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DETERMINATION OF THE SENSE OF SHEAR USING THE ORIENTATION OF SHEAR
BAND FOLIATION IN MYLONITES: FIELD EVIDENCE FROM THE KEBAN
COMPLEX, EASTERN TURKEY

Glltekin  SAVCI*

ABSTRACT. — The structural features of the northern part of the Bitlis suture zone of the Alpine-Himalayan orogenic
belt (Turkey) show intense internal deformations. The variable lithology and microstructural features of the high strain
zones commonly found in the Keban complex are characterized by mylonitic texture. The Keban complex wereformed in
ancient continental margin sedimentary sequences of the northern branch of the Neo-Tethys. Single sets of shear band
foliations occur within mylonite zones composed of strongly foliated phyllitic psammites. Two well defined microscopic
criteria, the tails of the augen structures and smaller scae shear zones which were formed between the relatively unde-
formed pod shaped aggregates, are used to deduce the sense of shear in alithologically inhomogeneous brittle-ductile
shear zone of the Keban complex. The sense of shear determined in this way from the anastomosing part of the shear
zoneis then applied to the orientation of shear band foliation in the same shear zone. This microscopic evaluation of the
structures suggests that the acute angle between the shear band foliation and the mylonitic foliation points in the shear
direction as proposed by earlier ressarch which were based on experimenta studies. Therefore, the determination of
sense the of shearing in the field using the orientation of shear band foliations in mylonites is suggested.

INTRODUCTION

The importance of shear band structures has become increasingly recognized in recent studies
of ductile shear zones (eg. Cobbold, 1977a b; Platt and Vissars, 1980; White et d., 1980; Simpson
and Schmid, 1983). Shear band foliation is a microstructure commonly found in mylonites. It is
a small scae open crenulation cleavage and occurs a a low angle (typically less than 45°) to the enve-
loping surface of the older foliation (mylonitic foliation) defined by the average grain shape fabric
(Fig. 1) (Patt, 1979; Platt and Vissers, 1980; White, 1979; White et a., 1980; Ggpais and White,
1982). Shear band foliation has been intensively studied in pelitic mylonites (phyllonites) (Sibson,
1977; Bell, 1978, Platt, 1979; White, 1979; White et a., 1980), in phyllites (Platt and Vissars, 1980),
in quartz mylonite (Berthe et d., 1979%; Gapais and White, 1982), and in quartzo-feldspathic mylonite
(Gapais, 1979; Simpson, 1984), within the past few years. White (1979) discussesfield and microstruc-
tural observations of shear band foliations in the light of experimental studies on high strain defor-
mation of metals and concludes that the foliation resembles shear bands which form during the
high strain deformation of metas, particularly during rolling.

The spacing between bands is obsarved to be about 280 um by Gapais and White (1982)
for quartz mylonite from the Hercynian bt of Brittany in France. They measured the width of
the bands at about 600 um Platt and Vissers (1980) measured the spacing between bands from 2 c¢cm
to 20 cm for phyllitic mylonite from the Vanoise massif in the French Penninic Alps. According
to Berthe et al. (1979a,b), White (1979), Platt and Vissers (1980), White et al. (1980), and Gapais
and White (1982), shear bands develop during the late stage of the same deformation that produced
the mylonitic foliation. Shear bands are believed to develop at relatively low temperatures when the
rock no longer is capable of homogeneously accommodating the bulk deformation at the imposed
strain rate, so that the bulk deformation is accommodated by deformation in the shear bands (Gapais
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and White, 1982, p. 13), an explanation similar to that given by other researchers (eg. Berthe et 4.,
1979ab; Platt, 1979; White, 1979; Platt and Vissers,1980; White et d., 1980; Passchier, 1982
Smpson, 1984).

(a) gelisme diizlemi ( Sm) x = Ss arosi olan
a enveloping surfoce Sm X = spacing befwsen Ss
S
a%

{b) «= Sm tle $s crasindoki a¢
=z geute angle between Sm gnd 5§

Fig. 1 - a - Geometry of shear band foliation {modified after Platt and Vissers, 1980,
fig. 9); b - The acute angle between shear band folistion (S ) and
mylonitic foliation (Sm) points in the shear direction (data comnpiled from
White et al., 1980; Simpson and Schmid, 1983).

Platt (1979), Platt and Vissers (1980), and Paschier (1982) referred to shear band foliation
found in mylonites as «extensond cremilation cleavage». Platt and Vissars (1980, p. 397) described
extensond crenulation cleavage as «sets of amdl scde ductile shear bands dong the limbs of very
open microfolds in the foliation. The sense of movement on the shear bands is such as to cause
a component of extenson aong the older foliation».

Usudly two sets of shear bands may develop at alow angle (less than 45°) to the mylonitic
foliation (Platt and Vissars, 1980; White et d., 1980). In the light of experimentd studies White et
a. (1980, p. 178 and 186) proposed that if only one set of shear bands is formed in a mylonitic rock,
the acute angle between the shear band foliation and the mylonitic foliation aways points in the shear
direction. Similar results were obtained by Simpson and Schmid (1983). Platt and Vissers (1980, p.
407-410) invoke that two sets of shear band foliations may form as a conseguence of symmetric
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coaxid progressve deformation. They dso note that a sngle set of shear bands probably develops
as a result of asymmetric coaxial or noncoaxia progressive deformations.

Let us consider a small square of mylonitic rock with a mylonitic foliation undergoing a coaxia
progressive deformation wherethe principal directionsof the incremental strain are parallel to the prin-
cipal directions of the total strain at each instant during the progressive deformation (Fig. 2aand b).
In progressive deformation, the principal incremental strain and the total strain are defined by principal

stretches (i.e. s'. principal directions of incremental stretch, sT. principal directions of total stretch)
(Means, 1976, p. 226). In the case of symmetric coaxial progressive deformation, where the direction

of maximum incremental stretch (SII) and the direction of maximum total stretch (ST) are both

parallel to the mylonitic foliation at each instant, two conjugate sets of shear bands may initiate at
a low angle (45° or less) to the pre-existing mylonitic foliation (Fig. 2a), as stated by Platt and Vissers
(1980). At each instant during a coaxial progressive deformation the axes of the incremental and
total strain ellipses {or ellipsoids) correspond to each other (Figs. 2a and b). This suggests that
during the symmetric coaxial progressive deformation both sets of the shear bands will rotate toward

the direction of maximum principal stretches (S| and S” ) and the mylonitic foliation (Sp,) with

same rate, and they will remain active throughout this progressive deformation history. Platt and
Vissers (1980, p. 407) assert that «imultaneous activity of both sets will be difficult: they will prob-
ably have to alternate, or operate on different scaless,

During an asymmetric coaxial progressive deformation where the direction of maximum in-
cremental stretch (Si) and the direction of maximum total stretch (STI) are both oblique to the

mylonitic foliation (S, ), two sets of shear bands asymmetric with respect to the mylonitic foliation
may form (Platt and Vissers, 1980) (Fig. 2b). In Fig. 2b, the acute angle between the first set of
the shear bands and the mylonitic foliation is greater than the acute angle between the second
set and the mylonitic foliation, With the coaxial progressive deformation, these shear band foliations

will rotate toward the direction of maximum principal stretches (S and S| ) with same rate. The

acute angle between shear bands (both 1 and 2 in Fig. 2b) and the mylonitic foliation decreases
with the rotation. The second set becomes parallel to the mylonitic foliation first, At this instant,
the second set may probably become inactive, because it requires a reverse slip direction on the
mylonitic foliation (Fig. 2b) (Platt and Vissers, 1980). The first set of the shear bands therefore remains
active as a single set of shear bands.

An example of a noncoaxial progressive deformation where the principal directions of the incre-

mental stretch (SI ) are not parallel to the principal directions of the total stretch (ST ) atany instant

during the progressive deformation is shown in Fig. 2¢. At each instant during the noncoaxial
progressive deformation the axes of the incremental and total strain ellipses (or ellipsoids) do not
correspond to one another. Therefore at each instant during the noncoaxial progressive deformation
‘the two conjugate sets of shear bands will rotate toward the direction of maximum increthental stretch

(Si ) with different rates. In this case, simple shearing is assumed to be parallel to the S, combined
with flattening parallel to S; {Fig. 2c). The second set of the shear bands shown in Fig. 2¢ will

rotate with a greater rate than the first one The second shear band that rotates faster will become
imactive when it reaches the point where it is nearly paralle] to the mylonitic foliation. The first
set becomes dominant and remains active (Platt and Vissers, 1980} in the same sense of shear
direction implied for the whole rock body undergoing the progressive deformation.
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While the above review focuses mostly on the shear band foliation developed in pdlitic,
quartzitic, and quartzofeldsphatic mylonites, this paper is concerned with a detailed description of
shear band structures within phyllitic psammites and calcareous mylonites within a 15 m wide brittle-
ductile shear zone in the Keban metamorphic complex of Eastern Turkey. This study shows field
evidence to determine the sense of shear using the orientation of shear band foliatipn in high strain
rocks. The results of microstructural studies on shear band foliation are compared with the interpre-
tation of White et a. (1980) and Simpson and Schmid (1983) for deducing the sense of shear in

high strain rocks displaying one set of shear band foliation.
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GEOLOGICAL OUTLINE OF THE KEBAN METAMORPHIC COMPLEX

The Keban metamorphics are complexly deformed, and form the most northerly structural
slice within the Bitlis suture zone of the Alpine-Himalayan orogenic belt in Eastern Turkey (Fig. 3).
They are tectonically intercalated between the Mesozoic Munzur limestone and the Maastrichtian
ophiolites of the Ovacik unit (Ozgiil et al., 1978) in the north, and the Campanian-Maastrichtian
Elazig volcanic island arc complex (Hempton and Savci, 1982) in the south (Fig. 3a). Three main
lithological units are distinguished in the Keban metamorphic complex. They are marble, phyllitic
psammite and limestone units. The contacts between these unist are all folded thrusts (Fig. 3b) or
brittle-ductile shear zones in the sense of Ramsay (1980).

The marble unit is composed of calote crystals which comprise 95-98 % of the rock. In be-
tween the calcite crystals, there are some muscovite (1-2 %) and epidote (2-3 %) crystals. The marble
unit also locally shows 1 to 50 m thick amphibolite interlayers around the Pertek area (Perinfek, 1979).

The phyllitic psammites are pervasively interlayered with calcschist layers which range from
1 cm to 20 cm in thickness. The phyllitic psammite is a dark gray, fine grained rock consisting
of 75-80 % quartz, 10-15 % muscovite-sericite, 5 % iron-oxide, 4 % chlorite, 4 % calcite, 2 %
epidote, and very rare graphite and plagioclase. The calcschist interlayers are composed of 40-45 %
calcite, 25-30 % quartz, 10-15 % muscovite-sericite, 10 % iron-oxide, 5 % chlorite, and very rare
plagioclase feldspars. The structurally highest metamorphic unit consists of limestones with a mineral
composition: 8595 % calcite, 2-5 % iron-oxide, 3 % quartz, 2 % plagioclase, 2-3 % epidote,
and very rare muscovite.

These ancient continental margin sedimentary sequences were formed between Palacozoic (?)
and the Triassic times (Kipman, 1981), and experienced low grade greenschist metamorphism during
the Jurassic to the Lower Cretaceous (Savci, 1983). They are cut by hypabyssal syenite porphyries
intruded during the late Cretaceous (Savci, 1983). In the Keban metamorphics, at least two phases
of penetrative deformation are documented. There is also evidence for one nonpenetrative deformation.
For more detailed description of the geological setting and tectogenic history of the Keban meta-
morphic complex, the reader is referred to Savci (1983).

MINERALOGY AND MICROSTRUCTURES OF SELECTED MYLONITES

The descriptions of fault rocks given below are from ductile deformational parts of the brittle-
ductile shear zone. Figure 4 is a schematic map and cross sectional view of this northeast trending
and southeast dipping brittle-ductile shear zone which contains a number of lithologies (i.e. phyllitic
psammite, calcschist, and limestone).

The mylonitic body formed in the brittle-ductile shear zone (Fig. 4) shows a progressive change
in its texture within 15m from northwest to southeast across the zone. To the northwest, the mylonitic
rocks become much finer grained. The stage in this development of the sequence is shown in Figs.
4, 5, and 7.

The first example to be described is a highly strained calcschists of the Keban metamorphic
complex. They are composed of 40-50 % quartz, 20 % muscovite-sericite-chlorite, and 20-30 %
calcite. Calcite usually occurs in the form of pod shaped aggregates up to 1.5 cm. The sheared, foliated
calcite-quartz-mica-chlorite rich material surrounding the remnant unsheared calcite pods define an
anastomosing shear zone (Figs. 4b and 5) in the sense of Simpson (1983). The average preferred
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dimensiona orientation of quartz, muscovite, sericite, and chlorite grains defines a mylonitic foliation.
Simpson and Schmid (1983, p. 1282-1283) show that if the tails of the retort-shaped grains (augen)
are comprised of fine grained material of the same composition as the augen material, they can then
be used to deduce the shear direction. They demonstrate that these tails extend along the foliation
plane in the shear direction (Fig. 6a). In this anastomosing shear zone, the tails of the calcite augen
are composed of much finer grained cdcite crystals. Moreover, between the calcite pods, smaller
scae shear zones often occur at alow angle (30° to 35°) to the major shear zone defined by mylonitic
foliation which surrounds the calcite pods and augens. Asis shown in Fig. 5, the sense of displacement
in this small scde shear zone between the cacite pods is southeast-over-nortwest. Simpson (1983,
p. 63) shows that in an anastomosing shear zone the small shear zones between the relatively undefor-
med pods have the same sense of displacement as that of the major shear zones surrounding the pods
(Fig. 6b). Using the criteria indicated above, i.e, asymmetry of augen structures (Fig. 6a) and
shear direction in small shear zones formed between relatively undeformed pods (Fig. 6b), the sense
of shearing is also determined as southeast-over-northwest (Fig. 5).

7 T —,
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Fig. 6§ a - The ils of the retort-shaped augéns extend zlong the foliation plane in the shear
direction (after Simpson and Schntid, 1983, Fig. 4); b - Small ductile shear zone
bétween relatively undeformed pod-shaped aggregates has same sense of displacement
asthe major shear zones which surround the pods (after Simpson, 1983, Fig. 2a).
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The second example to be described is a phyllitic psammite mylonite ofthe Keban metamorphic
complex. It is composed of 75-85 % quartz, 10-15 % muscovite-sericite-chlorite, 5 % feldspar, 1-5 %
iron-oxide, and about 1 % epidote. In these strongly foliated mylonites, the preferred dimensional
orientation of quartz, feldspar, muscovite, sericite, and epidote grains or aggregates define a well
developed mylonitic foliation (S,) (Fig. 7). As readily observed in Fig. 7, this rock also shows a shear
band foliation (S, ) which is about 30° oblique with respect to the mylonitic foliation. Generally,
shear band foliation is defined by the preferred mineral elongation of micas. Where affected by a
shear band, the mylonitic foliation trends into parallelism with the shear band boundary (Fig. 7).
The spacing between bands varies from 100 to 780 um. The width of the bands is usually 10to 170 um.
As is mentioned in the introduction, according to White et al. (1980) and Simpson and Schmid
(1983) the angular relationships between the shear band foliation (S, ) and the mylonitic foliation
(S,) define the sense ofshear (Fig. 1b). Using this criterion, the direction of shearing in this mylonite

determined as southeast-over-northwest as well (Fig. 7).

Fig. 7 -~ Photomicrograph of shear band structure within the phyllitic psammite - mylonite
studied (polarized light; section perpendicular to the intermediate strain axis).
Shear band foliation (S, }is defined by the vertical dark zones.Within these
zones mylonitic foliation (Sm)has been reoriented. White grains are mosty
quartz. Dark fine-grained material is mica and chlorite. The average anglc
between Sm and Ssis30° and the spacing between bands is up 0 500 pm.
Shear sense is southeast-over-northwest,

From the foregoing, it is concluded that the «sense of shear» observations at the microscopic
scale (ie., asymmetry of augen structures (Fig. 6a) and shear direction in small shear zones formed
between relatively undeformed pods (Fig. 5)) corroborate the similar observation and conclusions
based on the position of shear bands with respect to mylonitic foliation (Fig. 7). Therefore, the above
result based on a field evidence is consistent with shear band interpretation of White et al. (1980)
and Simpson and Schmid (1983).
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The third example studied consists of a limestone-calcschist unit within the same brittle ductile
shear zone (Fig. 4). This part of the shear zone, which is about one meter thick, is characterized
by limestone lenses and quartz-micarich cacschist layers between these lenses. At an outcrop scae,
mylonitic foliation is defined by long axes of relatively unsheared limestone lenses which are up to
20 cm long and 2 to 5 cm wide; by grain shapes of cacite, quartz and feldspar, and by elongation
of muscovite crystals which formed between the limestone lenses in zones 1 to 4 cm thick (Fig. 8).
The thin mylonitic zones are composed of 35 % quartz, 25-35 % cdcite, 57 % feldspar and
20 % muscovite-sericite-chlorite. In these thin, strongly foliated zones, there are some small scde
open crenulation cleavages occurring at a low angle (35°) to the enveloping surface of the mylonitic
folition (Fig. 8). Where affected by these open crenulation cleavages, the mylonitic foliation trends
into paralelism with these crenulation boundaries. Spacing between the crenulation cleavage surfaces
varies between 500 and 850 um. These open crenulation cleavages have similar characteristics to
those shown in Fig. 7 and are interpreted as shear band foliation due to their resemblance to similar
features described by White (1979), White et al. (1980), and Gapais and White (1982). Based on the
angular relationships between the shear band foliation and the mylonitic foliation (Fig. 1b) the sense
of movement determined in this way is also southeast-over-northwest (Fig. 8).Moreover, where affected
by shear bands, tips ofthe limestone lenses curve and trend into parallelism with shear band boundaries
(Fig. 8). In the main body of limestone lenses, microfaults cut across the lenses at a high angle
(58°) to the mylonitic foliation. These microfaults occur only in the limestone lenses. The sense of
displacement for microfaults formed in the limestone lenses is in the same sense as the shear band
foliations developed between the lenses (Fig. 8). The shear band structures are interpreted in the same
way as Gapais and White (1982) in that at the same high strain-rate, the deformational mechanism
was brittle in the limestone lenses and more ductile in the quartz-mica rich zones. These quartz-mica
rich zones consist of strongly foliated, thin ductile shear zones between relatively little deformed lime-
stone lenses. Therefore, the two rock types with different physical properties have quite different
behavioral responses the deformation. Brittle and ductile deformations may occur in close proximity
within the same shear zone at the same time. It is concluded that when the bulk deformation cannot
be accommodated by the dominant deformation process at the imposed strain rate, it is accommodated
by deformation in the form of ductile shear bands in the quartz-mica rich calcschist and by deformation
in the form of brittle microfaults in the limestone lenses.

CONCLUSIONS

Two well defined microscopic criteria are used to deduce the sense of shear in a lithologically
inhomogeneous brittle-ductile shear zone of the Keban metamorphic complex. They are: (1) The
tails of the asymmetric augen structures which extend along the foliation plane, and allow the sense
of shear to be determined (Fig. 6a, Simpson and Schmid, 1983); (2) In anastomosing shear zones,
the sense of shear determined in a smaller scale shear zones which were formed between the relatively
undeformed pod shaped aggregates is in the same direction with the major shear zone surrounding
these aggregates (Fig. 6b, Simpson, 1983), In the ductile mylonite bands found in the same shear
zone (Fig. 4), the acute angle between the shear band foliation and the mylonitic foliation points
in the same shear direction determined for the anastomosing shear zone showing asymmetric augen
structures and relatively unsheared calcite pods (Fig. 5). This result is consistent with the sense of
shearing interpretation of White et al. (1980) and Simpson and Schmid (1983) for high-strain mylonites
exhibiting a single set of ductile shear band foliations. The Keban mylonites with a single set of shear
band foliation may have been formed during a noncoaxial progressive deformation.
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Fig. 8 a - A shear zone showing brittle deformational features (microfaults) in limestone lenses, and ductile
deformational features (mylonitic foliation (Sm) and shear band foliation (SS )) in the more

ductile quartz-mica rich strongly folisted thin zones forrued between the limestone lenses
{cross section view),

5

1
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Sek. 8b - A sketch drawn from Fig. 8a.
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