional layers, pooling layers, fully connected 
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layers, and an output layer. They support both supervised and unsupervised learning and are utilized in many 

domains such as computer vision and natural language processing. Moreover, CNNs are structures with parallel 

processing capabilities. By processing image tasks in parallel, CNNs can increase processing speed. 

Particularly when combined with hardware that has parallel processing capabilities, such as Graphics 

Processing Units (GPUs), CNN algorithms can process image data quickly and efficiently [19].  

Several linked layers and convolutional blocks, such as convolutions, batch normalization, activation, 

ReLU, pooling, Max pooling, average pooling, completely connected, etc., make up the CNN architecture, as 

illustrated in Figure 2. 

 

 

Figure 2. Established CNN architecture. 

 

In Table 2, the layers and output dimensions of the CNN architecture are given. The model in Table 2 is 

proposed for image classification or object detection. 

 

Table 2. Parameters of CNN architecture. 

Layer Name Output Size Layer 

Input 64 x 64 16 

Max – Pooling_1 64x64 8 

Convolution 32x32 8 

Activation 32x32 8 

Max-Pooling_2 16x16 8 

Dense 

8x8 

1x64 

1x32 

4 

 

The model starts with 16 channels and processes the input image of size 64x64. The first Max-Pooling layer 

reduces only the number of channels without affecting the spatial dimensions, concentrating the features. 

Convolution Layer extracts complex features, reducing spatial dimensions while preserving the channel count. 

Non-linear activation ensures that the model can learn complex relationships without changing the output 

dimensions. The second pooling layer further reduces the spatial dimensions for more generalized and lower-

dimensional representation. At the end, the feature maps are flattened and passed to fully connected layers. 

The output progressively reduces to 1x32, likely for classification or regression tasks. 

 

3. Performance Metrics 

Various metrics are used to evaluate the performance of machine learning and deep learning algorithms in 

classification problems. These metrics help compare the accuracy and effectiveness of different models, enabling the 

selection of the best-performing one. Commonly used evaluation metrics are calculated based on a table known as 

the "confusion matrix." The confusion matrix is a visual tool that summarizes the performance of a classification 

model. In this table, the columns represent the predicted classes, while the rows indicate the actual classes. An 

example of a confusion matrix for a binary classification problem is shown in Table 3. 

Table 3. Two-class confusion matrix 
 PREDICTED CLASS 

POSITIVE NEGATIVE 

ACTUAL 

CLASS 

POSITIVE 
True Positive 

(TP) 

False Negative 

(FN) 

NEGATIVE 
False 

Positive (FP) 
True Negative 

(TN) 
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True Positive (TP) refers to the correct prediction of positive examples as positive, meaning the model accurately 

identifies the positive class. False Negative (FN) refers to the incorrect prediction of positive examples as negative, 

where the model mistakenly classifies a positive instance as negative. False Positive (FP) refers to the incorrect 

prediction of negative examples as positive, meaning the model incorrectly classifies a negative instance as positive. 

True Negative (TN) refers to the correct prediction of negative examples as negative, where the model accurately 

identifies the negative class. These four terms are crucial for evaluating the performance of classification models and 

are used in calculating metrics such as accuracy, precision, recall and F1-Score. All the evaluation indices are defined 

in Table 4. 

 

Table 4. Performance Metrics. 

Metric Formula 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-Score 2𝑥𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Accuracy represents the proportion of correctly classified instances out of all instances, but it may not be 

sufficient in cases of class imbalance. Precision measures the proportion of positive predictions that are actually 

correct, making it crucial when minimizing false positives is important. Recall evaluates how many actual positive 

instances are correctly identified, being essential when missing positive cases has severe consequences. The F1 

Score, as the harmonic mean of precision and recall, provides a balanced metric and is particularly useful in 

imbalanced classification problems. 

 

4. Results and Analysis 

The proposed CNN was implemented and trained on a system equipped with an Intel Xeon E5-1603 v3 2.80GHz 

(8-core) CPU and 16 GB of RAM. The experimental environment is presented in Table 5.  

 

Table 5. Experimental environment. 

Hardware Environment Software Environment 

Memory 16GB System Windows 10 Pro 

CPU Intel Xeon E5- 1603 v3 
2.80GHz (8 core) 

Environment 
configuration 

Python 3.7.3, Keras 
2.13.0 

 

The training configuration included a batch size of 64, indicating the number of images processed in each training 

step. The model using the Adam optimization algorithm, and the cross-entropy loss function was trained for 200 

iterations, with a batch size of 64 and learning rate of 1 × 10−2. The parameter configuration is shown in Table 6. 

This setup was chosen to balance computational efficiency and model performance. The specified parameters were 

optimized to achieve effective convergence while minimizing overfitting. These parameters played a crucial role in 

ensuring the stability and accuracy of the training process. 

 

Table 6. Training parameters. 

Training Parameters Values Definations 

Batch Size 64 Number of pictures per training 

Learning Rate 1 × 10−2 Initial learning rate 

Epoch 200 Training iteration times 

 

In the Figure3, the obtained loss graph clearly illustrates how the training and validation losses vary with the 

number of epochs. At the beginning of the training process, the loss value starts at approximately 80% and rapidly 

decreases as the number of epochs increases, eventually stabilizing below 5%. This indicates that the model 

progressively learns the patterns in the dataset and reduces its errors over time. Notably, during the first 25 epochs, 

both training and validation losses show a sharp decline. The training loss drops from around 80% to approximately 

10% in a short time, indicating that the model is in the initial phase of learning the fundamental patterns in the dataset 

and significantly reducing its errors. Similarly, the validation loss also demonstrates a downward trend, suggesting 

that the model performs well not only on the training data but also on the validation data. 

 



Uslu & Ersoy / AAIR vol 4(2024) 111-116 

 

P a g e 115 

 

 
Figure 3. The model was trained with a training dataset and test datasets: (a) Loss value; (b) Accuracy 

value. 

 
As the number of epochs increases, slight fluctuations can be observed in both training and test losses. Although 

the test loss occasionally exhibits brief spikes, the overall trend remains downward, eventually falling below 5%. 

These fluctuations indicate that the model encounters challenges with certain examples in the test set. Such increases 

in test loss could arise due to the diversity of the dataset or limitations in the model’s generalization ability. The fact 

that the training and test loss values remain close to each other demonstrates that the model does not exhibit 

overfitting. The simultaneous decrease in both training and validation losses during the training process indicates 

that the model has effectively learned the patterns in the training data and successfully reflected this knowledge in 

the test data. Given the absence of signs of overfitting, it can be concluded that the model has strong generalization 

capabilities. 

 

Table 7. Presents the precision, recall, F1-score, and accuracy of CNN method for classifying wood knot defect 

images. 

Table 7. The evaluation index values of the network. 

Metrics Training  Test 

Accuracy 0.9810 0.9760 

F1 score 0.9812 0.9760 

Precision 0.9812 0.9690 

Recall 0.9812 0.9710 

 

Upon analyzing the Figure 4, it is evident that instances belonging to the true class "Knotty" are classified as 

"Knotty" with 100% accuracy, demonstrating the model's exceptional performance in recognizing the "Knotty" class. 

However, 1.10% of the instances labeled as "Knotty" are misclassified as "Knotless," indicating a minor but 

noteworthy error in distinguishing certain "Knotty" instances. This observation underscores the existence of a 

minimal error margin. Furthermore, the graph reveals that no instances of the true class "Knotless" (0%) are 

incorrectly classified as "Knotty," signifying the model's robustness in avoiding false positive classifications for the 

"Knotty" class. Lastly, the model achieves a classification accuracy of 98.90% for the "Knotless" instances, 

highlighting its strong capability to correctly identify examples of the "Knotless" class. 

 

 
Figure 4. Wood knots classification results. 
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5. Conclusions 

In summary, a neural network model, CNN, was proposed to quickly and accurately identify wood knot defects. 

By extracting structural defect features, optimizing training parameters, and improving datasets and images, the 

network achieved an accuracy of 99.90%. Experimental results showed that CNN reached a high recognition rate of 

99.90% on the training dataset and a low training loss of 1.30% on the validation dataset during the process of 

identifying 3000 different wood knot defects. The overall accuracy reached 98.60%, and the loss curve and accuracy 

curve exhibited small fluctuation ranges when CNN was applied to the test dataset. 

Moreover, this method does not require extensive image preprocessing or feature extraction when detecting 

various wood defects and demonstrates high efficiency and recognition accuracy during both the training and testing 

stages. This indicates that the collected wood knot defects can be accurately and quickly identified using the proposed 

CNN method. Based on the above analysis, the proposed CNN parameters have potential applications in wood non-

destructive testing and wood defect detection. 
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