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Abstract

In this paper we have defined e, sign functions using the vector fields XII' Xv' nil and
nv which have taken derivatives with (u,v) parameters of tangent vector X of any surface in
Lorentz space and we obtain Gauss and Codazzi-Mainardi Gauss formulae of the surface.

Preliminaries

It is well known that in a Lorentzian Manifold we can find three types of submanifolds: Space-like

(or Riemannian), time-like (Lorentzian) and light-like (degenerate or null), depending on the induced metric

in the tangent vector space. Lorentz surfaces has been examined in numerous articles and books. In this

article, however, we have examined some characteristics belonging to the surface by making some special

choices on tangent space along the coordinate curves of the surface. Let IR3 be endowed with the

pseudoscalar product of X and Y is defined by

(IR3
,(,)) is called 3-dimensional Lorentzian space denoted by LJ [I]. The Lorentzian vector product is

defined by

e, e2 - e3

X xY = x, x2 X3

y, Y2 Y3

A vector X in LJ is called a space-like, light-like, time-like vector if (X, X) > 0, (X, X) = 0 or (X, X) < 0

accordingly. For X Ell, the norm of X defined by

Ilxll = ~I(X,X)I
and X is called a unit vector if IIX II = 1[2].

1. INTRODUCTION

Definition 1.1. A symmetric bilinear form b on vector space V is

i) positive [negative] definite provided V::f; 0 implies b(v, v) > 0 [< 0]

ii) positive [negative] semi-definite provided v ;:::0 [v ~ 0] for all v E V

iii) non-degenerate provided b(v, w) = 0 for all WE V implies v = 0 [1].
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Definition 1.2. A scalar product g on a vector space V is a non-degenerate symmetric

bilinear form on V [1].

Definition 1.3. The index v of symmetric bilinear form b on V is the largest integer that is the dimension of

a subspace W c V on which glw is negative definite] l],

Lemma 1.4. A scalar product space V '" 0 has an orthonormal basis for V , e, = (e;, e;). Then each v E V

has a unique expression [1],

n

V = Lc;\e;,e;)e;
;=1

Lemma 1.5. For any orthonormal basis {ep...,eJ for V , the number of negative signs in the signature

(CpC2, ... ,CJ is the index v of V [1].

Definition 1.6. A metric tensor g on a smooth manifold M is a symmetric nondegerierate (0, 2) tensor field

on M of constant index [1].

Definition 1.7. A semi-Riemannian manifold is a smooth manifold furnished with a metric tensor g.

Definition 1.8. A semi-Riemannian submanifold M with Cn-I)-dimensional of a semi-Riemannian manifold

M with n-dimensional is called semi-Riemannian hypersurface of M [1].

2. GAUSS FORMULAE

Let X = X (u, v) be a surface in Lorentz space and n(u, v) be unit normal vector field of the

surface. c1' c2' c3 e., e, be sign functions of the vectors nu' nv' Xu' Xv' n , respectively. Then we can

write the following equations.

(nu ,nu) = cliinul12 , (nv,nv) = c211nvl12, (Xu ,Xu) = c311X uf
(Xv,Xv)=c41IXvf, (n,n)=c5

The vectors fields X uu' X uv' X vv can be written as linear combinations of Xu' Xv' n as follows.
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where the coefficients ri; are Christoffel symbols. These equations are called Gauss formulae of the surface

X(u, v). We get a, = £5L, a2 = £5M and a, = £5N by using inner production with the normal vector n

of the Gauss formulae.

On the other hand, we take derivatives of following equation with respect to the parameters u and

v

then we obtain,

- -we multiply Gauss equations by X u and X v we get

We get the following equations using by inner production both X u and X v of the Gauss equations.

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

Thus, we can calculate ri" r,~, ri2' r,;, r~2and ri2 coefficients. At first, we have to solve (2.1) and

(2.4) together, we get
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we solve (2.5) and (2.6) together, we get

r,1 = C3c4GEv _ c3FGu
12 2H2 2~C3C4H2

(2.8)

we solve (2.2) and (2.3) together, we get

1 c4 GGur22 = t:':: 2 (GFv - FGJ ---2
VC3C4H 2H

(2.9)

we solve (2.1) and (2.4) together, we get

(2.10)

we solve (2.5) and (2.6) together, we get

r2 _ C3C4EGu
12 - 2H2(2.11)

(2.12)

Theorem 2.1: If coordinate lines are normal each other, then F=O and Gauss formulae are

X n, c, X M
uv = 2E Xu + 2G v +e, n

3. CODAzzi-MiNARDi FORMULAE

IfM C3
- manifold then its replacement vector has to satisfy the following equations at point P(u, v).

thus by using Gauss equations we get

(3.1) (r/I Xu +rl~ x, +C5Lnt = (r/2 Xu +rl; x; +C5Mnt
(3.2) (ri2 Xu +r;2 x, +c5Nnt = (r/2 Xu +rl; x; +c5M nt

rewrite the coefficients r; which we obtained for F :f. 0 and we get
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By taking partial derivatives of (3.1) and using the vector X uu' X uv' X vv' nu and nv then we get,

(3.3)

where the coefficients AI' A2, A3 are as following,

AI = (rl't)v- (ri2t + rl~r~2- rl;rl12+ £5Ui21 - £5M all

A2 = (riJv - (r,; t + rl'tr,; - rl;r,; + rl~r,; - rl~r,~+£5Ui22 - £5M al2

-
where all, a12, a21 and a22 are the components of Weingarten matrix. Similarly, for (3.2) we get,

(3.4)

where the coefficients B
"

B2, B3 are as following,

B, = (r~2t - (ri2t + r~2ri, + ri2ri2 -: r,12ri2- rl;r~2 + £5N all - £5M a21

B2 = (r;Ju - (r,; t + r~2rl~+ r;2r1
12 - ri2r,; - rl;r; + £5N al2 - £5M a22

B3 = £5Nu - £5M v + r~2£5L+ (r;2 - rI
1
2)£5M - rl;£5N

Since the vectors Xu' Xv and n are linearly independent in (3.3) and (3.4) then we get

Ai = 0, B, = 0, (i = 1,2,3) . For A3 = ° and B3 = ° ;
(3.5)

(3.6)

L, -Mu =M(r,; -rl't)-Nrl~ + Lrl12
Nu - M v = M (r112- ri2) + Nrl; - Lr~2

The equations (3.5) and (3.6) are called Codazzi-Mainardi formulae of the surface X (u, v).

a) The case F=O; We calculate r: coefficients from Gauss formulae, we get,

and substitute these values in Codazzi-Mainardi equations, then we get,
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(3.7) L + M Eu _ N Ev = M + L Ev + M Gu
2E 2£3£4G u 2E 2G

Nu+MGv-L Gu =M +MEv+NGu
2G 2£3£4E v 2E 2

(3.8)

b) The case F=O and M=O ; In this case (3.7) and (3.8) equations will be as following

If the surface is compared with zero lengt curves-minimal curves then E, G will be vanish on the surface.

And we get following equations by using the equations (2.7), (2.8), (2.9), (2.10), (2.11), (2.12).

~\ = - F~u = FFu 2 = £3£4(Fu J = £3£4 (log/F/).
H £3£4F F

-FF -FF F ( )r;2 = Il2 = _ F2v = FV = log/F/ v
£3£4

and we obtain

rl~= r/2 = rl~ = r~2= 0

Thus the Gauss formulae are obtained as follows;

Furthermore Codazzi-Mainardi formulae will be as follows

and then we obtain
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