
ABSTRACT: The ruled surfaces, one of the areas of interest of differential geometry, have been one of the surface 
types studied by many mathematicians from the past to the present day. Similarly, some special curves which helix, 
slant helix, Bertrand curve, etc. are also the curve types discussed often by mathematicians. In this paper, it will be 
shown that striction lines of non-developable ruled surfaces are helix, slant helix, Bertrand or Mannheim curve in 
some special cases.

Keywords: Non-developable ruled surface, line of striction, helix, Bertrand curve, Mannheim curve.

ÖZET: Diferansiyel geometrinin ilgi alanlarından olan regle yüzeyler, geçmişten günümüze bir çok matematikçi 
tarafından çalışılan yüzey tiplerinden birisidir. Benzer şekilde helis, slant helis, Bertrand eğrisi gibi bazı özel 
eğriler de matematikçiler tarafından sıklıkla tartışılan eğri tipleridir. Bu makalede, bazı özel durumlarda açılabilir 
olmayan regle yüzeylerin striksiyon çizgilerinin helis, slant helis, Bertrand eğrisi ya da Mannheim eğrisi olduğu 
gösterilecektir.

Anahtar Kelimeler: Açılabilir olmayan regle yüzey, striksiyon çizgisi, helis, Bertrand eğrisi, Mannheim eğrisi.
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INTRODUCTION

It is known that if a surface is formed by 

the movement of a line, this surface is called the 

ruled surface. A ruled surface is the locus of a line 

depending on a parameter. We assume that this line 

does not have an envelope; hence the surface is 

non-developable (Kühnel, 2006). In other words, 

it is mean that a non-developable surface free 

of points of vanishing Gaussian curvature in a 

3-dimensional Euclidean space (Yoon, 2007).  We 

denote the Euclidean 3-space by 3E  and a regular 

parameter surface with the 

parameters u and v  in 3E  by ( , )X u v . Let

( , ) ( ) ( )X u v a u vb u= +   (1)

 2 

 

assume that this line does not have an envelope; hence the surface is non-developable 25 

(Kühnel, 2006). In other words, it is mean that a non-developable surface free of points 26 

of vanishing Gaussian curvature in a 3-dimensional Euclidean space (Yoon, 2007).  27 

We denote the Euclidean 3-space by 3E  and a regular parameter surface with the  28 

parameters u and v  in 3E  by ( , )X u v . Let 29 

( , ) ( ) ( )X u v a u vb u     (1) 30 

be a non-developable ruled surface in 3E  with  2 1b u  and the parameter u  is the arc 31 

length parameter of  b u  as a unit spherical curve in 3E  (Liu et al., 2014; Yu et al., 32 

2014). If    . 0a u b u   , base curve ( )a u  is striction line of ruled surface. Some 33 

special curves which are helix, slant helix, Bertrand and Mannheim curves are examined 34 

by the some authors. (Izumiya and Takeuchi, 2002; Liu and Wang, 2008; Yaylı and 35 

Saraçoğlu, 2012). 36 

MATERIAL AND METHOD 37 

Definition 2.1.  A curve   with   0s  is defined as a cylindrical helix if the tangent 38 

lines of the curve   creative a constant angle with a fixed direction.  39 

Proposition 2.1. A curve   with   0s  is a cylindrical helix if and only if 40 

  = .s constant

 
 
 

  (2) 41 

Here, if  s  and  s  are constant we call cylindrical helix a circular helix. 42 

Definition 2.2. A curve   with   0s  is defined as a slant helix if the principal 43 

normal lines of   creative a constant angle with a fixed direction. 44 
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be a non-developable ruled surface in 
3E  with 

( )2 1=b u  and the parameter u is the arc length 

parameter of ( )b u  as a unit spherical curve in 
3E  

(Liu et al., 2014; Yu et al., 2014). If ( ) ( ). 0a u b'  u' = , 

 base curve ( )a u  is striction line of ruled surface. 

Some special curves which are helix, slant helix, 

Bertrand and Mannheim curves are examined 

by the some authors. (Izumiya and Takeuchi, 

2002; Liu and Wang, 2008; Yaylı and Saraçoğlu,  

2012).

MATERIAL AND METHOD

Definition 2.1.  A curve β with ( ) 0≠sκ  is defined 

as a cylindrical helix if the tangent lines of the curve 

β  creative a constant angle with a fixed direction. 

Proposition 2.1. A curve β with ( ) 0≠sκ  is a 

cylindrical helix if and only if

Here, if ( )sκ  and ( )sτ  are constants we call a 

circular helix.

Definition 2.2. A curve β  with ( ) 0≠sκ  is 

defined as a slant helix if the principal normal 

lines of β  creative a constant angle with a 

fixed direction.
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Proposition 2.2. Let   be an unit speed space curve with   0s . Then,   is a slant 45 

helix if and only if 46 

 
 

 
2

3
2 2 2

=s s 
 

   
     

   (1) 47 

is a constant function. 48 

Definition 2.3. A curve 3: I E   with   0s  is defined as a Bertrand curve if there 49 

is a curve 3: I E   under the condition that the principal normal lines of   and   at 50 

Is  are equal. 51 

Proposition 2.3. Let   be a space curve with   0s  and   0s . Then,   is a 52 

Bertrand curve if and only if 53 

        ' ' ( ) ' = 0A s s s s s        (2) 54 

such that 0A  and A . Here, = ( ) ( )s An s    is Bertrand mate of  . 55 

Definition 2.4. A curve 3: I E   with   0s  is defined as a Mannheim curve if 56 

there is a curve 3: I E   such that the principal normal lines of   with the binormal 57 

lines of   at Is  are equal. 58 

Proposition 2.4. A space curve in 3E  is a Mannheim curve if and only if 59 

 2 2= ,c     (3) 60 

where c  is a nonzero constant and  and   are curvature and torsion of curve, 61 

respectively. 62 

Definition 2.5. A ruled surface is defined by transformation 63 

3:),( EIxEbaX   64 
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(3)

is a constant function.

Definition 2.3. A curve 3: I Eβ �  with ( ) 0≠sκ  

is defined as a Bertrand curve if there is a curve 
3: I Eβ →  under the condition that the principal 

normal lines of β  and β  at Is∀ ∈  are equal.

Proposition 2.3. Let β  be a space curve with 

( ) 0≠sκ  and ( )sτ . Then, β  is a Bertrand curve if 

and only if  

 3 
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  (4)

such that 0≠A  and RA ∈ . Here, = ( ) ( )s An sβ β +  

is Bertrand mate of β .

Definition 2.4. A curve 3: I Eβ �  with ( ) 0≠sκ  

is defined as a Mannheim curve if there is a curve 
3: I Eβ →  such that the principal normal lines 

of β  with the binormal lines of β  at Is∀ ∈  are 

equal.

Proposition 2.4. A space curve in 3E  is a 

Mannheim curve if and only if  

where c  is a nonzero constant and κand τ  are curvature and torsion of curve, respectively.

Definition 2.5. A ruled surface is defined by transformation

3:),( EIxEbaX →

( , ) ( , )( , ) = ( ) ( )u v X a b u v a u vb u→ + ,  (6)

( )2 2= ,c +κ κ τ   (5)
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where 33 :,: EIbEIa →→  are differentiable 

transformations and I  is an open interval. )(ua  

and )(ub  are called base curve and  director curve, 

respectively. If )(ub  is a constant, ruled surface is 

called as a cylinder.

It is known that if Gaussian curvature is zero, 

the ruled surface is developable ruled surface. In 

addition, it is mean that a non-developable ruled 

surface free of points of vanishing Gaussian 

curvature.

Definition 2.6. Suppose that )()(=),( uvbuavuX +  

is a non-developable ruled surface in 3E . We 

assume that )(ub  is a unit spherical curve in 3E

such that ( ) 1=2 ub  and the parameter u  is the 

arc length parameter of )(ub  and base curve 

)(ua  is the striction line of the non-developable 

ruled surface ),( vuX . In this case, if we write as 

( ) ( ) ( ) ( )= , =x u b u x u uα'   and  ( ) ( ) ( )uxuuy ´α= , 

the spherical Frenet formulas of the curve )(ub  can 

be given by

 4 
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in 3E . We assume that )(ub  is a unit spherical curve in 3E such that   1=2 ub  and the 73 

parameter u  is the arc length parameter of )(ub  and base curve )(ua  is the striction line 74 

of the non-developable ruled surface ),( vuX . In this case, if we write as 75 

       = , =x u b u x u u , and      uxuuy = , the spherical Frenet formulas of the 76 

curve )(ub  can be given by 77 

   = ,x u u    (5) 78 

       = ,gu x u k u y u     (6) 79 

     = gy u k u u  ,   (7) 80 

where  uk g  is called the spherical curvature function and       uyuux ,,  is called the 81 

spherical Frenet frame of the spherical curve )(ub  (Liu et al., 2014; Yu et al., 2014). 82 

Definition 2.7. Suppose that )()(=),( uvbuavuX   is a non-developable ruled surface 83 

and )(ua  is the striction line of ),( vuX  under the conditions 84 

         =a u u x u u y u    and u  is the arc length parameter of )(ub . Let  ukg  be 85 

the spherical curvature function of )(ub , then ),( vuX  can be given by 86 

(7)

(8)

(9)

where ( )ukg  is called the spherical curvature func-

tion and ( ) ( ) ( ){ }uyuux ,,α   is called the spherical 

Frenet frame of the spherical curve )(ub  (Liu et 

al., 2014; Yu et al., 2014).

Definition 2.7. Suppose that 

)()(=),( uvbuavuX +  is a non-developable ruled 

surface and )(ua  is the striction line of ),( vuX  under 

the conditions ( ) ( ) ( ) ( ) ( )=a u u x u u y uλ μ' +  and 

u  is the arc length parameter of )(ub . Let ( )ukg
 

be the spherical curvature function of )(ub , then 

),( vuX  can be given by ( ) ( ) ( ){ }uuukg μλ ,,  up to 

a transformation in 3E . Here, the functions ( )ukg
,  

( )uλ  and ( )uμ  are defined as structure functions 

of ),( vuX  in 3E  (Liu et al., 2014; Yu et al., 2014).

Definition 2.8. Suppose that 

)()(=),( uvbuavuX +  is a non-developable ruled 

surface in 3E  and )(ua  is the striction line of ),( vuX  

under the condition ( ) ( ) ( ) ( ) ( )uyuuxuua μλ +=' . 

Here, ( ) ( ) ( ) ( ){ }uyubuxu ,=,α  is the spherical 

Frenet frame of the spherical curve )(ub  and the 

parameter u  is the arc length parameter of )(ub . 

We assume that ( ) 0≠uλ , then ),( vuX  is described 
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 
 
 

 and consider constant=

 , we get 144 

 
 

 
 

22 2

2 22 2

g g
g g

g

k k
A k k

k

   
  

   

  
   

 
 (26) 145 

= g

g

k
A

k

 


 



,  (27) 146 
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where u  is the arc length parameter of )(ua . Since A  is a non-zero constant,   and   147 

are constants. 148 

In this case, we can write the following theorem: 149 

Theorem 3.3. Suppose that )()(=),( uvbuavuX   is any non-developable ruled surface 150 

in 3E  and )(ua  is the striction line of ),( vuX  under the condition 151 

     =a u x u y u   . )(ua  is a Bertrand curve if and only if   and   are constants, 152 

where u  is arc length parameter of )(ua . 153 

Corollary 3.1. The striction line )(ua  of ),( vuX  is a Bertrand curve if and only if 154 

=A . 155 

Proof: If   and   are considered constants in ‘‘Eq. 29.’’, it can be easily obtained 156 

=A  157 

It is just known that a space curve in 3E  is a Mannheim curve if ‘‘Eq. 5.’’ is provided. 158 

If we suppose that 

  is constant and use ‘‘Eq. 19.’’, ‘‘Eq. 20.’’ and ‘‘Eq. 21.’’, we 159 

obtain 160 

 2 2= c      (28) 161 

2

2 2 2 2

1 g gk k
c

 
   
 


 

   (29) 162 

21
g

g

k
c

k
 




,  (30) 163 

where 0,c c IR  . 164 

Hence, we can give the following theorem: 165 

(30)

(31)

(32)
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Here, if we choose 
 

3
2 2

=
1

g

g

k
c

k




 and solve this differential equation, we obtain 132 

2
= ,( , )

1
g

g

k
cu d c dconstant

k



.  (23) 133 

Therefore, we can say the following theorem: 134 

Theorem 3.2. Suppose that )()(=),( uvbuavuX   is a non-developable ruled surface in 135 

3E  and )(ua  is the striction line of ),( vuX  under the condition 136 

     = .a u x u y u    )(ua  is a slant helix if and only if constant=

  and 137 

,=
1 2

dcu
k

k

g

g 


 where  ukg ,  u  and  u  are structure functions of ),( vuX  and 138 

dc, are constants. 139 

It is know that a space curve is a Bertrand curve under the condition that 140 

  =A       ,  (24) 141 

where A  is nonzero a real number. From ‘‘Eq. 26.’’,  we can write 142 

2 =A  


   
 

,  (25) 143 

Here, if we use value in ‘‘Eq. 23.’’ instead of 


 
 
 

 and consider constant=

 , we get 144 

 
 

 
 

22 2

2 22 2

g g
g g

g

k k
A k k

k

   
  

   

  
   

 
 (26) 145 

= g

g

k
A

k

 


 



,  (27) 146 (29)

where u  is the arc length parameter of )(ua . Since 

A  is a non-zero constant, λ  and μ  are constants.

In this case, we can write the following theorem:

Theorem 3.3. Suppose that )()(=),( uvbuavuX +  

is any non-developable ruled surface in 3E  and )(ua  

is the striction line of ),( vuX  under the condition 

( ) ( ) ( )=a u x u y uλ μ' + . )(ua  is a Bertrand curve 

if and only if λ  and μ  are constants, where u  is 

arc length parameter of )(ua .

Corollary 3.1. The striction line )(ua  of ),( vuX  

is a Bertrand curve if and only if λ=A .

Proof: If  λ  and μ  are considered constants in 

‘‘Eq. 29.’’, it can be easily obtained λ=A .

It is just known that a space curve in 3E  is a 

Mannheim curve if ‘‘Eq. 5.’’ is provided. If we 

suppose that 
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where u  is the arc length parameter of )(ua . Since A  is a non-zero constant,   and   147 

are constants. 148 

In this case, we can write the following theorem: 149 

Theorem 3.3. Suppose that )()(=),( uvbuavuX   is any non-developable ruled surface 150 

in 3E  and )(ua  is the striction line of ),( vuX  under the condition 151 

     =a u x u y u   . )(ua  is a Bertrand curve if and only if   and   are constants, 152 

where u  is arc length parameter of )(ua . 153 

Corollary 3.1. The striction line )(ua  of ),( vuX  is a Bertrand curve if and only if 154 

=A . 155 

Proof: If   and   are considered constants in ‘‘Eq. 29.’’, it can be easily obtained 156 

=A  157 

It is just known that a space curve in 3E  is a Mannheim curve if ‘‘Eq. 5.’’ is provided. 158 

If we suppose that 

  is constant and use ‘‘Eq. 19.’’, ‘‘Eq. 20.’’ and ‘‘Eq. 21.’’, we 159 

obtain 160 

 2 2= c      (28) 161 

2

2 2 2 2

1 g gk k
c

 
   
 


 

   (29) 162 

21
g

g

k
c

k
 




,  (30) 163 

where 0,c c IR  . 164 

Hence, we can give the following theorem: 165 

 is constant and use ‘‘Eq. 19.’’, 

‘‘Eq. 20.’’ and ‘‘Eq. 21.’’, we obtain

Theorem 3.4. Suppose that )()(=),( uvbuavuX +  

is a non-developable ruled surface in 3E  and 

)(ua  is the striction line of ),( vuX  under the 

condition
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Theorem 3.4. Suppose that )()(=),( uvbuavuX   is a non-developable ruled surface in 166 

3E  and )(ua  is the striction line of ),( vuX  under the condition 167 

     = .a u x u y u    )(ua  is a Mannheim curve if and only if constant=

  and 168 

21
=

g

g

k
k

c


 
, where  ukg ,  u  and  u  are structure functions of ),( vuX  and c is a 169 

non-zero constant. 170 

CONCLUSION 171 

In this paper, firstly, we gave definitions of helix, slant helix, Bertrand and Mannheim 172 

curve. Then, non-developable ruled surfaces and striction lines of non-developable ruled 173 

surfaces was defined by means of structure functions. Finally, we showed that under 174 

certain conditions, striction lines of non-developable ruled surfaces are helix, slant 175 

helix, Bertrand or Mannheim curve. 176 
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