
 

 

Selcuk Journal of Agriculture and Food Sciences 

https://dergipark.org.tr/tr/pub/selcukjafsci 

Research Article 
 

(2025) 39(1), 95-107 DOI:10.15316/SJAFS.2025.009 e-ISSN: 2458-8377 Selcuk J Agr Food Sci 
 

95 
Citation: Kibar M, Şahin Neğiş İ, Aytekin İ, Keskin İ (2025). Classifying Apis mellifera breeds using data mining techniques based on 
morphological traits. Selcuk Journal of Agriculture and Food Sciences, 39(1), 95-107. https://doi.org/10.15316/SJAFS.2025.009 
*Correspondence: mustafakibar@siirt.edu.tr  

Received date: 14/12/2024 
Accepted date: 10/02/2025 
Author(s) publishing with the journal retain(s) the copyright to their work licensed under the CC BY-NC 4.0. 
https://creativecommons.org/licenses/by-nc/4.0/ 

Classifying Apis mellifera Breeds Using Data Mining Techniques Based on 
Morphological Traits 

Mustafa Kibar1,2,*, İnci Şahin Negiş3, İbrahim Aytekin4, İsmail Keskin4 

1Siirt University, Faculty of Agriculture, Department of Animal Science, Siirt, Türkiye 

2Siirt University, Beekeeping Application and Research Center, Siirt, Türkiye 

3Selçuk University, Faculty of Agriculture, Department of Plant Protection, Konya, Türkiye 

4Selçuk University, Faculty of Agriculture, Department of Animal Science, Konya, Türkiye 

HIGHLIGHTS 

• The classification of bee breeds is crucial for genetic diversity and efficiency. 

• The morphological traits of honeybee breeds are different. 

• The random forest model achieved 99.8% success, proving highly effective for classification.  

• Naïve Bayes consistently performed the worst across all evaluation metrics. 

Abstract 

The classification of bee breeds is significant for breeding, maintaining genetic diversity, increasing productivity and 
protecting the health of the bee colonies. Therefore, this study aims to classify different honeybee breeds based on their 
morphological traits using data mining techniques, which are cost-effective and straightforward. It were used a total of 35 
colonies from a private bee farm for morphometric analysis in the study, which included seven different bee breeds and 
404 bee samples. A range of data mining techniques (Support Vector Machines (SVM), Random Forest (RF), Artificial 
Neural Networks (ANN), Naive Bayes (NB) and k-Nearest Neighbors (k-NN)), and model fit criteria were used for the 
classification of bee breeds. Overall, the study shows significant differences in the morphological traits of different bee 
breeds, highlighting the diversity and different traits of each bee breed. In addition, the study shows that the RF model is 
superior in all criteria and therefore the most effective for classifying honeybee breeds. In contrast, the NB model 
consistently performs the worst, as evidenced by the consistently minimum values of all metrics. In conclusion, RF model 
exhibiting a 99.8% success rate, stands out as highly effective in the classification of bee breeds based on the morphological 
traits, supporting its applicability in future classification research. 
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1. Introduction 

Bees are essential pollinators that contribute significantly to global food production and biodiversity (Potts 
et al. 2010). For sustainability in these; the classification of bee breeds is significant, which has a crucial role in 
understanding their behavior, ecological impacts, and potential for various applications in agriculture and 
environmental conservation. However, traditional methods of classification have relied on manual 
observation and subjective judgment, often leading to inconsistencies, misclassification (Berlocher 1984) and 
high costs (Tapkan et al. 2016). In addition, accurately classification of bee breeds only based on their 
morphological traits (MTs) could be difficult due to their few variations. Accordingly, the application of data 
mining methods has emerged as a promising approach to overcome these challenges in recent years. Data 
mining methods can be defined as the process of extracting previously unknown information from large-scale 
databases and utilizing it effectively in the decision-making process using computational techniques, statistical 
analysis, and machine learning algorithms (Tapkan et al. 2016; Han et al. 2022). Because of these features, it 
offers a more objective and systematic approach to classification of bee breeds. The primary data mining 
methods Support Vector Machines (SVM), Random Forest (RF), Artificial Neural Networks (ANN), Naive 
Bayes (NB) and k-Nearest Neighbors (k-NN) were investigated. SVM is a powerful supervised learning 
technique that constructs a hyperplane (Vapnik 1999) to classify different bee breeds in a high-dimensional 
feature space. RF is an ensemble learning method that combines multiple decision trees to improve 
classification accuracy (Breiman 2001). ANN, inspired by the biological neural network, utilizes 
interconnected layers of artificial neurons to learn (Yegnanarayana 1999) and classify bee breeds based on their 
MTs. NB is based on Bayes' theorem, which assumes that the presence of a particular feature is independent 
of the presence of any other trait in an insect class (Antony and Pratheepa 2018). k-NN classifies based on their 
proximity to the nearest neighbors in the feature space (Cover and Hart 1967) and the k-NN algorithm achieves 
a better identification rate for species (Li and Xiong 2018). By harnessing the power of these data mining 
methods, researchers and beekeepers could improve the efficiency and accuracy of breed classification 
processes. In the classification studies, the MTs of bees include length of the wing, width of the wing, length 
of the tongue and other distinguishing traits (Buco et al. 1987; Rinderer et al. 1993; Crewe et al. 1994; Ftayeh et 
al. 1994; Diniz-Filho and Malaspina 1995; Szymula et al. 2010). However, the MTs of bees can be generally 
categorized into three main groups: length measurements, color measurements, and wing venation traits 
(Abou-Shaara et al. 2013) and the third were investigated in detail by Abou-Shaara (2013). The classification 
studies in terms of the MTs efficiently compile and organize a vast amount of data regarding variations 
(Alpatov 1929; Guler and Bek 2002). Additionally, they assess the significance of these variations for honeybee 
populations (Estoup et al. 1995), facilitate visual comparisons in pure breed breeding through morphometric 
data (Gençer 2004), and distinguish between geographically adjacent types (Ruttner et al. 1978). For example, 
Frunze et al. (2022) studied to regularize by six best traits (width of the abdomen, length of tergites 3 and 4, 
width of the head, length of the antenna, and length of the forewing). Accurate breed classification could 
enable more targeted management practices, selective breeding programs, informed decision-making in areas 
such as pollination services, disease management, and ecological conservation.  

The aim of this study is to determine whether bee breeds can be effectively classified using various data 
mining techniques such as SVM, RF, ANN, NB and k-NN, based on the analysis of certain MTs (e.g., scutellum 
color (SC), second abdominal tergit color (TC-2), fourth abdominal tergit color (TC-4), length of the tibia (LTI), 
length of the wing (LW), width of the wing (WW), cubital index (CI), width of the vein-a (WV-a), width of the 
vein-b (WV-b), wing vein angles (J10, B4, A4, E9), length of the tongue (LTO), length of the glossa (LG), length 
of the prementum (LPR) and length of the postmentum (LPM)) obtained from a diverse set of bee breeds 
including Pure Anatolia, Anatolia Hybrid, Carniolan Hybrid, Carpathian Hybrid, Caucasian hybrid, Italian 
Hybrid, and Kerkuk bees. The findings of this study may have practical implications for beekeepers, 
researchers, interested in improving bee breed identification as well as understanding the ecological roles and 
behaviors of different bee breeds. 
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2. Materials and Methods 

This study was conducted in Apis mellifera L. (Hymenoptera: Apidae) honeybees raised Bozkır district 
(Latitude: 37.171860 and Longitude: 32.216846), Konya province, Türkiye. In the study, some MTs of seven 
different honeybee breeds in thirty-five colonies were used for breed classification. For the Carniolan hybrid: 
1 colony and 27 bee samples; for the Kerkuk: 1 colony and 10 bee samples; for the Anatolian hybrid: 2 colony 
and 21 bee samples; for the Italian hybrid: 2 colony and 20 bee samples; for the Pure Anatolian: 1 colony and 
23 bee samples; for the Carpathian hybrid: 3 colonies and 32 bee samples; and finally, for the Caucasian hybrid: 
25 colonies and 271 bee samples were used. Totally, 35 colonies, 7 different breeds and 404 bee samples were 
used for the study. No morphometric analyzes and/or any practices related to the MTs were performed prior 
to the study to determine the breeds of used in the study; The colonies and bee samples were randomly 
selected. The collection of bee samples and testing techniques followed the animal welfare guidelines outlined 
in Article 9 of the “Veterinary Services, Plant Health, Food, and Feed Law” of Türkiye. The colonies used in 
the study were raised in ten-frame Langstroth hives in Konya during the summer months (May-September) 
and Antalya province during the winter months (October-April). The colonies were fed with sugar syrup and 
bee cake, except in January and February when temperatures are not suitable for feeding. In the current apiary, 
pure queens naturally mate with different drones and form hybrid colonies. For example, by mating pure 
Caucasian queens with different drones, Caucasian hybrids were formed and new queens were bred from 
these hybrid colonies. Colonies with pure queens were formed through purchases. Also, Kerkuk bees were 
used in the study to strengthen morphological distinction. 

Bee samples from the colonies were taken in the summer of 2020 and were placed in alcohol and stored at 
+4 °C until morphological analysis. The specimens were initially preserved in 70% ethanol until the dissection. 
Subsequently, the forewings, proboscis and legs of honeybees were precisely severed and sequentially 
immersed in 60%, 70%, 80%, 90% and 100% ethanol solutions for gradual hydration. For all parts 
measurements, after immersing in alcohol series, were maintained in clove oil at least for 24 hours to facilitate 
tissue softening and enhance resolution. Following the dissection, the forewings, proboscis, and legs were 
carefully positioned in the microscope slides with hoyer medium (Distilled water, Gum Arabic, Chloral 
hydrate, and Glycerin) developed by Anderson (1954). The MTs scutellum color (SC); second abdominal tergit 
color (TC-2); fourth abdominal tergit color (TC-4); length of the tibia (LTI); length of the wing (LW); width of 
the wing (WW); cubital index (CI); width of the vein-a (WV-a); width of the vein-b (WV-b); wing vein angles 
(J10, B4, A4 and E9); length of the tongue (LTO); length of the glossa (LG); length of the prementum (LPR); 
and length of the postmentum (LPM) of honeybees were used. CI was calculated following equation reported 
by Özbakır (2011). 

𝐶𝐶𝐶𝐶 = (
𝑊𝑊𝑊𝑊 − 𝑎𝑎
𝑊𝑊𝑊𝑊 − 𝑏𝑏

) (1) 

In the equation, WV-a is the width of the vein-a and WV-b is the width of the vein-b. While SC was 
determined using a 5-point color scale from 0 to 4, TC-2 and TC-4 were determined using a 10-point color scale 
from 0 to 9 (Dodoloğlu 2000). Each bee sample was scored by two assessors and the average value was used 
for the evaluation. Optical microscopic observations and photography were conducted using an integrated 
16-megapixel digital camera (AmScope MU1603, Irvine, CA, USA) under 20X magnification. All comparative 
morphological observations and the preparation of slides for colony morphology were carried out with the 
assistance of a Nikon SMZ 745T stereo microscope, specifically the stereomicroscope equipped with a G-AL-
2X objective. This microscope model offered essential magnification capabilities and stereo vision, facilitating 
in-depth examination, including color detection, and precise documentation of MTs in the specimens under 
investigation. To conduct measurements, the 3-point circle measurement, arc measurement, and line 
measurement tools available in AmScope software version x64, 4.8 were utilized. These tools provided a 
comprehensive means of quantifying and analyzing various aspects of the captured images (Figure 1). 
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Figure 1. The analyzed some morphological traits. The honeybee tongue parts: (1) the prementum, the 

postmentum, the glossa. The honeybee leg part: (2) the tibia 

Statistical analyzes were made using the ORANGE program version 3.3.1. (Demsar et al. 2013). Five 
different data mining algorithms SVM, RF, ANN, NB and k-NN models were used for classification based on 
the MTs of seven different bee breeds. A 70% training – 30% test ratio was used in ANN. Classification 
methods allow test data to be accurately assigned to specific classes by learning a model from the training data 
set (Bhavsar and Ganatra 2012). The data mining classification methods (SVM, RF, ANN, NB and k-NN) and 
model fit criteria (AUC, CA, F1, Precision, Recall and Specificity) used are explained below. SVM belongs to 
the family of generalized linear classifiers and is a supervised learning method for classification and 
regression. In other words, SVM is a classification and regression prediction method that leverages machine 
learning theory to maximize predictive power (Khan et al. 2023). Breiman (2001) developed the RF method in 
which different classification assignment algorithms are used together. RF combines multiple decision trees, 
and the majority vote based on each tree's predictions together determines the final prediction (Breiman 2001). 
Additionally, it is quite user-friendly in that it has only two parameters, the number of variables in the random 
subset at each node and the number of trees in the forest, and is generally not very sensitive to their values 
(Liaw and Wiener 2002). ANN, an information processing system, simulates the thinking system of the human 
brain. The fact that ANN is non-linear and designed to perform its tasks in a similar manner to the human 
brain makes ANN unique, and the sigmoid (logistic) activation function was used in this study. Therefore, it 
is a suitable method for processing the signals sent by various sensors and communication devices (Pan et al. 
2023). NB is a well-known probabilistic classification algorithm that is simple but efficient and has a wide 
range of real-world applications including product recommendations, medical diagnostics, and autonomous 
vehicle control (Wickramasinghe and Kalutarage 2021). The nearest neighbor rule assigns an unclassified 
sample point the classification of the closest point from a set of previously classified points (Cover and Hart 
1967). Given an unlabeled example, k-NN classifier searches for the k objects in the sample space that are 
closest to it and assigns the class based on the most common class label among them (Bhavsar and Ganatra 
2012). If the value of k is too small, the k-NN classifier may be prone to overfitting due to noise in the training 
data set. On the other hand, if k is too large, the nearest neighbor classifier might misclassify the test example 
because the nearest neighbor list may contain data points that are far from the neighborhood. A value of k=1 
is called nearest neighbor classification (Jadhav and Channe 2016). Model comparison was performed using 
the six following criteria. First, Area Under the Curve (AUC) is a criterion for measuring the performance of 
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classification models. It represents the area under the Receiver Operating Characteristic (ROC) curve. AUC 
takes a value between 0 and 1 and indicates how well the classifier is performing. A value close to 1 indicates 
high accuracy, while a value close to 0.5 corresponds to random classification and indicates low model 
performance. Second, Classification Accuracy (CA) is a commonly used criterion for measuring the accuracy 
of classification models and represents the model's ability to classify correctly. It is calculated by dividing the 
total number of correctly classified examples by the total number of examples, ranges from 0% to 100%. A CA 
of 0% means that the model has not made any correct classifications, while a CA of 100% indicates that the 
model has classified all instances correctly. In general, a CA value above 80% is considered sufficient. Third, 
F1 score is the harmonic mean of a classification model's precision and recall measurements. Precision 
measures the ratio of true positive predictions to the overall prediction, and recall measures the rate of true 
positive predictions detected. The F1 score effectively measures the accuracy of the model by calculating these 
two criteria together. The F1 score takes a value between 0 and 1. The higher the value, the better the 
performance of the model. Fourth, Precision measures the ratio of truly positive predictions to the overall 
prediction. This evaluates how accurately the classifier identifies positive examples. Precision takes a value 
between 0 and 1, and a higher value indicates how accurately the model predicts positive classes. Fifth, Recall 
is a criterion for measuring the performance of a classification model and indicates how accurately the model 
detects true positives. Recall takes a value between 0 and 1, and a higher value indicates how accurately the 
model detects true positives. Finally, specificity typically is defined as the ability of a screening test to detect 
a true negative, based on the true negative rate, and to correctly exclusion of irrelevant MTs (Trevethan 2017).  

3. Results 

Morphological breed discrimination in honeybees is important for improving productivity, disease 
resistance, climate adaptation, and behavioral traits in beekeeping. Also, it is vital in determining genetic 
diversity and maintaining biological diversity worldwide. The means and standard deviations for seventeen 
different MTs of seven bee breeds used in the study were presented (Table 1). Table 1 shows an extensive 
comparison of different traits in different bee breeds. The fact that the scutellum color (3.60±0.52 pt) and TC-2 
(9.0±0.0 pt) are higher in the Kerkuk breed than in other breeds indicates a distinctive trait of this breed. 
Conversely, TC-4 was lower in the Caucasian hybrid (1.19±0.89 pt) and Pure Anatolian (1.2±0.78 pt) breeds. It 
was determined that Italian hybrid bees had higher values in terms of LW (8.65±0.17 mm) and WW (2.97±0.08 
mm). These various values may indicate specific traits or deficiencies of these breeds compared to others. 
Overall, the data shows significant differences in the traits of different bee breeds, highlighting the diversity 
and different traits of each bee breed. 

In the present study, it can be seen that there are differences between the breeds in terms of the mean 
values of the MTs. It is noteworthy that SC and TC-2 are higher in the Kerkuk breed compared to other breeds. 
The observed differences in LTI, wing dimensions and CI suggest differences in flight abilities and foraging 
behavior between the breeds. Additionally, WV and wing vein angles are important traits that indicate the 
structural integrity and aerodynamics of the wings and are critical for efficient flight and maneuverability. 
The measurements of LTO and LG as well as LPR and LPM provide insights into the nutritional mechanisms 
and possible flowering preferences of the breeds. Morphological distinctions between bee breeds utilized in 
the current population could be regarded as an important gene pool for pollination efficiency, nectar 
collection, maintenance of ecological balance and sustainability of biodiversity. Gençer and Günbey (2020) 
reported that there were statistically significant differences between bees in the Caucasian, Yığılca and Korgan 
groups in terms of LTO, WW, LW and CI (P<0.001). Same researchers stated that the Caucasian breed is higher 
in LTO, but lower in other traits than other groups. Kambur and Kekeçoğlu (2018) found that the average of 
J10, B4, A4, and E9 vein angles were 53.86±0.09, 101.75±0.11, 33.69±0.05 and 19.22±0.03, respectively. 
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Table 1. The means and standard deviations of morphological traits of breeds 

Traits 
Breeds 

Mean Carniolan 
hybrid 

Pure 
Anatolian 

Caucasian 
hybrid 

Italian hybrid 
Anatolian 
hybrid 

Carpathian 
hybrid 

Kerkuk 

SC (pt) 1.58±1.31 1.33±1.18 1.53±1.28 2.35±1.54 1.056±1.06 1.27±1.34 3.60±0.52 1.58±1.33 
TC-2 (pt) 6.92±2.39 2.67±2.19 4.8±3.35 6.82±3.21 4.17±3.26 4.83±3.70 9.0±0.0 4.99±3.39 
TC-4 (pt) 1.75±1.06 1.2±0.78 1.19±0.89 1.94±1.44 1.5±0.99 2.03±1.07 1.6±0.70 1.37±0.98 
LTI (mm) 3.08±0.06 3.07±0.06 3.06±0.09 3.1±0.10 3.05±0.08 3.09±0.08 2.9±0.08 3.06±0.09 
LW (mm) 8.64±0.10 8.56±0.12 8.52±0.20 8.65±0.17 8.47±0.24 8.43±0.14 8.49±0.21 8.52±0.19 
WW (mm) 2.98±0.09 2.97±0.05 2.93±0.10 2.97±0.08 2.92±0.07 2.9±0.06 3.01±0.08 2.94±0.09 
CI (mm) 2.51±0.36 2.26±0.39 2.25±0.41 2.36±0.53 2.2±0.30 2.36±0.37 2.74±0.61 2.29±0.42 
WV-a (mm) 0.53±0.05 0.52±0.05 0.52±0.05 0.52±0.06 0.51±0.03 0.53±0.04 0.55±0.03 0.52±0.05 
WV-b (mm) 0.21±0.02 0.23±0.03 0.23±0.03 0.23±0.03 0.24±0.03 0.23±0.02 0.21±0.04 0.23±0.03 
J10 (°) 54.69±5.16 51.47±3.38 52.6±3.99 52.09±4.29 50.55±2.97 50.63±3.64 52.25±1.78 52.28±3.96 
B4 (°) 105.94±5.31 97.75±5.58 102.44±6.65 102.99±5.11 99.56±5.38 105.19±6.97 106.65±4.07 102.62±6.58 
A4 (°) 31.23±1.77 33.81±2.44 31.37±3.10 31.14±2.54 32.5±2.09 31.51±5.77 30.95±1.43 31.53±3.31 
E9 (°) 20.96±1.25 17.9±1.29 19.42±1.53 19.84±1.33 19.72±1.23 20.47±1.46 22.08±1.38 19.63±1.62 
LTO (mm) 6.01±0.56 5.67±0.65 5.9±0.60 6.01±0.53 6.03±0.58 6.1±0.45 5.7±0.55 5.92±0.58 
LG (mm) 3.47±0.49 3.25±0.52 3.41±0.50 3.48±0.41 3.56±0.48 3.55±0.38 3.32±0.44 3.43±0.48 
LPR (mm) 0.48±0.06 0.53±0.04 0.48±0.13 0.5±0.05 0.51±0.04 0.51±0.05 0.41±0.09 0.49±0.11 
LPM (mm) 2.06±0.10 1.89±0.16 2.01±0.19 2.04±0.14 1.97±0.15 2.04±0.12 1.98±0.11 2.01±0.17 

SC: Scutellum color; TC-2: Second abdominal tergit color; TC-4: Fourth abdominal tergit color; LTI: Length of the tibia; LW: Length of the wing; WW: Width of the wing; CI: 
Cubital index; WV-a: Width of the vein-a; WV-b: Width of the vein-b; J10, B4, A4 and E9: Wing vein angles; LTO: Length of the tongue; LG: Length of the glossa; LPR: Length of 
the prementum; LPM: Length of the postmentum; pt: Point; mm: Millimeter; °: Angle degree 
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Table 2. Classes assigned to bee breeds by different classification models 

Models Breed 
Predicted 

Total 
1 2 3 4 5 6 7 

SVM 
Actual 

1 2 0 25 0 0 0 0 27 
2 0 0 23 0 0 0 0 23 
3 0 0 271 0 0 0 0 271 
4 0 0 20 0 0 0 0 20 
5 0 0 21 0 0 0 0 21 
6 0 0 29 0 0 3 0 32 
7 0 0 4 0 0 0 6 10 

Total 2 0 393 0 0 3 6 404 

RF 
Actual 

1 22 0 5 0 0 0 0 27 
2 0 22 1 0 0 0 0 23 
3 0 0 271 0 0 0 0 271 
4 0 0 5 15 0 0 0 20 
5 0 0 3 0 18 0 0 21 
6 0 0 6 0 0 26 0 32 
7 0 0 1 0 0 0 9 10 

Total 22 22 292 15 18 26 9 404 

ANN 
Actual 

1 12 0 15 0 0 0 0 27 
2 1 7 15 0 0 0 0 23 
3 2 2 264 0 2 0 1 271 
4 0 0 18 2 0 0 0 20 
5 0 0 16 0 4 1 0 21 
6 0 0 23 0 2 7 0 32 
7 0 0 2 0 0 0 8 10 

Total 15 9 353 2 8 8 9 404 

NB 
Actual 

1 20 1 2 0 0 0 4 27 
2 0 18 3 1 0 1 0 23 
3 15 29 135 26 26 13 27 271 
4 0 3 1 10 1 2 3 20 
5 0 2 2 1 15 1 0 21 
6 1 2 3 4 5 13 4 32 
7 0 0 0 0 0 0 10 10 

Total 36 55 146 42 47 30 48 404 

k-NN 
Actual 

1 17 0 9 0 0 0 1 27 
2 1 9 13 0 0 0 0 23 
3 7 7 256 0 0 1 0 271 
4 2 1 13 3 0 0 1 20 
5 3 2 14 0 2 0 0 21 
6 1 1 25 0 0 5 0 32 
7 1 0 3 1 0 0 5 10 

Total 32 20 333 4 2 6 7 404 

Kekeçoğlu et al. (2023) found that the average J10, B4, A4, and E9 vein angles were 53.63±0.80, 99.63±1.16, 
33.78±0.49 and 19.87±0.33, respectively. Cariveau et al. (2018) found that the average LG and LPR were 2.05 
mm and 1.57 mm. The results of the current study were found to be generally similar to Gençer and Günbey 
(2020) and different from Kambur and Kekeçoğlu (2018). However, the current study was found to be higher 
than Kekeçoğlu et al. (2023) and Cariveau et al. (2018) in terms of B4 vein angle and LG, respectively, and 
lower than Cariveau et al. (2018) in terms of LPR. Furthermore, Souza et al. (2002) reported that there were 
statistically significant correlations between tibia width (0.46), LTI (0.55), and LG (0.41) with honey production. 
Zemskova et al. (2020) stated that the necessity for thorough monitoring of honeybee MTs arises from the 
declining bee populations and the reduced marketability of apiaries. When the results of the current study are 
evaluated together with the literature, it becomes evident that identifying and classifying the MTs of bees is 
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important for the sustainability of the bee industry and genetic resources, as well as for increasing productivity 
per colony. 

In addition, the classification of bee breeds was carried out and presented using some data mining 
algorithms (Table 2). A matrix showed how each model classified the different bee breeds (numbered 1 to 7). 
In these matrices, the actual and model-predicted breed class is in the rows and columns, respectively. The 
values in each cell of the matrix represent the frequency with which the model predicted each actual bee breed 
class as a certain class. For instance, in the case of the SVM model, out of the bees that truly belonged to breed 
class “1”, the model predicted “1” for two bees and “3” for twenty-five bees. Comparing the number of 
samples correctly assigned to each class shows the classification success of the models. This table can be 
considered as an accuracy matrix that shows how accurately different data mining algorithms classify bee 
breeds. This analysis can be used to determine which model is more effective in automatically classifying bee 
breeds. 

After the classification analysis, model fit criteria were used to evaluate the success of the models. The 
evaluation metrics for comparison of the models are presented in Table 3. Table 3 compares the performance 
metrics of various machine learning models SVM, RF, ANN, NB, and k-NN by their AUC, CA, F1, Precision, 
Recall and Specificity values.  

In addition, Figure 2 is provided to facilitate a deeper comprehension of the classification performance of 
the models. Figure 2 indicate the models’ performances and predictions. RF model is found to be most 
efficient, with the highest AUC values of 0.998, indicating superior ability in distinguishing between breeds. 
Additionally, it has the CA of 0.948 and an impressive F1 score of 0.946, highlighting its balanced precision 
and recall. The excellence of this model indicates its robustness in tackling complex classification tasks in 
beekeeping research. Conversely, NB model is identified as the least effective model, as evidenced by the 
lowest CA of 0.547 and a modest AUC of 0.853. Despite its simplicity and ease of implementation, the 
performance of the NB model highlights limitations in addressing the intricacies of bee classification, 
particularly in scenarios that require fine-grained differentiation between similar species. The SVM and k-NN 
models exhibit commendable performance with AUC values of 0.950 and 0.919, respectively, positioning them 
as viable alternatives for certain applications. However, they do not exceed the overall effectiveness of the RF 
model. Although the ANN model shows potential with an AUC of 0.905, it falls short of expectations 
compared to RF in terms of CA and F1 score, suggesting that further optimization is required to improve 
classification accuracy. 

Table 3. The evaluation metrics used for model comparison 

Model AUC CA F1 Precision Recall Specificity 
SVM 0.950 0.698 0.589 0.633 0.698 0.385 
RF 0.998 0.948 0.946 0.952 0.948 0.894 
ANN 0.905 0.752 0.703 0.766 0.752 0.549 
NB 0.853 0.547 0.584 0.744 0.547 0.922 
k-NN 0.919 0.735 0.688 0.750 0.735 0.607 

AUC: Criterion for measuring the performance of classification models; CA: Criterion for measuring the accuracy of 
classification models; F1: Harmonic mean of a classification model's precision and recall measurements; Precision: 
Measures the ratio of truly positive predictions to the overall prediction; Recall: Criterion indicates how accurately the 
model detects true positives; Specificity: Criterion indicates how accurately the model detects true negatives 
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Figure 2. Evaluation of machine learning models in bee classification 

AUC represents the area under the ROC curve, indicating the balance between sensitivity and specificity 
of a classification model. A higher AUC value, closer to 1, signifies a better balance and, consequently, a more 
accurate classification. Among these models, RF exhibited the highest AUC value (0.998), indicating its 
superior performance in classifying bee breeds based on their MTs. Conversely, NB demonstrated the lowest 
AUC value (0.853), suggesting a comparatively lower accuracy in classifying bee breeds. These results 
highlight that the RF was the most effective model for classifying bee breeds. CA calculates the ratio of correct 
predictions to the total number of samples and could be misleading for imbalanced class data. Since CA 
considers total correct predictions rather than distinguishing between classes, it can lead to erroneous 
interpretations. These values indicate that, in classifying bee breeds based on their MTs, RF demonstrated 
superior accuracy, outperforming other models, whereas NB exhibited comparatively lower accuracy. In this 
study, despite the CA determined by the SVM model being lower than the ANN model, the AUC value was 
found to be higher for the ANN model. This situation underscores the importance of not relying solely on CA 
as a singular criterion for evaluation. Although the SVM model made fewer correct predictions, it better 
explained the differences between bee breeds. This observation highlights that the performance of the model 
is not solely contingent on the number of correct predictions. The F1 score is a balanced measure that takes 
precision and recall into account and is calculated using the harmonic mean of these two metrics. A high F1 
score plays a crucial role in distinguishing true positives (correct identification of the MTs under 
consideration) from true negatives (correct exclusion of irrelevant MTs). When false positives (misclassifying 
non-relevant traits as relevant) and false negatives (misclassifying relevant traits as not relevant) are of equal 
importance, the F1 score becomes a significant metric. In the context of beekeeping, the F1 score is of great 
importance, especially in applications such as selection processes that influence the efficiency of bee breed. 
According to the F1 score, RF exhibited the highest classification accuracy, while NB demonstrated the lowest 
performance among the models. Therefore, when it is essential to precisely differentiate between the MTs of 
bee breeds, choosing the model with the highest F1 score is crucial. The precision metric signifies the 
proportion of samples predicted as positive (possessing a specific feature) by the model that are actually 
positive. This measure holds particular importance in scenarios where false positive predictions (predicting a 
feature that is not actually present as present) carry significant implications. In the context of apiculture, when 
selecting colonies based on the MTs of disease-resistant bee breeds, misclassifying non-disease-resistant bees 
as disease-resistant (resulting in false positive predictions) can markedly diminish the efficacy of the selection 
process. Consequently, RF exhibited the highest accuracy in identifying colonies with the desired MTs, 
whereas SVM demonstrated the lowest performance in this aspect. The recall metric indicates the ratio of true 
positives (correctly identified traits) to all actual positives. If identifying the presence of a specific trait (false 
negative prediction) holds significance, the recall value becomes crucial. For instance, in apiculture, when 
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selecting hygienic colonies based on MTs, including non-hygienic colonies in the selection can increase the 
colony's susceptibility to diseases, making false negative predictions important in this context. Therefore, it is 
essential to consider a model with a high recall value. Consequently, the RF model, with the highest recall 
value, will be more effective in selecting hygienic colonies. The NB model, which yielded the lowest recall 
value, should not be considered due to the high likelihood of misclassifying non-hygienic colonies as hygienic 
ones. Significant differences have been found in the data mining algorithms used to classify breeds of bees 
based on their MTs. When all criteria used in the classification were evaluated together, it was found that the 
RF model achieved the highest values for all criteria and performed the best classification. The RF model is 
followed by ANN. On the other hand, the lowest ranking was generally achieved in the NB model, which 
consistently had the lowest values. The RF model has demonstrated superior performance in key metrics such 
as AUC, CA, F1 score, precision, and recall, establishing itself as an effective method for classifying bee breeds. 
However, other algorithms such as SVM, ANN, NB, and k-NN have shown lower and varying degrees of 
success in classification compared to the RF model. Rodrigues et al. (2022) reported that the SVM algorithm 
classified the forewings with an average accuracy of 86.6±6.9% across the 26 subspecies represented in the test 
data set, although the number of images used for classification was small and many of them were low quality. 
The same researchers found classification accuracy of 98.9%, 97.7%, 91.1%, 96.4%, and 95% for the Carniolan, 
Caucasian, Iberiensis (Spanish bee), Italian bee, and Mellifera subspecies, respectively. In the current study, 
the RF model showed the highest accuracy in classifying bees and was different from Rodrigues et al. (2022). 

4. Conclusions 

As a result, RF model is the most effective tool for classifying bee breeds within the evaluated dataset and 
offers a promising approach for researchers seeking to improve the sustainability and productivity of 
beekeeping through genetic and morphological analyses. While NB model is valuable for its computational 
efficiency, it requires careful application in this context due to its comparatively low performance. In addition, 
the present study demonstrates the possible applications and limitations of each algorithm in the context of 
classifying bee breeds based on their MTs. 
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