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ABSTRACT 
 

Induction motors are the most preferred engines in industry because of their simple but robust structure. The efficiency of the 

preferred motor is crucial for the limitations of the loads to be pulled by the locomotive and the locomotive’s suitability for the 

geographic conditions. For this reason, determining the energy efficiency and operating conditions of induction motors is crucial. 

It is often not possible to realize the efficiency of induction motors experimentally because it is necessary for the motor to be 

stopped during the experiment. This prevents the analysis of the efffects of the experiment on the energy efficiency of the motor. 

 

The efficiency estimation of induction motors provides a significant contribution to operation and energy efficiency. There is a 

variety of studies in literature related to efficiency estimation. However, the future of this study is the realization of efficiency 

estimations of induction motors at 17 different power types with artificial neural networks and linear estimation by looking at the 

speed values, current and moment, listed in the manufacture’s catalog in full load. Before obtaining the estimations, the statistical 

analysis of the correlations between efficiency and moment, efficiency and speed, efficiency and current of the motor were applied. 

 

Keywords: Efficiency estimation, Neural networks, Linear estimation, Induction motors 
 

 

1. INTRODUCTION 
 

Induction motors can be designed for specific torque, rotation speed and drawn current parameters 

according to their use. Therefore, these different designs result in different efficiency percentages on the 

output of the motors. When the power of the motor is increased, the efficiency of the motor should also 

be increased, in order to avoid an undesired amount of lost power. However, how can we be sure that 

we reach the desired efficiency percentage without complex and time-consuming power measurements 

and calculations? Observations show that there are strong correlations between efficiency and three 

critical parameters of the motor: drawn current, moment and rotation speed. 
 

In Section 2, a literature review is given about efficiency estimation in induction motors. There are six 

methods for efficiency estimation of induction machines. 
 

In Section 3, information is given about the company named Gamak. The 17 induction motors' values 

which are used in this study are given in Table 1 from Gamak’s catalog.   
 

In Section 4, an efficiency estimation is performed with linear estimation for 17 induction motors. 

Firstly, the Linear Prediction (LP) model is introduced. Correlations of efficiency of motor with drawn 

current, output moment and rotation speed are given. The pearson correlation coefficient between 

efficiency and moment, efficiency and drawn current and efficiency and rotation speed; various data for 

the different sizes of induction motors are obtained. Lastly, the linear estimation model is created using 

these correlations. According to this model, estimation values are given in Table 3. 
 

In Section 5, an efficiency estimation is performed with Artificial Neural Networks (ANN) for 17 
induction motors. Firstly, the ANN model is introduced, the specifications for this are given in Figure 
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1. The results of the simulation are given in Figure 2. According to this model, estimation values are 
given in Table 4. 
 

In Section 6, the comparative efficiency results of the two methods, according to different input values, 
are given in Table 5. Root Mean Square Error (RMSE) Values are given in Table 6.   
 
In Section 7, Tables 5 and 6 are interpreted and a decision is made about which model is more accurate. 
 

2. LITERATURE REVIEW  
 

The efficiency measurement of electric motors can be made in two ways, directly and indirectly. These 

methods can be called "experimental methods." IEEE 112-B and CSA-390 are direct methods and the 

following equation can be used: 
 

Efficiency % =
Mechanical Output Power 

Electrical Input Power 
𝑥100                                                                                       (1)  

 

For this reason, it is necessary to measure both the mechanical output power and the electrical input 

power. Electrical input power can be measured accurately with the simple installation of medium-priced 

equipment. The mechanical output power can be defined by multiplication torque by angular velocity. 

While it is possible to get accurate results with a relatively simple procedure (± 1 RPM), which requires 

inexpensive hardware for speed measurement. But it requires a more detailed setup and more expensive 

equipment to get accurate results in torque measurement.  
 

IEC 34-2 and JEC 37 are indirect methods. To avoid the complexity and cost of torque measurements, 

the motor’s efficiency can be indirectly determined by the following equation: 
 

Efficiency % =
 Electrical Input Power−Losses 

Electrical Input Power
𝑥100                                                                                        (2) 

 

This calculation requires the measurement of motor losses. Many motor losses, (copper, iron, mechanical), 

can be measured quite accurately. But the remaining losses, (leakage losses), are not measurable.  
 

Numerous methods are proposed in literature for in situ efficiency estimation of induction machines. 

These methods are as follows:  
 

1) slip method;  

2) current method;  

3) simplified equivalent circuit method [1];  

4) simplified loss segregation method [2];  

5) nonintrusive air-gap torque (AGT) (NAGT) method [3];  

6) optimization-based methods [4]–[14].  
 

Based on the National Electrical Manufacturers Association (NEMA) MG1 standard, induction motors 

can operate with up to 5% unbalanced voltages [15]. Also, up to ±10% over/under voltage supply 

conditions are commonly seen in industrial facilities. 
 

In real industrial conditions and, specifically, in weak power systems, the voltage unbalanced factor 

(VUF) or the over/under voltage rate can be even more severe. An unbalanced power supply occurring 

with a combination of over/under voltage conditions can significantly affect the machine's efficiency 

[15], [16]. Thus, a method which is compatible with these conditions should be employed to have a 

reliable estimation of the efficiency under real industrial situations. 
 

Only the last two methods are applicable in real industrial conditions where some level of unbalanced and 

over/under voltage conditions exist. Unbalanced supplies can be present due to many reasons, such as 
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incomplete transposition of transmission lines, open delta transformers, blown fuses on three-phase capacitor 

banks, unequal distribution of single-phase loads, or defective transformers in power systems [15], [16]. 
 

In the NAGT method [3], the AGT is calculated based on the voltage and current signals as well as the 

magnitude of the stator’s resistance at the operating temperature. In this method, the effect of the 

unbalanced voltages is considered on the net produced torque. However, the accuracy of this method is 

impaired due to the fixed assumption of the no-load losses as well as stray load loss at different loading 

and supply voltage conditions. 
 

Optimization-based methods are another alternatives for the efficiency estimation under real industrial 

conditions. In these methods, the machine’s efficiency is calculated based on the estimation of 

parameters for the equivalent circuit in the machine with the help of an optimization-based search 

algorithm, (such as genetic algorithm, bacterial foraging algorithm, and multiobjective optimization). 

 

Some studies present the optimization-based techniques for efficiency estimation under balanced supply 

conditions. In some, the equivalent circuit method is combined with the Genetic Algorithm (GA) to deal 

with the efficiency estimation problem under unbalanced supply conditions. In [7], the authors of this 

paper reported a new evolutionary-based (EVB) efficiency estimation algorithm which works with 

balanced and unbalanced supplies. 
 

3. GAMAK MOTORS 
 

The company Gamak was founded in 1961 and it is the domestic product of "Electric Motor" which is 

one of the most important products that Turkish industry needs for production. In a short period, Gamak 

started production of the first electric motor to be produced in Turkey. Gamak contributed to national 

production with cheaper spare parts instead of the cost of using expensively imported engines. 
 

Gamak is one of the most important producers of electric motors in the world, not just in Turkey. With 

electric motors produced in the power range of 0,06 kW to 1000 kW, it can meet almost all the engine 

needs of industry. Gamak can almost provide all the parts required for electric motor production at its own 

facility, and collect the entire production under one roof. The company has one of the most distinguished 

laboratories in Europe. 
 

In this study, 17 different asynchronous power motors using the full load efficiency values given in 

Gamak’s catalog are estimated with LP and ANN using nominal speed, current and torque values.  
 
Table 1. Induction Motor Parameters for Different Sizes (4 poles, 1500 rpm, 3 phases and 400 V) as listed in Gamak’s catalog [17] 

 
Motor kW Speed 

(RPM) 
Current 
(Ampere) 

Moment 
(Nm) 

Full Load 
Efficiency  (%) 

5,50 1465 11,2 35,9 87.9 
7,5 1465 15,4 48,9 89 
11 1465 21,3 71,7 90 
15 1465 29,4 97,8 90.6 
18,5 1470 34,5 120 91.3 
22 1470 42,5 143 91.7 
30 1470 55 195 92.5 
37 1470 67 240 92.7 
45 1470 80 292 93.3 
55 1475 96 356 93.7 
75 1480 133 484 94 
90 1480 158 581 94.3 
110 1485 195 707 94.5 
132 1485 230 849 94.7 
160 1485 280 1029 94.9 
185 1485 323 1190 94.9 
200 1485 350 1286 95 
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4. EFFICIENCY ESTIMATION WITH LINEAR ESTIMATION 

 

4.1. Correlations of Efficiency of Motor with Drawn Current, Output Moment and Rotation Speed 

 

The main parameter which gives a numerical magnitude for the correlation of two phenomena would be 

covariance [18], if these phenomena are thought as random variables as shown in (3). 

 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸[𝑋𝑌] − 𝐸[𝑋]𝐸[𝑌]                                                                                                              (3) 

 

In (3), 𝐸[∙] denotes the expected or mean value of the phenomenon. In discrete variables, covariance 

can be calculated by (4) from the samples measured for these two variables. 

𝐶𝑜𝑣(𝑋, 𝑌) =
1

𝑛2
∑ ∑(𝑥𝑖 − 𝐸[𝑋])

𝑛

𝑗=1

𝑛

𝑖=1

(𝑦𝑗 − 𝐸[𝑌])                                                                                            (4) 

 

According to Eq-4, some idea can be obtained from the relation of events X and Y. However, this 

covariance value is dependent on the magnitude of the standard deviations of X and Y. This dependency 

prevents the determination of the value. To discard the effects of the standard deviations of X and Y and 

to normalize the value between 1 and -1, the covariance value should be divided by the standard 

deviations of X and Y. According to this division, the Pearson Correlation Coefficient [19] is obtained 

as (5). 

 

 𝜌(𝑋, 𝑌) =
𝐶𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
                                                                                                                                      (5) 

 

For obtaining the Pearson Correlation Coefficient between efficiency and moment, efficiency and drawn 

current and efficiency and rotation speed, various data for the various sizes of induction motors are 

needed. For this purpose, the parameters listed in GAMAK’s catalog, which are given in Table 1 of 

Section 3, is used.  

 

If (5) is applied on Eq-3, the Pearson Correlation Coefficients are found as shown in Table-2. 
 

Table 2. Pearson Correlation Coefficients 

 
𝝆(𝑬, 𝑺) 𝝆(𝑬, 𝑪) 𝝆(𝑬, 𝑴) 

0.8993 0.8234 0.8241 

 
Note: E, S, C, M denotes Efficiency, Speed, Current and Moment respectively. 

 

According to Table 2, it can be said that the most correlated parameter with efficiency is rotation speed 

and the parameter least correlated with efficiency is drawn current. However, both parameters have strong 

correlations with efficiency, which provides the opportunity to construct a linear predictor for efficiency. 

 

4.2. Linear Estimation Model 

 

Assuming that 𝐸İ̂ is the estimation value of efficiency. Then there are four linear predictors proposed as 

(6), (7), (8) and (9) respectively. 

 

𝐸İ,𝑎𝑙�̂� = 𝑎𝑀𝑀𝑖,𝑁𝑜𝑟𝑚+𝑎𝐶𝐶𝑖,𝑁𝑜𝑟𝑚 + 𝑎𝑆𝑆𝑖,𝑁𝑜𝑟𝑚 + min(𝐸)                                                                                (6) 
 

𝐸İ,𝑀�̂� = 𝑏𝑀𝑀𝑖,𝑁𝑜𝑟𝑚+𝑏𝐶𝐶𝑖,𝑁𝑜𝑟𝑚 + min(𝐸)                                                                                                       (7) 
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𝐸İ,𝐶�̂� = 𝑐𝐶𝐶𝑖,𝑁𝑜𝑟𝑚+𝑐𝑆𝑆𝑖,𝑁𝑜𝑟𝑚 + min(𝐸)                                                                                                            (8) 

 

𝐸İ,𝑀�̂� = 𝑑𝑀𝑀𝑖,𝑁𝑜𝑟𝑚+𝑑𝑆𝐶𝑖,𝑁𝑜𝑟𝑚 + min(𝐸)                                                                                                       (9) 
For a successive estimation, input parameters of the predictors were normalized as in (10) 

 

𝑋𝑖,𝑁𝑜𝑟𝑚 =
𝑋𝑖−min(𝑋)

𝑚𝑎𝑥(𝑋𝑖−𝑚𝑖𝑛(𝑋))
                                                                                                                                  (10)        

 

The coefficients of the predictor 𝐸İ,𝑎𝑙�̂� was calculated by the correlation matrix as in (11). 

 

[

𝑎𝑀

𝑎𝐶

𝑎𝑆

] = 𝐾 ∙ [

𝜌(𝐸, 𝐸) 𝜌(𝐸, 𝑀) 𝜌(𝐸, 𝐶)

𝜌(𝐸, 𝑀) 𝜌(𝐸, 𝐸) 𝜌(𝐸, 𝑆)

𝜌(𝐸, 𝐶) 𝜌(𝐸, 𝑆) 𝜌(𝐸, 𝐸)
]

−1

∙ [

𝜌(𝐸, 𝑀)

𝜌(𝐸, 𝐶)

𝜌(𝐸, 𝑆)
]

𝐾 = 𝑚𝑎𝑥(𝐸𝑖 − 𝑚𝑖𝑛(𝐸))

                                                                    (11) 

 

The coefficients of the predictor 𝐸İ,𝑀�̂�  was calculated by the correlation matrix as in (12). 

 

[
𝑏𝑀

𝑏𝐶
] = 𝐾 ∙ [

𝜌(𝐸, 𝐸) 𝜌(𝐸, 𝑀)

𝜌(𝐸, 𝐶) 𝜌(𝐸, 𝐸)
]

−1

∙ [
𝜌(𝐸, 𝑀)

𝜌(𝐸, 𝐶)
]

𝐾 = 𝑚𝑎𝑥(𝐸𝑖 − 𝑚𝑖𝑛(𝐸))

                                                                                             (12) 

 

The coefficients of the predictor 𝐸İ,𝐶�̂� was calculated by the correlation matrix as in (13). 

 

[
𝑐𝐶

𝑐𝑆
] = 𝐾 ∙ [

𝜌(𝐸, 𝐸) 𝜌(𝐸, 𝐶)

𝜌(𝐸, 𝑆) 𝜌(𝐸, 𝐸)
]

−1

∙ [
𝜌(𝐸, 𝐶)

𝜌(𝐸, 𝑆)
]

𝐾 = 𝑚𝑎𝑥(𝐸𝑖 − 𝑚𝑖𝑛(𝐸))

                                                                                                 (13) 

 

The coefficients of the predictor 𝐸İ,𝑀�̂� is calculated by the correlation matrix as in (14). 

 

[
𝑑𝑀

𝑑𝑆
] = 𝐾 ∙ [

𝜌(𝐸, 𝐸) 𝜌(𝐸, 𝑀)

𝜌(𝐸, 𝑆) 𝜌(𝐸, 𝐸)
]

−1

∙ [
𝜌(𝐸, 𝑀)

𝜌(𝐸, 𝑆)
]

𝐾 = 𝑚𝑎𝑥(𝐸𝑖 − 𝑚𝑖𝑛(𝐸))

                                                                                             (14) 

 

For Table 1, the predictor equations are found as in (15), (16), (17) and (18) respectively. 

 

𝐸İ,𝑎𝑙�̂� = 1.92𝑀𝑖,𝑁𝑜𝑟𝑚-0.30𝐶𝑖,𝑁𝑜𝑟𝑚 + 5.07𝑆𝑖,𝑁𝑜𝑟𝑚 + 87.9                                                                           (15) 
 

𝐸İ,𝑀�̂� = 3.21𝑀𝑖,𝑁𝑜𝑟𝑚+3.20𝐶𝑖,𝑁𝑜𝑟𝑚 + 87.9                                                                                                    (16) 

 

𝐸İ,𝐶�̂� = 2.27𝐶𝑖,𝑁𝑜𝑟𝑚+4.35𝑆𝑖,𝑁𝑜𝑟𝑚 + 87.9                                                                                                       (17) 

 

𝐸İ,𝑀�̂� = 2.28𝑀𝑖,𝑁𝑜𝑟𝑚+4.34𝐶𝑖,𝑁𝑜𝑟𝑚 + 87.9                                                                                                    (18) 

 

𝐸İ,𝐶�̂� and 𝐸İ,𝑀�̂� have close coefficients because the normalized current data and normalized moment data 

are so close to each other because of linear dependency. 

 

According to the predictor equations, the predicted current values are found as in Table 3. 
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Table 3. Estimation Values of Proposed Predictors 

 

Full Load 

Efficiency  
𝑬İ,𝒂𝒍�̂� 𝑬İ,𝑴�̂�   𝑬İ,𝑪�̂�   𝑬İ,𝑴�̂� 

87.9  87.9  87.9  87.9  87.9  

89  87.916  87.973  87.928  87.924  

90  87.946  88.087  87.968  87.865  

90.6  87.979  88.231  88.022  88.013  

91.3  89.277  88.336  89.142  89.138  

91.7  89.305  88.471  89.196  89.180  

92.5  89.374  88.723  89.280  89.274  

92.7  89.432  88.952  89.360  89.356  

93.3  89.5  89.208  89.447  89.451  

93.7  90.853  89.524  90.640  90.652  

94  92.285  90.202  91.974  91.970  

94.3  93.412  90.688  92.142  92.146  

94.5  93.841  91.361  93.476  93.461  

94.7  94.028  92.057  93.710  93.719  

94.9  94.261  92.992  94.045  94.047  

94.9  94.471  93.812  94.333  94.340  

95  94.595  94.314  94.514  94.514  

     

 

5. EFFICIENCY ESTIMATION WITH ARTIFICIAL NEURAL NETWORK (ANN) 

 

Artificial neural networks (ANN), created by imitating human brain function, can perform a process  of 

learning through experimentation just as the human brain does. Perhaps the most important place where 

ANN is being used is in estimation. ANN intends to reveal the relationships between data which is 

sometimes easy to understand but sometimes nonlinear. 

 

Without any assumption, ANN can provide modeling without any additional information between input 

and output. Therefore, ANN can easily provide nonlinear modeling [20]. Network training is provided 

by input and output information according to these inputs.  

 

Back Propagation Networks (BPN), also used in this study, is a network structure that is frequently used. 

The standard back propagation algorithm is a gradient descent algorithm in which the net weights 

advance in the negative gradient of the performance function. Many types of back propagation 

algorithms are based on standard optimization techniques such as gradient descent and the Newton 

method. [20] The backpropagation algorithmwas first proposed by Werbos [21] and later by Rumelhart 

[22], independently of each other. In 1986, Rumelhart and his colleagues rediscovered the 

backpropagation algorithm, making the algorithm known and widely used.  

 

In  many previous studies it has been shown that artificial neural networks (ANN) give better results 

than conventional methods of estimation, [23-25]. The reason for the use of ANN is its success, 

especially for nonlinear input data. [26]  And the Back Propagation Networks (BPN), which is a type of 

ANN and also used in this study,  is the most commonly used learning algorithm. 

 

In this study, the values of speed, current and torque, which are given in Table 1, are used. In the first 

experiment, all of these three parameters were applied as the input vector of the NN. In the following 

three experiments, each parameter is applied as a single input value.  At this stage, inputs are normalized 

first. A forward feed back propagation network is used, as can be seen in Figure 1. The remarkable point 

is Mean Square Error (MSE) as a performance function, 1 as the number of layers and 30 as the number 

of neurons. There is no hidden layer because hidden layers cause the exponent of the equation. In this 

study there is a logistic regression need for to compare with LP.Later, the network is trained to make 

estimations. The results can be seen in Figure 2 and Tablo 4. 
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Figure 1. Specifications of the Network 

 

 
 

Figure 2. Simulations Results (According to three inputs) 
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Table 4. Estimation Values of ANN 

 

Motor 

kW 

Efficiency Estim. 

(%) 

(speed, current 

and moment) 

Efficiency 

Estim. (%)  

(speed)  

Efficiency 

Estim. (%)  

(current)  

Efficiency Estim. 

(%)  

(moment)  

5,5 88,869 89,508 88,16 88,287 

7,5 89,130 89,508 88,273 88,336 

11 89,601 89,508 88,722 88,489 

15 90,426 89,508 91,060 90,534 

18,5 91,732 91,945 91,995 91,324 

22 92,034 91,945 92,802 91,521 

30 92,364 91,945 92,980 94,288 

37 92,863 91,945 93,440 93,056 

45 93,293 91,945 92,773 93,115 

55 92,757 93,699 94,568 93,712 

75 94,021 93,979 93,918 94,812 

90 94,751 93,979 94,240 94,302 

110 94,402 94,810 94,483 94,514 

132 94,834 94,810 94,458 94,755 

160 95,086 94,810 94,767 94,884 

185 95,099 94,810 94,750 94,959 

200 95,099 94,810 94,631 95,003 

 

6. COMPARATIVE RESULTS 
 

The comparative efficiency results of the two methods according to different input values are given in 

Table 5. Root Mean Square Error (RMSE) values are given in Table 6. One thing to note is that while 

LP requires at least two types of inputs, NN requires only single type of input. 
 

Table 5. Estimation Values of LP and ANN 

 
Full Load 

Efficiency 
𝑬İ,𝒂𝒍�̂� 

LP 

𝑬İ,𝑴�̂� 

LP 

𝑬İ,𝑪�̂� 

LP 

𝑬İ,𝑴�̂� 

LP 

𝑬İ,𝒂𝒍�̂� 

ANN 
 

𝑬İ,�̂� 

ANN 

𝑬İ,�̂� 

ANN 

𝑬İ,�̂� 

ANN 

87.9 87.9 87.9 87.9 87.9 88,869 89,508 88,16 88,287 

89 87.916 87.973 87.928 87.924 89,13 89,508 88,273 88,336 

90 87.946 88.087 87.968 87.865 89,601 89,508 88,722 88,489 

90.6 87.979 88.231 88.022 88.013 90,426 89,508 91,06 90,534 

91.3 89.277 88.336 89.142 89.138 91,732 91,945 91,995 91,324 

91.7 89.305 88.471 89.196 89.180 92,034 91,945 92,802 91,521 

92.5 89.374 88.723 89.280 89.274 92,364 91,945 92,98 94,288 

92.7 89.432 88.952 89.360 89.356 92,863 91,945 93,44 93,056 

93.3 89.5 89.208 89.447 89.451 93,293 91,945 92,773 93,115 

93.7 90.853 89.524 90.640 90.652 92,757 93,699 94,568 93,712 

94 92.285 90.202 91.974 91.970 94,021 93,979 93,918 94,812 

94.3 93.412 90.688 92.142 92.146 94,751 93,979 94,24 94,302 

94.5 93.841 91.361 93.476 93.461 94,402 94,81 94,483 94,514 

94.7 94.028 92.057 93.710 93.719 94,834 94,81 94,458 94,755 

94.9 94.261 92.992 94.045 94.047 95,086 94,81 94,767 94,884 

94.9 94.471 93.812 94.333 94.340 95,099 94,81 94,75 94,959 

95 94.595 94.314 94.514 94.514 95,099 94,81 94,631 95,003 

 

 

Table 6. RMSE of Estimation Values LP and ANN 

 
Linear Estimation Artificial Neural Networks 

 

 

       

2,076 2,089 2,178 2,18 0,311 0,552 0,534 0,403 
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7. CONCLUSION 

 

In this study, Artificial Neural Network (ANN) and Linear Estimation (LP) which are considered as 

optimization techniques were used for the efficiency estimation of 17 induction motors. Subsequently, 

two different methods were compared according to the efficiency values given in the manufacturer’s 

catalog in Table 5 and 6. According to these Tables, as expected, the combination of speed and current 

and torque values are the most accurate results. With these three inputs, the model performs quite well.  

 

Also, using moment and drawn current data in a single estimation model is inappropriate because they 

have the same information according to linear dependency for LP. However, if the speed data is used in 

any predictor, the predictor gives better results because of the strong correlation with efficiency.  

 

For ANN, another noteworthy  point is that the closest value is obtained from current input excepting 

three inputs. The other finding is that it is not possible to use speed alone as an input in the estimation 

of efficiency.  

 

To understand which model is more accurate the RMSE values can be studied. In Table 6, ANN’s RMSE 

values are less than LP. As shown in previous studies, this research provides evidence that ANNs give 

better results than conventional methods of estimation. 
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