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Abstract 

Liquefaction is a critical phenomenon in geotechnical engineering, especially in mixed depositional environments where 
different soil types coexist. In such environments, assessment of liquefaction potential may be challenging. However, 
machine learning techniques overcome these challenges. In this study, to estimate the liquefaction potentials of the soils in 
the Dalaman residential area which is situated in a mixed depositional environment, supervised Multilayer Perceptron 
(MLP) model has been generated by using seismic parameters from the Chi-Chi and Kocaeli earthquakes and the 
parameters of the soils affected by these earthquakes. Sensitivity, specificity, accuracy, precision F1 score and AUC have 
been calculated for training and testing phases in model generation stage and for Dalaman Region. These values have been 
found to be 77.9%, 91.5, 85.7%, 87.0%, 0.822 and 0.930 in training phase; 80%, 83.1%, 81.8%, 75%, 0.774 and 0.930 in 
testing phase. For Dalaman residential area, these values have been found as 81.3%, 86.2%, 83.5%, 87.25% and 0.841. 
When the values from training and testing phase are compared to the results of Dalaman Region, it can be said that the 
model accurately estimated the liquefaction potentials of the soils in the Dalaman residential area. 
Keywords: Liquefaction, Multilayer Perceptron Machine Learning Technique, Mixed Depositional Environment, Dalaman 

DALAMAN YERLEŞİM ALANINDAKİ TOPRAK ZEMİNLERİN SIVILAŞMA 
POTANSİYELİNİN DENETİMLİ MAKİNE ÖĞRENMESİ MODELİ İLE TAHMİNİ 

Özet 

Sıvılaşma, özellikle karmaşık zemin tiplerinin bir arada bulunduğu karmaşık çökelim ortamlarında, geoteknik 
mühendisliği açısından kritik bir olgudur. Bu tür ortamlarda sıvılaşma potansiyelinin değerlendirilmesi zorlayıcı olabilir 
ancak makine öğrenimi teknikleri kullanarak, bu zorluklar kolayca aşılabilir. Bu çalışmada, karışık çökelim ortamında 
bulunan Dalaman yerleşim alanındaki zeminlerin sıvılaşma potansiyellerini tahmin etmek amacıyla, Chi-Chi ve Kocaeli 
depremlerine ait sismik parametreler ile bu depremlerden etkilenen zeminlerin parametreleri kullanılarak, denetimli bir 
makine öğrenimi algoritması olan Çok Katmanlı Algılayıcı (MLP) modeli geliştirilmiştir. Modelin oluşturulma 
aşamasındaki duyarlılık, özgüllük, doğruluk, kesinlik, F1-değeri ve AUC değeri eğitim aşamasında %77,9, %91,5, %85,7, 
%87,0, 0.822 ve 0.930 olarak, test aşamasında ise %80, %83,1, %81,8, %75, 0.774 ve 0.930 olarak bulunmuştur. Oluşturulan 
modelin Dalaman yerleşim alanındaki performans ölçütleri ise %81,3, %86,2, %83,5, %87,25 ve 0.841 olarak bulunmuştur. 
Bu değerler kıyaslandığında oluşturulan modelin Dalaman bölgesindeki zeminlerin sıvılaşma potansiyelini başarılı bir 
şekilde tahmin ettiği görülmüştür. 
Anahtar Kelimeler: Sıvılaşma, Çok Katmanlı Algılayıcı Makine Öğrenimi Tekniği, Karışık Çökelim Ortamı, Dalaman 
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1. Introduction 
 

The United Nations’ concept of “urban resilience against 
natural disasters” is briefly described as the ability of 
cities to withstand natural disasters, maintain their 
functionality and adapt to changing conditions [1]  
 
Seismic soil liquefaction is one of the critical 
geotechnical hazards within the context of urban 
resilience due to its severe and catastrophic 
consequences. Therefore, assessment of the liquefaction 
hazard of an area is a critical task for the sustainability 
of any residential area and the safety of the citizens [2].  
 
Despite advancements in understanding urban 
resilience, many cities still have problems in the 
evaluation of geotechnical hazards, particularly seismic 
soil liquefaction. This gap in research is especially 
evident in mixed depositional environments where 
different soil types (clay size to gravel size) coexist due 
to the activity of different sedimentation processes in a 
single area [3]. Even though liquefaction is primarily 
associated with sandy soils, clays and gravels may also 
liquefy. However, the liquefaction criteria for sandy, 
clayey and gravelly soils differs from each other [4-6]. 
Therefore, mixed depositional environments, where 
sandy, clayey and gravelly soils coexist, present 
significant challenges in liquefaction analyses due to 
their heterogeneous nature. The widespread 
destructions observed in İskenderun during the 6th 
February 2023 Kahramanmaraş Earthquake sequence 
in Türkiye [6, 7] highlights the significance of the 
assessment of the liquefaction hazard in such complex 
geological settings. 
 
Machine learning (ML) algorithms are powerful tools for 
the estimation of liquefaction hazard by identifying 
complex patterns and relationships between 
geotechnical, geological, and seismic parameters [8-13]. 
Hoang and Bui [9] used a hybrid model formed of Kernel 
Fisher discriminant analyses and least squares support 
vector machine to estimate the earthquake-induced soil 
liquefaction. Zhang and Wang [10] performed back 
propagation neural network, support vector machine, 
decision tree, k-nearest neighbours, logistic regression, 
multiple linear regression and naive Bayes to estimate 
soil liquefaction. Zhou et al. [11] published a paper 
based on the employment of a genetic algorithm and 
grey wolf optimizer for optimizing RF models to 
evaluate soil liquefaction potential. Demir and Şahin 
[12] investigated feature selection methods for soil 
liquefaction based on tree-based ensemble algorithms 
using AdaBoost, gradient boosting, and XGBoost. Lee 
and Hsiung [13] analysed the sensitivity of the MLP 
model in the seismic soil liquefaction analyses. Studies 
given above, used various machine learning languages 
and different algorithms to develop models for 
estimating liquefaction potentials of the soils using case 

histories and soils affected from these events for the 
generation of these models. Although these studies 
achieved high accuracies in their models, no statement 
has been found regarding whether these models have 
been tested in areas other than where their training data 
were obtained. Given this gap, our study will be 
estimating the liquefaction susceptibilities of the soils in 
the Dalaman residential area, a region characterized by 
a mixed depositional environment shaped by deltaic, 
fluvial, alluvial, and beach processes [14-16] by a model 
generated from a completely different geological and 
tectonic setting.  
 
This study consists of three primary stages: 
 

 Model Development: A predictive ML model is 
developed using real-world liquefaction case 
histories [8]. 
 

 Liquefaction Potential Estimation: The trained 
and tested model is applied to the soils of the 
Dalaman residential area. 

 
 Model Validation: The model’s performance is 

evaluated by comparing the results with the 
liquefaction susceptibilities of the soils, which 
have been calculated using conventional 
methods [17, 18]. 

2. Site Characterization 
 

Dalaman Basin, which is located in tectonically one of 
the most active extensional regions in the world [19], 
has been shaped by the combined activity of both 
geological and tectonic processes [14, 15]. Elements that 
contribute to the formation of the basin covers large 
geological time interval [14, 15]. The Holocene-age 
units, which fall within the scope of the study area, are 
associated with the disintegration of the older units and 
their deposition in the lowland [14, 15]. The most 
important elements that modify the basin are the basin 
margin faults and approximately 250km long 
meandering Dalaman Stream which is formed of 
different branches [14, 15]. Initial formation of the Basin 
has begun as a deltaic system by the activity of the 
Dalaman Stream. This deltaic system shifted southward 
during the southward progradation of the Dalaman 
Stream and related continuous sedimentation. Thus, 
former deltaic environment has been overlain by the 
sediments of fluvial and alluvial environments [14, 15]. 
This complex sedimentation forms a mixed depositional 
environment characterized by laterally and vertically 
discontinuous soil layers [3]. Geological map of the 
Dalaman Basin is given in the Figure 1.  

3. Materials and Methodology 
 
This study employs an artificial neural network (ANN) 
to estimate liquefaction potential of Dalaman region.
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Figure 1. Geological map of the Dalaman Basin. Location of the residential area is indicated by black dashed area. From 
[18], modified from [20-22].

 

The methodology consists of data preparation, selection 
of the neural network model, training and testing the 
data, estimation of the liquefaction potentials of the soils 
in the Dalaman residential area and evaluation of the 
effectiveness of the model. Reliability of the model will 
be validated in this stage.  
 
Because there is no recorded liquefaction case event in 
the Dalaman region, there is a need for a dataset to 
generate the model that will be used to estimate 
liquefaction susceptibilities of the soils in the Dalaman 
residential area. Thus, this will be a supervised machine 
learning algorithm. Dataset used in this study has been 
obtained from Hanna et al. (2007) [8] and consists of 
620 rows formed of seismic parameters of Kocaeli and 
Chi-Chi earthquakes, parameters of the soils affected by 
these two earthquakes and the liquefaction conditions 
of the soils during these earthquakes. Seismic 
parameters and soil parameters are called as input 
parameters and the liquefaction cases are called as  
 

 
output parameters [8]. General structure of an ANN is 
given in the Figure 2. 
 

 

Figure 2. General schematic illustration of ANN  

[23, 24]. 

Input parameters that have been used to generate the 
equation must be completely the same as the 
parameters which have been used in the estimation of 
the liquefaction potentials of the soils in the Dalaman 
Region. Therefore, the dataset provided by [8] has been 
modified and, depth (z), corrected Standard Penetration 
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Test (SPT) blow number (N1,60), fine content in 
percentage (F%), groundwater level (GWL), total stress 
(σ), effective stress (σ'), moment magnitude of 
earthquakes, peak ground acceleration (amax) and 
cyclic stress ratio (CSR) values have been used as the 
input parameters. Summary of the dataset is given in 
Table 1. 
 
During the model generation stage, various models have 
been tried, but the most representative model for the 
Dalaman residential area has been found to be 
Multilayer Perceptron (MLP) algorithm. A Multilayer 
Perceptron (MLP) is a type of ANN composed of multiple 
layers of interconnected neurons (input layer, hidden 
layer, output layer). It is widely used for classification 
and regression tasks due to its ability to learn complex 
patterns from data [25].  

Input parameters have been normalized by using Batch 
Normalization in order to boost training, to reduce 
overfitting and to scale the values. Equation of the Batch 
Normalization is given in Equation 1 [26]. 
 

𝑥 =
x − µβ

√𝑠2
𝛽 + 𝜀

 
(1) 

 
Then, randomly selected (simple random sampling) 
approximately 70% of the dataset have been used as 
training and remaining 30% of them have been used as 
testing set (69% training-31% testing). Machine 
Learning Algorithm has been produced by IBM SPSS 27. 
Software performs the random sampling itself. Since the 
shuffle option is enabled in the program, the dataset 
could not be exactly split into 70% and 30%.

 

Table 1. Small portion of the dataset used to generate the MLP model. Table includes the randomly selected 8 soil layers 
from the dataset [8]. 

Z N1,60 F% Dw σ σ' M amax CSR Liq. 

1.00 6 90.00 0.77 16.30 14.00 7.4 0.40 0.29 No 

1.80 8 94.00 0.77 30.90 20.60 7.4 0.40 0.37 No 

2.60 7 100.00 0.77 45.60 27.30 7.4 0.40 0.41 No 

1.20 7 85.00 2.30 17.70 17.70 7.6 0.18 0.12 No 

2.80 6 30.00 2.30 43.50 38.60 7.6 0.18 0.13 Yes 

4.20 5 90.00 2.30 70.40 51.80 7.6 0.18 0.16 Yes 

6.80 6 99.00 2.30 118.20 74.10 7.6 0.18 0.18 Yes 

8.80 7 94.00 2.30 156.30 92.60 7.6 0.18 0.19 Yes 

Training type has been selected as Batch training. In 
order to minimize the error/loss between predicted and 
actual values, the data has been optimized. Scaled 
Conjugate Gradient method has been used for the 
optimization [27]. 
 
There is hidden layer between the input layer and the 
output layer which is formed of multiple neurons which 
also called as nodes. Each nodes takes data from the 
input layer and transfer it to the next layer [8]. Our 
structure is formed of 9 input parameters, 1 hidden 
layer that is formed of 7 neurons and 1 output layer 
which consists of 2 results (liquefaction occurs or does 
not occur). 
 
Hyperbolic tangent activation function has been used in 
the hidden layers (Equation 2) [28]. Because hyperbolic 
tangent function is zero centred and it transforms the 
input parameters to values between -1 and 1, it enables 
the model to learn better [29]. Output layer is formed of 
two neurons. Because the liquefaction condition is 
categorical (either liquefaction occurs or does not 
occur), Softmax activation function has been used in 
output layer [30, 31]. Equation of the Softmax activation 
function is given in Equation 3 [32]. Schematic 
illustration of the generated model is given in the Figure 
3. 

 

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

(2) 
 
 

𝜎(𝑥  )𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑘
𝑗=1

 

 

(3) 

The second stage is the validation of the generated 
model using the data from Dalaman Basin. For this 
reason, liquefaction potentials of the 298 soil layers 
from the Dalaman Basin have been calculated using the 
simplified method [17]. Equations used to calculate the 
liquefaction potentials of the soils are given in Equations 
4-11. 
 

𝐶𝑅𝑅7.5 = (
1

34 − 𝑁1,60𝑓

) + (
𝑁1,60𝑓

135
)

+ (
50

(10𝑁1,60𝑓 + 45)
2)

− (
1

200
) 

(4) 

  

CSR = (
M − 1

10
) (

𝜎

𝜎′
 )(amax)rd 

(5) 
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𝑎𝑚𝑎𝑥 = (0.4)𝑆𝐷𝑆 (6) 
  

rd = 1.0 − 0.00765z if z ≤ 9.15𝑚 (7) 
  
rd = 1.174 − 0.0267z if 9.15m <  z ≤ 9.15𝑚 (8) 

 

MSF = 102.24/Mw
2.56 (9) 

 
CRR = CRR7.5 . MSF (10) 

 

𝐹𝑜𝑆 = (
𝐶𝑅𝑅

𝐶𝑆𝑅
) 

 
(11) 

 
After the calculation of Cyclic Resistance Ratio and 
Cyclic Stress Ratio, Factor of Safety (FoS) values have 
been obtained for the soils in the study area. Soils with 
FoS values greater than 1.1 are classified as non-
liquefiable and soils with FoS values lower than 1.1 are 
classified as liquefiable [33, 34].   
 
298 Soil layers have been imported into the generated 
model and the calculated FoS values (Liquefaction 
potentials of the soils) have been compared with the 
estimated values. 
 

 

Figure 3. Schematic illustration of the generated MLP 
model. 

Effectiveness of a machine learning model is evaluated 
via performance metrices. Accuracy, Precision, 
Sensitivity, Specificity, F1-Score and Receiver Operating 
Characteristic (ROC) Curve are types of performance 
metrices [35]. Definitions of each performance metrices 
are given below. 
 

Accuracy: Proportion of the correct estimations 
(Equation 12). [35]. 
 

𝐴ccuracy =
TP + TN

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(12) 

 
Precision: The fraction of correctly predicted positive 
cases out of all predicted positives (Equation 13). [35]. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

𝑇𝑃 + 𝐹𝑃
 

(13) 

 
Sensitivity: The proportion of actual positive cases 
correctly identified (Equation 14). [35]. 
 

Sensitivity =
TP

𝑇𝑃 + 𝐹𝑁
 

(14) 

 
F1-Score: Harmonic mean of precision and sensitivity 
(Equation 15). [35]. 
 

𝐹1 =
Precision x Sensitivity

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

(15) 

 
Specificity: The proportion of actual negative cases 
correctly identified (Equation 16). [35]. 
 

Specificity =
TN

𝑇𝑁 + 𝐹𝑃
 

(16) 

 
ROC Score: Measures a model’s ability to distinguish 
between classes using probability scores. (Equations 
17-19) [35]. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(17) 

  

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(18) 

  

∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑(𝐹𝑃𝑅)
1

0

 
(19) 

 
TP, TN, FP, FN are True Positive, True Negative, False 
Positive and False Negative respectively. [35]. 

4. Results and Discussions 
 

Sensitivity, specificity, accuracy, precision and F1 score 
during the generation of the model have been found as 
77.9%, 91.5, 85.7%, 87.0% and 0.822 respectively for 
training phase; and 80%, 83.1%, 81.8%, 75% and 0.774 
respectively for testing phase. Confusion metrices are 
given in Table 2 and performance metrices are given in 
Table 3 for model generation stage. 
 
Sensitivity, specificity, accuracy, precision and F1 score 

have been seen to be 81.3%, 86.2%, 83.5%, 87.25% and 

0.841 respectively when the soils in the Dalaman Region 

have been imported to the equation. Confusion metrices are 
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given in Table 4 and performance metrices are given in 

Table 5 for the validation stage. 

 

Table 2. TP, TN, FP, FN values for the model generation 
stage 

Confusion Matrix Training Phase Testing Phase 

True Positives (TP) 141 60 

True Negatives (TN) 225 98 

False Positives (FP) 21 20 

False Negatives (FN) 40 15 

 

Table 3. Performance metrices for the model generation 
stage 

Performance Metrics Training Phase Testing Phase 

Sensitivity 77.90% 80.00% 

Specificity 91.50% 83.10% 

Accuracy 85.70% 81.80% 

Precision 87.00% 75.00% 

F1 Score 0.822 0.774 

  

Table 4. TP, TN, FP, FN values obtained from the 
Dalaman Region 

Confusion Matrix Number 

True Positives (TP) 130 

True Negatives (TN) 119 

False Positives (FP) 19 

False Negatives (FN) 30 

 

Table 5. Performance metrices for the Dalaman Region 

Performance Metrics Value 

Sensitivity 81.30% 

Specificity 86.20% 

Accuracy 83.50% 

Precision 87.25% 

F1 Score 0.841 

 
In the case of liquefaction potential analysis, sensitivity 
is generally more significant than specificity, especially 
in situations where the risk of missing a liquefaction 
hazard is high. Missing a liquefaction event can result in 
significant damage and safety concerns, however, 
missing a non-liquefaction case does not result in a 
damage and safety concern. 
 
The sensitivity value in the Dalaman region is higher 
than in both the training and testing phases. This clearly 
shows that the model is more successful in identifying 
liquefiable soil layers in the Dalaman region. 
 

Specificity shows a trend as 91.40% (Training phase), 
86.2% (Dalaman), 83.10% (Testing phase). This suggest 
that the model is realistic in the testing phase and 
Dalaman Region. 
 
When accuracy values of three different phases are 
evaluated, the accuracy in the Dalaman region is higher 
than in the testing phase but slightly lower than in the 
training phase. Performing better than the test phase 
indicates that the model works well in real-world 
conditions. 
 
The precision in Dalaman is significantly better than the 
one in testing phase (75.00%) and close to the training 
phase (87.00%). This means that, when the model 
predicts liquefaction, the likelihood of it being correct is 
very high. The precision value in the Dalaman region is 
one of the strongest indicators of model reliability. 
 
The F1 score in Dalaman is higher than in both the 
training and testing phases. An increase in the F1 Score 
indicates that the model maintains a good balance 
between sensitivity and precision. 
 
Receiver Operating Characteristics (ROC) curve of the 

training phase of the model generation stage has been given 

in Figure 4. The area under the ROC curve (AUC) for both 
the liquefaction and non-liquefaction groups have been 
found to be 0.930. These values indicate a high level of 
accuracy and a strong ability of the model to distinguish 
the two groups, with values close to 1.0 which 
represents optimal performance.  [35] 

 

 
Figure 4. ROC curve for the generated MLP model. 

 

Significance levels of the input parameters for the 
liquefiabilities of the soils have been calculated and 
given in Figure 5.  
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Figure 5. Significance levels of the input parameters in 
terms of liquefaction phenomena in the Dalaman 

Region. 

The most significant input parameter has been found to 
be the SPT blow number (N1,60) and the least 
significant parameter has been found to be earthquake 
magnitude. The great significance level of the SPT blow 
number is as expected because it is directly related with 
the strength of the soil. Such low significance level for 
the earthquake magnitude is because of the use of only 
Mw=7.5 earthquake in the estimation of the liquefaction 
potential of the Dalaman Region and use of only Mw=7.4 
and 7.6 earthquakes during the generation of the model. 
When these values are compared to the significance 
levels of the Zhang and Wang (2021) [10] it can be said 
that high significance levels of N1,60, F% and CSR values 
in this study are compatible with the high significance 
levels of qc, F% and CSR values in the Zhang and Wang 
(2021). Moreover, low significance level of earthquake 
magnitude seems compatible with the one in Zhang and 
Wang (2021) [10]. In future studies, the produced model 
can be expanded by adding new liquefaction case 
histories occurring at different earthquake magnitudes 
to the data set and the new model can be used to 
estimate liquefaction potentials of soils for different 
earthquake magnitudes.  
 

Hanna et al. [8] provided the dataset including soil 
parameters and seismic parameters related with the 
Kocaeli and Chi-Chi Earthquakes.  A General Regression 
Neural Network (GRNN) model has been proposed for 
the estimation of the liquefaction potentials of the soil in 
this study. The proposed model has a sensitivity, 
specificity and overall estimation values equals 98%, 
99% and 99% for Taiwan earthquake; 98%, 96% and 
97% for Kocaeli Earthquake. The model is different from 
the MLP model and they have used much more input 
parameters for the generation of the model. However, 
because of the limited input parameters within the 
Dalaman Region, number of the input parameters 
proposed in the dataset of Hanna et al [8] has been 
decreased in this study to ensure the uniformity of the 
datasets. Therefore, it is normal to have lower 
performance metrices than the one in the [8] is normal. 
 
The studies conducted by Samui and Sitharam [36] and 
Lee and Hsiung [13] provide significant contributions 
about how AI-based models can be effectively used in 

the estimation of the soil liquefaction. Samui and 
Sitharam [36] has generated MLP and Support Vector 
Machine models for the estimation of the liquefaction 
potentials of the soils using soil and seismic parameters 
from the Chi-Chi Earthquake. However, the dataset does 
not comprise the soil and seismic parameters from 1999 
Kocaeli Earthquake. Even if the generated models have 
high performances in the training and testing phases, 
the generated models have approximately 20-25% less 
performance in the estimation of liquefaction potentials 
in the global data which means the model does not 
represent the global data. This is probably because of 
the number of the data used in the model generation and 
points the significance of the data diversity. Our paper 
discusses a MLP model generated by using an extended 
dataset and performance of the model in the model 
generation stage is compatible with the performance of 
the model during the validation stage. 
 
Lee and Hsiung [13] studied the sensitivity analyses on 
MLP for the recognition of liquefaction cases. According 
to the study sensitivities of the training and testing 
phases are found to be 98.9% and 91.2% respectively. 
The overall performance of the model is stated as 96.6%. 
However, even if it is not stated in the text the model 
seems that it has not been validated in a different site in 
which the liquefaction potentials of the locations are 
known.  
 
Differences between the results of scientific studies will 
contribute to the development of science. In order for 
these studies to progress, more datasets need to be 
created and made available. Therefore, it is essential to 
properly record the liquefaction cases that have 
occurred in earthquake scenarios. 
 
The paper offers practical tool for the estimation of 
liquefaction potentials of soil based on different input 
parameters. The model can deal with large dataset.  
 
The MLP model can be used for preliminary study to 
have an idea about the liquefaction susceptibilities of 
the locations. However, by strengthening the model by 
using more input parameters engineers and urban 
planners may design structures compatible with the 
concept of “urban resilience against natural disasters” of 
United Nations. Moreover, designers may avoid from 
unnecessary efforts by avoiding construction in 
vulnerable zones. This may reduce the cost of projects. 
 
The model can be shared with the local administrative 
authorities. 
 

5. Conclusion 
 

Liquefaction is an earthquake induced soil problem 
which results in undesired destructive consequences for 
the engineering structures and thus for the humanity. 
Thus, assessment of the liquefaction potentials of the 
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soils is a significant task for engineers. Mixed 
depositional environments are common worldwide and 
hosts important settlements. For such mixed 
depositional environments, this process may be 
challenging because of the occurrence of different soil 
types together. By the increased use of machine learning 
techniques, many tasks are started the be solved easily. 
Estimation of the liquefaction potentials of the soils is 
one of these applications of machine learning 
techniques. MLP machine learning technique has been 
used in this study to estimate the liquefaction potentials 
of the soils in a mixed depositional environment. 
According to the results, this method has performed 
satisfactory results. Thus, it can be stated that MLP 
model can be used to estimate the liquefaction 
potentials of the soils in mixed depositional 
environments. At least it can be used as a preliminary 
study to understand the liquefaction susceptibilities of 
the soils. 
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