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Abstract 

In this paper, we introduce functionally generalized normed spaces as a generalization of Gmetric spaces and

normed spaces. Some constructions are described within this structure and some related results are obtained. 
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1 Introduction and Preliminaries 

As a result of the strong link between the theories of met-

ric spaces and normed spaces, there has been many foun-

dations based on metric spaces and later adapted to nor-

med structures or vice versa. Among many others, genera-

lized metric spaces, widely known as G-metric spaces, 

which were first defined by Mustafa and Sims [1] as an al-

ternative to D metric spaces [2]; have been assumed to 

have connection to some normed-type structure, which 

would be called as generalized normed space. 

So far, various generalized normed space definitions were 

given [3,4]. There are some possible different approaches 

to G normed spaces, change the binary operation of the

linear space to a special type of trinary operation, to consi-

der a norm-like function with two variables or to give an 

additional algebraic operation on real numbers.  

In this study we introduce generalized pseudometric spa-

ces, then we give a definition of generalized normed 

space, which is based on a type of norm functional with 

two variables, without giving any additional algebraic 

structure, such that the theory of normed spaces can be 

embedded into the theory of generalized normed spaces 

and every generalized normed space will have an underl-

ying generalized metric space structure. We also define 

GBanach spaces and construct product spaces, quoti-

ent spaces and completions within the new structure. 
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In 2006, Mustafa and Sims introduced the notion of gene-

ralized metric space, as an alternative to the notions of 

2metric space [5] and D metric space [2]. We give 

an equivalent definition as follows: 

Definition 1.1: [1] A function :G X X X   ,

where X  is a nonempty set, is called a generalized met-

ric, or Gmetric, on the set X , if the following are sa-

tisfied for all , , ,a x y z X . 

( 0)G    , , 0G x y z   implies x y z  , 

( 1)G     , , 0G x x x  , 

( 2)G y z implies    , , , ,G x x z G x y z  , 

( 3)G    Symmetry in all variables, that is  

     , , , , , ,G x y z G x z y G y x z   

     , , , , , ,G y z x G z x y G z y x    

( 4)G        , , , , , ,G x y z G x a a G a y z 

A generalized metric space, or Gmetric space, is a pair

 , ,X G  where G  is a Gmetric on .X  A Gmet-

ric space  ,X G  with the property that

   , , , ,G x y y G y x x  for all ,x y X is called

symmetric. 

Definition 1.2: [1] Let  ,X G  be a Gmetric space,

0x X  and 0r  . Then the G ball with center 0x

and radius  r  is defined as

   0 0, : { : , , }B x r y X G x y y r   .

Every Gmetric G , generates a metric Gd . For consis-

tency, we consider it, among other equivalent forms, as 

     
1

, , , , ,
2

Gd x y G x y y G x x y    . 

The family of all G balls in a Gmetric space

 ,X G  forms a base for a topology on X . This topo-

logy is the same as the topology corresponding to the met-

ric Gd  [1].

Formerly G pseudometric spaces were defined with the

name pseudo- Gmetric space in [6]. While the axioms

 2G  and  3G  of Definition 1.1 in [6] together force 

the structure to be a Gmetric space, the purpose of the

definition is clear and since  2G  was never used there,

all results obtained were true. However for completeness, 

here we redefine the same concept with alternative axioms 

and another name. 

Definition 1.3: Let X  be a nonempty set. A function 

:G X X X    satisfying the axioms (G1) ,

(G2) , (G3)  and (G4)  in Definition 1.1 is called a ge-

neralized pseudometric, or G pseudometric, on the set

X . A G pseudometric space is a pair  ,X G  , where

G  is a G pseudometric on X .

2 G normed spaces

Let X  be any semigroup with the identity 0 , and

, : X X     be any mapping. In this article, we 

consistently use the notation : ,0 ,    that is 

,0a a  for all a X  . 

Definition 2.1: Let X  be a real vector space and 

, : X X     be a mapping satisfying the fol-

lowing for all , ,a b c X  and  . 
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(N1) ,a a b

(N2) , ,a b c a b c  

(N3) a a     

(N4) , ,

(N5) , ,

a b b a

a b a a b



 

Then ,   is called a generalized seminorm, or G se-

minorm on X . If additionally 

     (N0)   , 0 0a b a b   

is satisfied, then ,   is called a G norm. A G

(semi)normed space is a pair  , , ,X    where ,    is a 

G (semi)norm on X .

To avoid confusion with older definitions, we also use the 

name "functionally generalized normed space". 

Example 2.2: Let  ,X   be a (semi)normed space,

then it is easy to show that the three mappings 

, ,  , ,  , :
r t e

X X         defined as 

2 2 2 1/2

, max{ , , },

1
, ( )

2

1
, ( )

2

r

t

e

a b a b a b

a b a b a b

a b a b a b

 

   

   

for all , ,a b X  are G (semi)norms on ,X  such that

r t e
        . 

Example 2.3: Let G  be a symmetric G (pseudo)met-

ric space on a vector space ,X  with the properties  

   , , , ,G x a y a z a G x y z    ,

for all , , , ,x y z a X

   , , , ,G x y z G x y z     ,

for all , , ,  .x y z X    Then 

 , : ,  , , ,0X X a b G a b    

defines a G (semi)norm on X . In particular, to see

(N2)  and (N4)  note that   

     

   

, ,0 , , , ,0

,0,0 , ,0

G a b c G a b b b G b c

G a G b c

   

 

and 

     , ,0 0, , 0, ,G a b G b a a G a b a     .

Example 2.4: If p  and q  are G (semi)norms on ,X

and ,   then p q  and p  are G

(semi)norms on X . 

Example 2.5: In the Euclidean space
n

, consider two 

arbitrary points a  and b . If a , b  and the origin define

a triangle, then set ,
t

a b  equal to half of the perimeter 

of the triangle. If a , b  and the origin together define a

line, then let ,
t

a b  denote the maximum length of the 

line segments defined by these points. And if a  and b

are equal to the origin, then suppose that , 0
t

a b  . 

Then , t ‖ ‖  is a G norm on
n

. We call this the 

usual-triangular G norm on
n

. More generally, if p  

is any seminorm on a vector space ,X  then the p -trian-

gular G seminorm on X  is formulated as

1
, ( ( ) ( ) ( ))

2t
a b p a p b p a b    . 

In particular on , the usual-triangular G norm is defi-

ned as 
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 
1

,
2t

a b a b a b    , 

for all ,a b . 

Example 2.6 :  Let p  be a seminorm on a vector space 

.X  The p -rectangular G seminorm on X  is given

      , max , , .
r

a b p a p b p a b   

In particular, the usual-rectangular G norm on  is gi-

ven by  , max , , .
r

a b a b a b    

Example 2.7: For any given seminorm p , the p -elliptic 

G seminorm is defined as

2 2 2 1/21
, [ ( ) ( ) ( ) ]

2
e

a b p a p b p a b    . 

In particular, the usual-elliptic G norm on
n

 can be 

formulated as 

 2 2

1
,

n

i i i ie i
a b a b a b


   , 

where  1, , na a a  ,  1, , n

nb b b    and the 

usual-elliptic G norm on  is defined as 

2 2, .
e

a b a b ab    

In follows  is always assumed to have the usual-elliptic 

G norm on it.

Definition 2.8: A G (semi)norm ,   on ,X  with the 

following properties (N2 )  and (N3 ),
 which are 

stronger than (N2)  and (N3),  respectively, is called an 

equi- G (semi)norm on .X

(N2 ) , , ,a b c d a c b d      , 

for all , , ,a b c d X , 

(N3 ) , ,a b a b      for all ,a b X ,

 .

Example 2.9:  G (semi)normed in Examples 2.2, 2.5,

2.6 and 2.7 are always equi- G (semi)norms.

Proposition 2.10: If  , ,X    is a G seminormed

space, the following are true for all ,a b X

 

(a) 0 0,

(b) , ,

(c) , , ,

1
(d) , .

2

a a a

a b a b

a b a b a b





  

   

Proof: 

 

 

   

(a) 0 0 0 0.

(b) , , ,0 .

(c) , , ,

,

, , , .

1 1
(d) , ,

2 2

, 0,

a a

a a a a a a a

a b a a b b a a

b a b a a

b b a b a a b

a b a b a b

a b a b

   

   

         

    

   

  

  

0, .a b a b   

Proposition 2.11:  Let  , ,X    be a G (semi)nor-

med space. Then  ,
,X G

 
is a G (pseudo)metric

space on ,X  where 
,

:G X X X
 

    is given by 
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 ,
, , ,G x y z x y x z

 
    for all , ,x y z X . In 

addition, 
,

G
 

 is symmetric and  ,
, ,0 ,G a b a b

 


for all , .a b X   

Proof: Let , , ,x y z a X

 ,
(G1) , , 0,0 0.G x x x

 
    

   (G2)  From (N1)  and (N4)  we get 

 



,

,

, , 0,

, , , ).

G x x z x z x z

x y x z G x y z

 

 

   

   

    (G3)  By (N4)  we have 

   

   

, ,

, ,

, , , , ,

, , , ,

G x y z G x z y

G y x z G y z x

   

   





and 

   , ,
, , , ,G z x y G z y x

   
 . 

Also, 

 

   

 

,

,

, , ,

,

= ,

,

, ,

G x y z x y x z

x y x y x z

x y z y

y x y z

G y x z

 

 

  

    

 

  



and 

 

 

,

,

, , ,

,

,

,

, ,

G x y z x y x z

x z x y

x y z y

z x z y

G z x y

 

 

  

  

  

  



by Proposition 2.10 (c). 

   (G4)  Observe that 

     

   

   

,

, ,

, , ,

,

,

, , , , .

G x y z x y x y x z

x a a y z y

x a a y z y

G x a a G a y z

 

   

    

    

    

 

If, in addition ,    is a G norm, then (G0)  is obtai-

ned by 

 ,
, , 0 , 0

0 .

G x y z x y x z

x y x z x y z

 
    

       

Since 

 

 

,

,

, , ,

,

, , ,

G x y y x y x y

y x y x

G y x x

 

 

  

  



,
G

 
 is symmetric.

By Proposition 2.10 (c)  and (G3) , 

 ,
, ,0 ,G a b a b

 


for all ,a b X . 

Proposition 2.12 :  Let  , ,X     be a G (semi)nor-

med space. Then the induced functional : X  , de-

fined as 

,0a a  

for all ,a X  is a (semi)norm on .X

Proof: Follows directly from the definitions. 
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Proposition 2.12 and Example 2.2 together shows that, 

G (semi)normed space properly generalize (semi) nor-

med spaces. 

Every G seminormed space  , ,X    will be assumed

to have the topology of the corresponding seminormed 

space  ,X  . Also, since

     
, , ,

1
, [ , , , , ]

2

1
[ , 0, ]

2

Gd x y G x y y G x x y

x y x y x y

x y

     
 

    

 

by Proposition 2.10 (b)  and (N4) , the pseudometrics, 

obtained by the seminorm and the G pseudometric,

both corresponding to a fixed G seminorm, are same.

Since every G seminorm ,    defines a G pseudo-

metric 
,

G
 

 which also defines a pseudometric 
,Gd
 

 that

has an underlying topology
,Gd
 

, the theory of G se-

minormed spaces is only isometrically different from the 

theory of seminormed spaces, a similar case with the case 

of Gmetric spaces and metric spaces. So, many con-

cepts defined on topological, pseudometric, and G pse-

udometric spaces, are readily available on G normed

spaces. 

Definition 2.13: Let  
1

, ,X     and  
2

, ,Y    be two 

G seminormed spaces. A function :f X Y  is cal-

led G continuous if and only if it is continuous with

respect to the corresponding topologies. 

Definition 2.14: (i)  Let  , ,X     be a G seminor-

med space. A sequence  na  on X  is G convergent

to a point a X  if and only if it converges to the point

a , in the corresponding topological space. In that case we 

write   ,  limn n
n

a a a a   or simply lim na a . 

(ii)  Let  , ,X     be a G seminormed space. A

sequence  na  on X  is called GCauchy if and only

if it is a Cauchy sequence on the pseudometric space

,
( , )GX d

 
. 

(iii)  A G seminormed space  , ,X    is called

G complete if and only if every GCauchy sequence

on X  is G convergent.

3 GBanach Spaces

Now we are in a position to define generalized Banach 

spaces. 

Definition 3.1 : A complete G normed space is called a

GBanach space.

Proposition 3.2 : A G normed space  , ,X    is a

GBanach space if and only if  ,X   is a Banach

space. 

Proof: The topology induced by ,   is equal to the topo-

logy of the norm  and the definitions of G conver-

gence, GCauchy sequence and G completeness on

 , ,X    are equivalent to the definitions of conver-

gence, Cauchy sequence and completeness on  ,X  .

Proposition 3.3: Let  , ,X    be a G seminormed

space. Then ,   is jointly G continuous in both vari-

ables. 
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Proof: Since  ,
, , ,0a b G a b

 
  for all ,a b X , 

the 

proof follows from Proposition 8 in [1]. 

Definition 3.4 : Let 
1

( , , )X    and 
2

( , , )Y     be G

seminormed spaces, A function :f X Y  is called 

G bounded, if there exists a constant    such that

   
12

, ,f x f y x y   

for all ,x y X . 

Proposition 3.5 : A function 

1 2
: ( , , ) ( , , )f X Y      

between G seminormed spaces is G bounded if and

only if it is bounded with respect to the induced semi-

norms 
1
   and 

2
 . 

Proof:  If there exists constant    such that 

   
12

, ,f x f y x y   

 for all , ,x y X then 

     
2 2

1 1
.

,

,

f x f x f x

x x x 



   

Conversely, assume that 
1 2

: ( , ) ( , )f X Y     is bo-

unded by a constant . Then f is G bounded, since

for every ,x y X ,  

       
2 2 2

1 1 1

,

( ) 2 ,

f x f y f x f y

x y x y 

 

    

by Proposition 2.10 (d). 

Corollary 3.6 : Let  , ,X    be a G normed space.

Then a linear functional f on X (that is a function 

:f X   which is linear with respect to vector space 

structures) is G bounded if and only if it is G conti-

nuous. 

Proposition 3.7 : Let 
1

( , , )X    and 
2

( , , )Y     be 

GBanach spaces, and  ,B X Y  denote the set of all 

G bounded linear mappings from X to .Y  Then the

functions  

0
, : X X     and 

#
, : X X    

defined as follows are G norms on  ,B X Y such that 

 
0

( , , , )B X Y    and  
#

( , , , )B X Y    beGBa-

nach spaces. 

(a)

    0

12
, sup , : 1,  .f g f x g x x x X    

(b)

    #

12
, sup , : , 1,  , .f g f x g y x y x y X  

Proof: It is straightforward to show that 
0

,    and 
#

, 

are both G norms on  ,B X Y . Moreover noting that, 

by  1N , 1x   if and only if there exists a y X

such that , 1,x y   it is seen that 
0
  and 

#
  are both 

equal to the operator norm  on  ,B X Y  defined as

 
12

sup{ : 1,f f x x   },x X  

which makes  ,B X Y  complete [7] and thus G

complete with respect to
0

,   and
#

, .   
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Definition 3.8 : Let  , ,X    be a GBanach space.

Then X 
 denotes the set of all G continuous (or

equivalently, G bounded) linear functionals on X  and

 , ,X
    is called the dual space of X  if 

0
, ,


      and the equi-dual space of X  if 

#
, , .


      

4 Product of G Seminormed Spaces

Proposition 4.1: Let  , , ,  1,2, , ,i i
X i n     be 

G (semi)normed spaces, where 2.n   Consider set

1

n

i

i

X X


  

with the structure of product of real vector spaces .iX  

Then the functions 
0 1 2

, ,  , ,  , : ,X X       

defined as 

1
(a) , max ,i ir ii n

a b a b
 



1
(b) , ,

n

i it ii
a b a b




 
1/2

2

1
(c) , ,

n

i ie ii
a b a b


   for all 

   1 1, , , , ,n na a a b b b     in X  are G

(semi)norms on .X

Proof: Note that, in each case it is enough to prove for 

2.n   Other results follow from induction. Consider the

induced G pseudometrics
1

,
G

   and
2

,
.G

   Then by 

Theorem 2.3 of [6],  the rules 

      
1 2

1 1 1 2 2 2, ,
, , max , , , , ,rG x y z G x y z G x y z

   


     
1 2

1 1 1 2 2 2, ,
, , , , , ,tG x y z G x y z G x y z

   
 

     
1 2

2 2 1/2

1 1 1 2 2 2, ,
, , ( , , , , ) ,eG x y z G x y z G x y z

   
 

where 

     1 2 1 2 1 2 1 2, ,  , ,  , ,x x x y y y z z z X X    

define G pseudometrics on .X  Let G  denote

,  r tG G  or .eG Note that G  satisfies

   , , , ,G x a y a z a G x y z   

and    , , , , ,G x y z G x y z      for all

, , , .x y z a X  So , : ,  X X   

 , , ,0a b G a b

defines a G seminorm on .X  Also, for , ,i r t e  we 

have  , ,0 , ,i i
G a b a b  which proves that ,

i
   are 

G seminorms on .X  Moreover, these G seminorms

have the topology of the product space, since they induce 

the three known product space seminorms. 

5 Quotient Space of a G Seminormed Space

Let ( , , )X   be a G (semi)normed space, and let U

be a linear subspace of .X  Define a relation   on X  by

a b ,a b U    for all , .a b X  Consider the

quotient set  

  / : .  X U a a X   

/X U  is also a vector space with the operations defined 

as      :a b a b    and    :a a    for all

   , /a b X U  and .

Now we give a G (semi)norm on / .X U   
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Proposition 5.1:  Let ( , , )X    be a G seminormed

space, and let U  be a linear subspace of .X  Then the

function 
/

, : / / ,X U X U     defined as 

   
/ ,

, inf ,
u v U

a b a u b v


  

is a G seminorm on / .X U   Moreover if ,   is a 

G norm and the subspace U is closed in ,X  then also

/
,   is a G norm.

Proof: (N1)  Since , ,0a u v a u   and 0 ,U   

     

   

/ / ,

/,

, 0 inf , inf

inf , , .

u v U u U

u v U

a a a u v a u

a u b v a b

 



    

   

(N2)  We have  : , ,u u u u U U     thus

     

, , ,

,

/ /

inf , inf ,

inf inf ,

, .

u v U u u v U

u U u v U

a b u c v a b u u c v

a u b u c v

a b c

 

 

       

  



 



(N3)  For 0,      
/ /

0 0 inf 0.
u U

a u


  

For 0,   observe that  : ,U u u U U      so  

 

 

/
inf inf

inf .

u U v U

u U

a a u a v

a u a

 



      

     

(N4)  and (N5)  are immediately seen. 

Now we suppose that 
/

,    is a G norm and U  is clo-

sed. Let    
/

, 0.a b   Then 

,
inf , 0,
u v U

a u b v


    

so for every 0   there exist ,u v U    such that 

, .
2

a u b v 


    

This implies .
2

a u


   Then 1/( )na u  is a sequ-

ence in  convergent to 0.  Since  1/ 0,nu a    

we have 1/( ) .nu a  U  is a closed subset of ,X

hence 0 ,a a U     which gives    0 .a    

Corollary 5.2: Let ( , , )X    be a GBanach space,

and let U  be a closed linear subspace of .X  Then

/
( / , , )X U    is a GBanach space.

Proof: It follows from the fact that quotient space of a 

Banach space to a closed subspace is also a Banach space 

and the induced norm 
/
  of /X U is equal to the quoti-

ent norm corresponding to   [7]. 

6 GCompletion of a GNormed Space

Here we construct a G completion of a G normed

space, which will be unique up to G norm-isomorp-

hism and defined as follows. 

 

Definition 6.1: A function 
1 2

: ( , , ) ( , , )f X Y    

between G seminormed spaces is called a G norm-

isomorphism if and only if it is a linear bijection preser-

ving the values of the G seminorm, that is, a one-to-

one and surjective function such that 

     f x y f x f y    

and 

   
12

, ,f x f y x y  

for all ,  , .x y X   
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Two G seminormed spaces are said to be G isomo-

rophic, if there exists a G norm-isomorphism from one

to the other. 

Definition 6.2: Let , : X X     be a G

(semi)normed space and A  be a linear subspace of .X

Then also the restriction function  

, | :A A A A   

is a G (semi)norm on .A  Together with this

(semi)norm, A  is called a G subspace of .X  We

simply write ,    instead of , | .A A   

Definition 6.3 : A G completion of a G normed

space  , ,X    is a GBanach space ( , , )Y


   such 

that  , ,X    is G isomorphic to a G subspace

0( , , )X


   of ( , , ),Y


    such that 0X  is a dense sub-

set of Y  with respect to the topology of , .


    

Let  , ,X    be a G normed space. We denote by X̂ ,

the set of all GCauchy sequences on .X  Define a re-

lation ~  on X̂  with  

   ~n na b  : lim 0n na b  

on .X  Definitions of GCauchy sequence and G
convergence are essentially equivalent to definitions of 

Cauchy sequence and convergence definitions for induced 

normed space  ,X   and it is known from the classical

theory of normed spaces, that ~  is an equivalence rela-

tion on X̂ [7].

Let ˆ: / ~X X   be the quotient vector space with opera-

tions 

         : ,  :n n na b a b a a           

for all     ˆ,  ,  .n na a b b X   

Lemma 6.4:  Let  , ,X    be a G normed space. De-

fine , : X X 
     with 

   , lim , ,n n n na b a b

      

for all     ˆ, .n na b X  Then ,


    is a norm on .X 

Proof: First, to show that ,


    is well-defined, we note 

that 

, ,

, ,

n n n m m n

n m n m m m

a b a a a b

a a b b a b

  

    

 hence the inequality 

, ,n n m m n m n ma b a b a a b b    

hold. On the other hand, since ( )na  is a Cauchy sequence

on  , , ,X  

,

1
( , ) ( , )

2 2
G n m n m n m n md a a a a a a a a

 


     

 for every given 0   and sufficiently large numbers m  

and .n   

In particular 
2

n ma a


   and similarly
2

n mb b


   

which imply that ( , )n na b  is a Cauchy sequence on .  

Thus lim ,n na b   exists. 

Let         ˆ, , ,n n n na a b b X     such that

   n na a        and     .n nb b        



Celal Bayar University Journal of Science 

Volume 14, Issue 1, p 1-12
A. Mutlu 

11 

Then lim lim 0,n n n na a b b      and we have

 

 

 

lim , lim ,

lim ,

lim , lim ,

lim , .

n n n n n n

n n n n

n n n n n n

n n

a b a a a b

a a a b

a b b b b a

a b



   

   

     

 

Similarly lim , lim , ,n n n na b a b    and this yields 

       , , .n n n na b a b
 

                 

(N0)  We show that, if    , 0,n na b

      

then      0 ,n na b              where  0   is the

sequence with the constant value  0.  

   , 0n na b

        

 implies lim , 0.n na b   Since , ,a a b   

lim 0 lim 0,n na a    

so that    ~ 0na  and    0 .na         Similarly

   0 .nb          

(N1),  (N2),  (N3),  (N4)  and (N5)  follow easily. 

Lemma 6.5: The space  , ,X 
   is complete. 

Proof: The induced norm 

  corresponding to G

norm , ,


    is equal to the completion norm of the X  ,

which makes X  complete, or equivalently G comp-

lete. 

Now we show that the G normed space ( , , )X    can

be densely embedded into a subspace of the GBanach

space  , , .X 
 

Lemma 6.6: Let 0X  be the subset of ,X   which con-

sists of equivalence classes of constant sequences on ,X

that is   0 : .X x x X     Then  0 , ,X     is a 

dense G subspace of ( , , )X  
    and 

  0: , , ( , , ),f X X


         f a a     

is a G norm-isomorphism.

Proof: Note that 0X  is a linear subspace of ,X   thus

 0 , ,X


   is a G subspace of ( , , ).X  
   On the 

other hand, in the Banach space ( , ),X 
  the subspace 

0X  is isometric to .X  So it is dense in .X    Also we

see that f  is linear. And the observation that 

       , ,

lim , ,

f a f b a b

a b a b

 
       

 

completes the proof. 

Corollary 6.7: Every G normed space ( , , )X     has 

a G completion.

Next, we prove the uniqueness of G completions up

to G norm-isomorphism.

Theorem 6.8:  If ( , , )X     is a G normed space, then

its G completions are G isomorphic.

Proof: Let 
1

1( , , )Y


   and 
2

2( , , )Y


   be two G

completions a given G normed space ( , , ).X    Let 

iX  be dense subsets of iY  such that there exist G

norm-isomorphisms  : , , ( , , )
i

i if X X


      for 

1, 2.i   
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Since 1X  is dense in 1,Y  if 1,a Y  then there exists a 

sequence in  1 1 ,X f X which G converges to .a

We denote this sequence as   1 ,nf a  where 1.na X  

Since it is G convergent,   1 nf a  is a GCauchy

sequence, and it is a Cauchy sequence in the induced nor-

med space. Note that 
1

1f


exists and it is a G norm-

isomorphism, and so is 
1

2 1 .f f 
 Every G norm-

isomorphism is an isometric isomorphism on induced nor-

med spaces, thus it preserves Cauchy sequences. Thence 

  2 nf a  is a Cauchy sequence on the induced normed 

space, and GCauchy on the G normed space

 2 2 2f X X Y   and since 2Y   is complete,

  2 nf a  G converges to a point in 2.Y  We set this

point as the value  g a   of g  at .a

It is easy to verify that g  is a well-defined linear bijec-

tion. Also ,a b Y  and   1 ,nf a     1 mf b  are 

sequences G convergent respectively to a  and b  on

1.X  So

    2 nf a g a  and     2 .mf b g b  

Since 1f   and 2f  are G norm-isomorphism

   

   

1

2

1 1

2 2

, ,

, .

n n n m

n m

a b f a f b

f a f b









Since G seminorms are continuous in both variables, 

we have 

     
1 1

1

1 1 1lim lim , lim ,

,

n m m
m n m

f a f b a f b

a b

 







and 

       

   

2 2

2

2 2 2lim lim , lim ,

, .

n m m
m n m

f a f b g a f b

g a g b

 







Hence we conclude that    
1 2

, , .a b g a g b
 
  
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