CSJ

Partition of the Spectra for the Generalized Difference Operator B(r,s) on the Sequence Space cs

Nuh DURNA ${ }^{I^{*}}$, Mustafa YILDIRIM ${ }^{1}$, Rabia KILIC ${ }^{1}$
${ }^{1}$ Cumhuriyet University, Faculty of Science, Department of Mathematics, Sivas, TURKEY

Received: 20.12.2017; Accepted: 21.02.2018
http://dx.doi.org/10.17776/ csj. 369069

Abstract

The goal of this study gives the approximate point spectrum, the defect spectrum and the compression spectrum of generalized difference operator $B(r, s)$ over the class of convergent series.

2010 Mathematics Subject Classifications: 47A10; 47B37; 15A18.
Keywords: Generalized difference operator, approximate point spectrum, defect spectrum, compression spectrum

Genelleştirilmiş Fark Operatörü B(r,s) nin cs Dizi Uzayı Üzerinde Spektral Ayrısımı

Özet: Bu çalı̧̧manın amacı, yakınsak seriler sınıfında genelleştirilmiş fark operatörünün yaklaşık nokta spektrumunu, eksik spektrumu ve sikıştrma spektrumu vermektir.

Anahtar Kelimeler: Genelleştirilmiş fark operatörü, yaklaşık nokta spektrum, eksik spektrum, sıkı̧̧trrılmış spektrum

1. INTRODUCTION

We know that there is strictly the relationship between matrices and operators. The eigenvalues of matrices are contained in the spectrum of an operator. Spectral theory is a generalization of a set of eigenvalues of a linear operator in a finite dimensional vector space to an infinite dimensional vector space. The spectral theory of finite dimensional linear algebra may be provided as an attempt to expand the known decomposition results in similar situations in the infinite dimension.

Let X and Y be the Banach spaces, and $L: X \rightarrow Y$ be a bounded linear operator. By $R(L)=\{y \in Y: y=L x, x \in X\}$, we denote the range of L and by $B(X)$, we show the set of all bounded linear operators on X into itself.

[^0]Let $L: D(L) \rightarrow X$ be a linear operator, defined on $D(L) \subset X$, where $D(L)$ denote the domain of L and X is a complex normed space. Let $L_{\lambda}:=\lambda I-L$ for $L \in B(X)$ and $\lambda \in \mathbb{C}$ where I is the identity operator. L_{λ}^{-1} is known as the resolvent operator of L_{λ}.

The resolvent set of L is the set of complex numbers λ of L such that L_{λ}^{-1} exists, is bounded and, is defined on a set which is dense in X, denoted by $\rho(L, X)$. Its complement is given by $\mathbb{C}-\rho(L ; X)$ is called the spectrum of L, denoted by $\sigma(L, X)$.

The spectrum $\sigma(L, X)$ is union of three disjoint sets as follows: The point spectrum $\sigma_{p}(L, X)$ is the set such that L_{λ}^{-1} does not exist. If the operator L_{λ}^{-1} is defined on a dense subspace of X and is unbounded then $\lambda \in \mathbb{C}$ belongs to the continuous spectrum $\sigma_{c}(L, X)$ of L. Furthermore, we say that $\lambda \in \mathbb{C}$ belongs to the residual spectrum $\sigma_{r}(L, X)$ of L if the operator L_{λ}^{-1} exists, but its domain of definition (i.e. the range $R(\lambda I-L)$ of $(\lambda I-L)$ is not dense in X than in this case L_{λ}^{-1} may be bounded or unbounded. From above definitions we have

$$
\begin{equation*}
\sigma(L, X)=\sigma_{p}(L, X) \cup \sigma_{c}(L, X) \cup \sigma_{r}(L, X) \tag{1.1}
\end{equation*}
$$

and

$$
\sigma_{p}(L, X) \cap \sigma_{c}(L, X)=\varnothing, \sigma_{p}(L, X) \cap \sigma_{r}(L, X)=\varnothing, \sigma_{r}(L, X) \cap \sigma_{c}(L, X)=\varnothing .
$$

1.1. Goldberg's Classification of Spectrum

If $T \in B(X)$, then there are three cases for $R(T)$:
(I) $R(T)=X$, (II) $\overline{R(T)}=X$, but $R(T) \neq X$, (III) $\overline{R(T)} \neq X$ and three cases for T^{-1} :
(1) T^{-1} exists and continuous, (2) T^{-1} exists but discontinuous, (3) T^{-1} does not exist.

If these cases are combined in all possible ways, nine different states are created. These are labelled by: I_{1} $, I_{2}, I_{3}, I I_{1}, I I_{2}, I I_{3}, I I I_{1}, I I I_{2}, I I I_{3}$ (see [10]).
$\sigma(L, X)$ can be divided into subdivisions $I_{2} \sigma(L, X)=\varnothing, I_{3} \sigma(L, X), I I_{2} \sigma(L, X), I I_{3} \sigma(L, X)$, $I I I_{1} \sigma(L, X), I I I_{2} \sigma(L, X), I I I_{3} \sigma(L, X)$. For example, if $T=\lambda I-L$ is in a given state, $I I I_{2}$ (say), then we write $\lambda \in I I I{ }_{2} \sigma(L, X)$.

By w, we will denote the space of all sequences. We will show ℓ_{p}, c, c_{0} and $b v$ for the space of all bounded, convergent, null and bounded variation sequences, respectively. Also by $\ell_{p}, b v_{p}$ we denote the spaces of all p-absolutely summable sequences and p-bounded variation sequences, respectively.

Many investigators studied the spectrum and fine spectrum of linear operators on some sequence spaces. In 2005, Altay and Başar [1] determined spectra and the fine spectra of generalized difference operator $B(r, s)$ on c_{0} and c. In 2008, Bilgiç and Furkan [3] determined spectra and the fine spectra of generalized difference operator $B(r, s)$ on ℓ_{p} and $b v_{p},(1 \leq p<\infty)$. In the last year, the spectral divisions of generalized difference matrices have studied. For example, in [6], Das calculated the spectrum and fine spectrum of the matrix $U\left(r_{1}, r_{2} ; s_{1}, s_{2}\right)$ over the sequence space c_{0}. In [13], Tripathy and Das determined the spectra and fine spectra of $U(r, s)$ on the sequence space

$$
c s=\left\{x=\left(x_{n}\right) \in w: \lim _{n \rightarrow \infty} \sum_{i=0}^{n} x_{i} \text { exists }\right\},
$$

which is a Banach space with respect to the norm $\|x\|_{c s}=\sup _{n}\left|\sum_{i=0}^{n} x_{i}\right|$.
Matrices with finite elements or finite difference problems are often banded in numerical analysis. With the help of these matrices, we define relations between problem variables. The bandedness is confirmed with variables which are not conjugate in arbitrarily large distances. We can furthermore divide these matrices. For example, there are banded matrices with every element in the band is nonzero. We generally encounter these matrices while we are separating one-dimensional problems.

The band matrix $B(r, s)$ is represented by the matrix

$$
B(r, s)=\left(\begin{array}{cccc}
r & 0 & 0 & \cdots \\
s & r & 0 & \cdots \\
0 & s & r & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right),(\mathrm{s} \neq 0) .
$$

2. THE FINE SPECTRA FOR $B(r, s)$

Dutta and Tripathy [9] examined the fine spectra of the matrix $B(r, s)$ on the sequence space $c s$. Herein we mention the main results.

Lemma 1 ([10], p.59) T has a dense range if and only if T^{*} is 1-1.
Lemma 2 ([10], p.60) T has a bounded inverse if and only if T^{*} is onto.
Lemma 3 ([9], Lemma 2) $B(r, s): c s \rightarrow c s$ is a bounded linear operator with $\|\left. B(r, s)\right|_{(c s, c s)} \leq|r|+|s|$.

Theorem 1 ([9], Theorem 6) $\sigma(B(r, s), c s)=\{\lambda \in \mathbb{C}:|\lambda-r| \leq|s|\}$.
Theorem 2 ([9], Theorem 7) $\sigma_{p}(B(r, s), c s)=\varnothing$.

Let $T: c s \rightarrow c s$ is a bounded linear operator and A is its matrix representation. Then $T^{*}: c s^{*} \rightarrow c s^{*}$ is adjoint operator of T and A^{t} is matrix representation of T^{*}. Also $c s$ is isomorphic to $b v$ with the norm $\|x\|=\sum_{n=0}^{\infty}\left|x_{n}-x_{n+1}\right|$.

Theorem 3 ([9], Theorem 8) $\sigma_{p}\left(B(r, s)^{*}, c s^{*}\right)=\{\lambda \in \mathbb{C}:|\lambda-r|<|s|\}$.
Theorem 4 ([9], Theorem 9) $\sigma_{r}(B(r, s), c s)=\{\lambda \in \mathbb{C}:|\lambda-r|<|s|\}$.
Theorem 5 ([9], Theorem 10) $\sigma_{c}(B(r, s), c s)=\{\lambda \in \mathbb{C}:|\lambda-r|=|s|\}$.

Lemma 4

$$
\sum_{n=1}^{\infty}\left(\sum_{k=0}^{n-1} a_{k} b_{n k}\right)=\sum_{k=0}^{\infty} a_{k}\left(\sum_{n=k+1}^{\infty} b_{n k}\right)
$$

where $\left(a_{k}\right)$ and $\left(b_{n k}\right)$ are nonnegative real numbers.
Proof.

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left(\sum_{k=0}^{n-1} a_{k} b_{n k}\right)=\sum_{k=0}^{0} a_{k} b_{1 k}+\sum_{k=0}^{1} a_{k} b_{2 k}+\sum_{k=0}^{2} a_{k} b_{3 k}+\sum_{k=0}^{3} a_{k} b_{4 k}+\Lambda \\
& =a_{0} b_{10}+\left(a_{0} b_{20}+a_{1} b_{21}\right)+\left(a_{0} b_{30}+a_{1} b_{31}+a_{2} b_{32}\right) \\
& +\left(a_{0} b_{40}+a_{1} b_{41}+a_{2} b_{42}+a_{3} b_{43}\right)+\Lambda \\
& =a_{0} \sum_{n=1}^{\infty} b_{n 0}+a_{1} \sum_{n=2}^{\infty} b_{n 1}+a_{2} \sum_{n=3}^{\infty} b_{n 2}+\Lambda \\
& =\sum_{k=0}^{\infty} a_{k}\left(\sum_{n=k+1}^{\infty} b_{n k}\right) .
\end{aligned}
$$

Theorem $6 I I I_{1} \sigma(B(r, s), c s)=\{\lambda \in \mathbb{C}:|\lambda-r|<|s|\}$.
Proof. We must obtain $x \in c s^{*} \cong b v$ for all $y \in c s^{*} \cong b v$ such that $(B(r, s)-\lambda I)^{*} x=y$. Then we have

$$
\begin{aligned}
(r-\lambda) x_{0}+s x_{1} & =y_{0} \\
(r-\lambda) x_{1}+s x_{2} & =y_{1} \\
& \vdots \\
(r-\lambda) x_{k}+s x_{k+1} & =y_{k}
\end{aligned}
$$

Assume that $x_{0}=0$. From the above equations, we get

$$
\begin{aligned}
x_{1} & =\frac{y_{0}}{s} \\
x_{2} & =\frac{1}{s} y_{1}-\frac{r-\lambda}{s^{2}} y_{0} \\
& \vdots \\
x_{n} & =\frac{1}{s}\left(y_{n-1}-\frac{r-\lambda}{s} y_{n-2}+\left(\frac{r-\lambda}{s}\right)^{2} y_{n-3}-\left(\frac{r-\lambda}{s}\right)^{3} y_{n-4}+\cdots+(-1)^{n-1}\left(\frac{r-\lambda}{s}\right)^{n-1} y_{0}\right) \\
& =\frac{1}{s} \sum_{k=0}^{n-1}(-1)^{k}\left(\frac{r-\lambda}{s}\right)^{k} y_{n-k-1}
\end{aligned}
$$

where $n=1,2,3, \cdots$. Now we must show that $x \in b v$.

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left|x_{n}-x_{n+1}\right|=\left|x_{0}-x_{1}\right|+\frac{1}{\mid s} \sum_{n=1}^{\infty}\left|\sum_{k=0}^{n-1}(-1)^{k}\left(\frac{r-\lambda}{s}\right)^{k} y_{n-k-1}-\sum_{k=0}^{n}(-1)^{k}\left(\frac{r-\lambda}{s}\right)^{k} y_{n-k}\right| \\
& \leq\left|\frac{y_{0}}{s}\right|+\left|\frac{y_{0}}{s}\right| \sum_{n=1}^{\infty}\left|\frac{r-\lambda}{s}\right|^{n}+\frac{1}{\mid s} \sum_{n=1}^{\infty} \sum_{k=0}^{n-1}\left|\frac{r-\lambda}{s}\right|^{k}\left|y_{n-k-1}-y_{n-k}\right| .
\end{aligned}
$$

From Lemma 4, we get

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left|x_{n}-x_{n+1}\right| \leq\left|\frac{y_{0}}{s}\right| \sum_{n=0}^{\infty}\left|\frac{r-\lambda}{s}\right|^{n}+\frac{1}{\mid s} \sum_{k=0}^{\infty} \sum_{n=k+1}^{\infty}\left|\frac{r-\lambda}{s}\right|^{k}\left|y_{n-k-1}-y_{n-k}\right| \\
& =\frac{1}{|s|}\left(\left|y_{0}\right| \sum_{n=0}^{\infty}\left|\frac{r-\lambda}{s}\right|^{n}+\sum_{k=0}^{\infty}\left|\frac{r-\lambda}{s}\right|^{k} \sum_{n=k+1}^{\infty}\left|y_{n-k-1}-y_{n-k}\right|\right) \\
& =\frac{1}{|s|}\left(\left|y_{0}\right| \sum_{n=0}^{\infty}\left|\frac{r-\lambda}{s}\right|^{n}+\sum_{k=0}^{\infty}\left|\frac{r-\lambda}{s}\right|^{k} \sum_{n=0}^{\infty}\left|y_{n}-y_{n+1}\right|\right) \\
& =\frac{1}{|s|}\left(\left|y_{0}\right|+\| y| | b v\right) \sum_{n=0}^{\infty}\left|\frac{r-\lambda}{s}\right|^{n} .
\end{aligned}
$$

That is, for $\lambda \in \sigma_{r}(B(r, s), c s)$, the operator $(\lambda I-B(r, s))^{*}$ is surjective if and only if $|r-\lambda|<|s|$. Hence from Lemma 2, $\lambda I-B(r, s)$ has bounded inverse.

3. PARTITION OF THE SPECTRA FOR $B(r, s)$

We recall a sequence $\left(x_{k}\right)$ in X a Weyl sequence for L if $\left\|x_{k}\right\|=1$ and $\left\|L x_{k}\right\| \rightarrow 0$ as $k \rightarrow \infty$.
We call the set

$$
\begin{equation*}
\sigma_{a p}(L, X):=\{\lambda \in \mathbb{C}: \text { there exists a Weyl sequence for } \lambda I-L\} \tag{3.1}
\end{equation*}
$$

the approximate point spectrum of L. Also,

$$
\begin{equation*}
\sigma_{\delta}(L, X):=\{\lambda \in \sigma(L, X): \lambda I-L \text { is not surjective }\} \tag{3.2}
\end{equation*}
$$

is called the defect spectrum of L. Finally,

$$
\begin{equation*}
\sigma_{c o}(L, X):=\{\lambda \in \mathbb{C}: \overline{R(\lambda I-L)} \neq X\} \tag{3.3}
\end{equation*}
$$

is called the compression spectrum. By definitions, we have, $\sigma_{p}(L, X) \subseteq \sigma_{a p}(L, X)$ and $\sigma_{c o}(L, X) \subseteq \sigma_{\delta}(L, X)$. On the other hand, if we consider these subspectra with (1.1) we obtain that

$$
\begin{equation*}
\sigma_{r}(L, X)=\sigma_{c o}(L, X) \backslash \sigma_{p}(L, X) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\sigma_{c}(L, X)=\sigma(L, X) \backslash \sigma_{p}(L, X) \cup \sigma_{c o}(L, X)\right] \tag{3.5}
\end{equation*}
$$

Proposition 1 ([2], Proposition 1.3) Let $T \in B(X)$ and its adjoint $T^{*} \in B\left(X^{*}\right)$ then the following relations are hold:
(a) $\sigma\left(T^{*}, X^{*}\right)=\sigma(T, X)$,
(b) $\sigma_{c}\left(T^{*}, X^{*}\right) \subseteq \sigma_{a p}(T, X)$,
(c) $\sigma_{a p}\left(T^{*}, X^{*}\right)=\sigma_{\delta}(T, X)$,
(d) $\sigma_{\delta}\left(T^{*}, X^{*}\right)=\sigma_{a p}(T, X)$,
(e) $\sigma_{p}\left(T^{*}, X^{*}\right)=\sigma_{c o}(T, X)$,
(f) $\sigma_{c o}\left(T^{*}, X^{*}\right) \supseteq \sigma_{p}(T, X)$,
(g) $\sigma(T, X)=\sigma_{a p}(T, X) \cup \sigma_{p}\left(T^{*}, X^{*}\right)=\sigma_{p}(T, X) \cup \sigma_{a p}\left(T^{*}, X^{*}\right)$.

By the definitions given above, we can write following Table 1.

Table 1. Subdivisions of the spectrum of a linear operator.

		1	2	3
		$R(\lambda ; L)$	$R(\lambda ; L)$	$R(\lambda ; L)$
		exits and is unbounded	exits and is unbounded	Does not exits
I	$R(\lambda I-L)=X$	$\lambda \in \rho(L)$	-	$\lambda \in \sigma_{p}(L)$
		$\lambda \in \rho(L)$		$\lambda \in \sigma_{a p}(L)$
II	$\overline{R(\lambda I-L)} \neq X$	$\lambda \in \rho(L)$	$\lambda \in \sigma_{c}(L)$	$\lambda \in \sigma_{p}(L)$
			$\lambda \in \sigma_{a p}(L)$	$\lambda \in \sigma_{a p}(L)$
			$\lambda \in \sigma_{\delta}(L)$	$\lambda \in \sigma_{\delta}(L)$
III	$\overline{R(\lambda I-L)} \neq X$		$\lambda \in \sigma_{r}(L)$	$\lambda \in \sigma_{p}(L)$
		$\begin{aligned} & \lambda \in \sigma_{r}(L) \\ & \lambda \in \sigma_{\delta}(L) \end{aligned}$	$\lambda \in \sigma_{a p}(L)$	$\lambda \in \sigma_{a p}(L)$
		$\lambda \in \sigma_{\delta}(L)$ $\lambda \in \sigma_{c o}(L)$	$\lambda \in \sigma_{\delta}(L)$	$\lambda \in \sigma_{\delta}(L)$
			$\lambda \in \sigma_{c o}(L)$	$\lambda \in \sigma_{c o}(L)$

The decomposition of the spectrum which is defined by Goldberg can be obtained in the above-mentioned articles. However, in [7] Durna and Yildirim investigated subdivision of the spectra for factorable matrices on c_{0} and in [4] Başar, Durna and Yildirim investigated partition of the spectra for generalized difference operator $B(r, s)$ over certain sequence spaces and in [8] Durna, studied partition of the spectra for $\Delta^{u v}$ over the sequence spaces c_{0} and c. In [14], Tripathy and Avinoy studied the spectra of the operator $D(r, 0,0, s)$ on sequence spaces c_{0} and c. In [11], Paul and Tripathy investigated the spectrum of the operator $D(r, 0,0, s)$ over the sequence spaces ℓ_{p} and $b v_{p}$. In [12], Paul and Tripathy investigated the spectrum of the operator $D(r, 0,0, s)$ on the sequence space $b v_{0}$. In [5], Das and Tripathy examined the spectra and fine spectra of the matrix $B(r, s, t)$ on the sequence space $c s$.

Corollary $1 \mathrm{III}_{2} \sigma(B(r, s), c s)=\varnothing$.
Proof. It is clear from Theorem 4 and Theorem 6, since
$I I I_{2} \sigma(B(r, s), c s)=\sigma_{r}((B(r, s), c s)) \backslash I I I_{1} \sigma((B(r, s), c s))$.
Corollary $2 I_{3} \sigma(B(r, s), c s)=I I_{3} \sigma(B(r, s), c s)=I I I_{3} \sigma(B(r, s), c s)=\varnothing$.

Proof. Since $\sigma_{p}(A, c s)=I_{3} \sigma(A, c s) \cup I I_{3} \sigma(A, c s) \cup I I I_{3} \sigma(A, c s)$ from Table 1, we get the required result from Theorem 2.

Theorem $7(a) \sigma_{a p}(B(r, s), c s)=\{\lambda \in \mathbb{C}:|\lambda-r|=|s|\}$,
(b) $\sigma_{\delta}(B(r, s), c s)=\{\lambda \in \mathbb{C}:|\lambda-r| \leq|s|\}$,
(c) $\sigma_{c o}(B(r, s), c s)=\{\lambda \in \mathbb{C}:|\lambda-r|<|s|\}$.

Proof. (a) From Table 1,

$$
\sigma_{a p}(B(r, s), c s)=\sigma(B(r, s), c s) \backslash I I I_{1} \sigma(B(r, s), c s) .
$$

By Theorem 1 and Corollary 1, we have $\sigma_{a p}(B(r, s), c s)=\{\lambda \in \mathbb{C}:|\lambda-r|=|s|\}$.
(b) From Table 1, we have

$$
\sigma_{\delta}(B(r, s), c s)=\sigma(B(r, s), c s) \backslash I_{3} \sigma(B(r, s), c s) .
$$

So using Theorem 1 and Corollary 2, we obtain the result.
(c) By Proposition 1 (e), we get

$$
\sigma_{p}\left(B(r, s)^{*}, b v\right)=\sigma_{c o}(B(r, s), c s) .
$$

Using Theorem 3, we obtain the result.
Corollary 3 (a) $\sigma_{a p}\left(B(r, s)^{*}, b v\right)=\{\lambda \in \mathbb{C}:|\lambda-r| \leq|s|\}$,
(b) $\sigma_{a p}\left(B(r, s)^{*}, b v\right)=\{\lambda \in \mathbb{C}:|\lambda-r|=|s|\}$.

Proof. Using Proposition 1 (c) and (d), we have

$$
\sigma_{a p}\left(B(r, s)^{*}, c s^{*} \cong b v\right)=\sigma_{\delta}(B(r, s), c s)
$$

and

$$
\sigma_{\delta}\left(B(r, s)^{*}, c s^{*} \cong b v\right)=\sigma_{a p}(B(r, s), c s) .
$$

Using Theorem 7 (a) and (b), we get the required results.

Acknowledgements

The work was supported by grants from CUBAB (F-511).

REFERENCES

[1]. Altay B., Başar F., On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces c_{0} and c, Int. J. Math. Sci. 18 (2005) 3005-3013.
[2]. Appell J. Pascale E.D., Vignoli A., Nonlinear Spectral Theory. Walter de Gruyter, Berlin , New York, (2004).
[3]. Bilgiç H. and Furkan H., On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces ℓ_{p} and $b v_{p},(1<p<\infty)$, Nonlinear Anal., 68 (2008) 499-506.
[4]. Başar F., Durna N., Yildirim M., Subdivisions of the spectra for genarilized difference operator over certain sequence spaces, Thai J. Math., 9-2 (2011) 285-295.
[5]. Das R., Tripathy B.C., Spectrum and fine spectrum of the lower triangular matrix $B(r, s, t)$ over the sequence space $c S$, Songklanakarin J. Sci. Technol., 38-3 (2016) 265-274.
[6]. Das R., On the spectrum and fine spectrum of the upper triangular matrix $U\left(r_{1}, r_{2} ; s_{1}, s_{2}\right)$ over the sequence space c_{0}. Afr. Math. 28-5,6 (2017) 841-849.
[7]. Durna N., Yildirim M., Subdivision of the spectra for factorable matrices on c_{0}. GUJ Sci ., 24-1 (2011) 45-49.
[8]. Durna N., Subdivision of the spectra for the generalized upper triangular double-band matrices $\Delta^{u v}$ over the sequence spaces c_{0} and c, ADYUSCI, 6-1 (2016) 31-43.
[9]. Dutta A., Tripathy B.C., Fine Spectrum of the Generalized Difference Operator $B(r, s)$ over the Class of Convergent Series, Int. J. Anal., 2013, Article ID 630436 (2013), 1-4.
[10]. Goldberg S., Unbounded Linear Operators, McGraw Hill, New York, (1966).
[11]. Paul A., Tripathy B.C., The spectrum of the operator $D(r, 0,0, s)$ over the sequence spaces ℓ_{p} and $b v_{p}$, Hacet. J. Math. Stat., 43-3 (2014) 425-434.
[12]. Paul A., Tripathy B.C., The spectrum of the operator $D(r, 0,0, s)$ over the sequence space $b v_{0}$, Georgian Math. J., 22-3 (2015) 421-426.
[13]. Tripathy B.C., Das R. Spectrum and fine spectrum of the upper triangular matrix over the squence space, Proyecciones, 34-2 (2015) 107-125.
[14]. Tripathy B.C., Saikia P. On the spectrum of the Cesaro operator C_{1} on $b v_{0} \cap \ell_{\infty}$, Math. Slovaca 633 (2013) 563-572.

[^0]: * Corresponding author. Email address: ndurna@ cumhuriyet.edu.tr
 http://dergipark.gov.tr/csj ©2016 Faculty of Science, Cumhuriyet University

