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Abstract 

It is very important to find short circuit faults of power transmission lines (PTL) quickly and efficiently. Most methods 

in the literature use classification algorithms for fault detection, but their use in real-time applications increases fault 

detection time. The reason for this that while the fault detection process is performed with the classification algorithm, 

the features of incoming data must be extracted continuously by using a window function. In this study, principal 

component analysis (PCA) or independent component analysis (ICA) algorithms that are suitable for real-time fault 

detection are proposed to decrease the fault detection time. Besides, time-domain statistical properties of the PTL signals 

computed over a period of time are proposed to increase classification speed and accuracy. The results show that PCA 

and ICA algorithms can detect all faults in real-time data streams, and the classification results are 100% for 10 faults 

with the proposed features. 

Keywords: Fault detection, Feature Extraction, Independent Component Analysis, Principal Component Analysis, S 

Transform. 

 

Güç İletim Hatlarında Hata Bulma ve Sınıflandırma 

 

Öz 

Elektrik iletim hatlarının (EİH) kısa devre arızalarını hızlı ve etkili bir şekilde tespit etmek çok önemlidir. Literatürdeki 

çoğu yöntem, arıza tespiti için sınıflandırma algoritmalarını kullanmaktadır, ancak bu yöntemlerin gerçek zamanlı 

uygulamalarda kullanımı, arıza tespit süresini artırmaktadır. Bunun nedeni, arıza tespit süreci sınıflandırma algoritması 

ile gerçekleştirilirken, gelen verilerin özelliklerinin sürekli olarak bir pencere fonksiyonu kullanılarak çıkarılması 

gerektiğidir. Bu çalışmada, arıza tespit süresini azaltmak için gerçek zamanlı arıza tespiti için uygun olan temel bileşen 

analizi (TBA) veya bağımsız bileşen analizi (BBA) algoritmaları önerilmektedir. Ayrıca, sınıflandırma hızını ve 

doğruluğunu artırmak için belirli bir zaman aralığında hesaplanan EİH sinyallerinin zaman alanı istatistiksel özellikleri 

önerilmektedir. Sonuçlar, TBA ve BBA algoritmalarının gerçek zamanlı veri akışlarında tüm arızaları tespit edebildiğini 

ve önerilen özellikler ile 10 arıza için sınıflandırma sonuçlarının %100 olduğunu göstermektedir. 

Anahtar Kelimeler: Hata Bulma, Özellik Çıkarımı, Bağımsız Bileşen Analizi, Temel Bileşen Analizi, S Dönüşümü.  
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1. Introduction 

 

In the transmission lines, reasons for the short circuit fault could be a lightning strike, falling 

tree branches, fog, or other environmental factors. Fast detection and classification of these faults are 

very important to maintain power transmission and reduce the adverse impacts, 

especially a transmission line breaks down. Also, fast detection and rapid restoration of electricity 

reduce the outage time, and reducing the outage time increases the safety and reliability of the 

transmission line, and reduces system operating costs. When a fault occurs in a transmission line, the 

current of the faulty line changes, and this also affects the healthy line currents, so identifying the 

fault type is a complex task and needs extra effort. Also, the increasing complexity of modern PTL 

systems has greatly raised the importance of fault detection and classification studies. There are some 

works in the literature that attempt to employ classification algorithms to detect and classify these 

faults. These methods typically employ various classification algorithms during the fault detection 

and classification phases, such as Support Vector Machines (SVM) (Magagula, Hamam, Jordaan, & 

Yusuff, 2017; Moloi & Akumu, 2019),  artificial neural networks (ANN) (Fernandes, Costa, & De 

Medeiros, 2016; Jamil, Sharma, & Singh, 2015; Malla, Coburn, Keegan, & Yu, 2019; Silva, Souza, 

& Brito, 2006), and k nearest neighbors (k-NN) (Asadi Majd, Samet, & Ghanbari, 2017) algorithms. 

While (Adhikari, Sinha, & Dorendrajit, 2016; Guillen, Idarraga-Ospina, Zamora, Paternina, & 

Ramirez, 2014; Kasinathan & Kumarappan, 2008) utilize the same algorithm for both the fault 

detection and classification phases, methods employing two different algorithms connect them in a 

cascade form, with one algorithm dedicated to detection and the other to classification. Once a fault 

is detected by the first algorithm, the second algorithm is employed to identify the fault types(Silva 

et al., 2006; Singh, Panigrahi, & Maheshwari, 2011) .  

Most studies use Fourier transform (FT), short-time Fourier transform (STFT), or wavelet 

transform (WT) as feature extraction methods to determine the fault characteristics for classification 

algorithms (Bhowmik, Purkait, & Bhattacharya, 2009; Samantaray & Dash, 2008). There are some 

shortcomings in these methods, so the feature extraction method is preferred depending on the 

application. Since FT does not have time information, STFT, which utilizes equal time windows, 

could be preferred. It is also possible to benefit from the time information of the signal by using WT 

which uses a different window function for analyzing different frequency bands. Even though WT is 

highly suited for feature extraction (Yumurtaci, Gǒkmen, Kocaman, Ergin, & Kiliç, 2016), it needs 

some improvements to classify faults (Pyare Lal Tandan & Abhijit Mandal, 2015). To overcome these 

difficulties, S-transform (ST), an extension to the Gabor Transform and WT, is utilized in some works 

(Roy & Bhattacharya, 2015; Samantaray, 2013). The most significant characteristic of the Short-Time 

Fourier Transform (STFT) is its complete convertibility between the time domain and the frequency 
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domain, both forward and inverse. However, the computation of the STFT requires more time 

compared to the Wavelet Transform (WT). 

In addition, classification algorithms, used in real-time fault detection, need to use the 

windowing system for feature extraction (Asadi Majd et al., 2017; Fernandes et al., 2016; Guillen et 

al., 2014; Jamil et al., 2015; Kasinathan & Kumarappan, 2008; Magagula et al., 2017; Malla et al., 

2019; Moloi & Akumu, 2019; Silva et al., 2006), as seen in Figure 1. In these systems, features are 

extracted with a sliding window technique, as long as the data is received. Due to the large amount 

of incoming data, it is very difficult to derive features with a sliding window,  especially if the data 

transformation is included (Malla et al., 2019). This is the main disadvantage of the classification 

algorithms, used in the fault detection phase, and makes it difficult to implement as a real-time fault 

detection application. 

 

 

 

Figure 1. Fault detection and classification phases of conventional algorithms 

 

In this paper, the PCA or ICA algorithm, appropriate real-time fault detection methods, is 

suggested to detect faults. The first important feature that makes them possible candidates for real-

time fault detection is to process the received data one by one. The second one is that they only need 

faultless data to detect faults. One by one fault detection processes of these algorithms is shown in 

Figure 2. As can be clearly seen from Figure 2, the processing loads of the PCA and ICA algorithms 

are not high, and their applicability is simpler than the classification algorithms for the fault detection. 

Once a fault is detected, the feature extraction window, as illustrated in Figure 2, is utilized a single 

time to determine the fault type within classification algorithms. 
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Figure 2. Fault detection phase of PCA and ICA algorithms and classification phase of classification algorithm 

 

2. Fault Detection 

 

2.1.  PCA based fault detection method 

 

PCA is an unsupervised technique that has been utilized in several industrial processes by 

MacGregor et al (MacGregor, Kourti, & Nomikos, 1996), and has appeared in a wide variety of 

process monitoring articles. The mixing model considered for PCA and ICA is linear  

𝑋 = 𝐴𝑆 
(1) 

where 𝑆 = [𝑠1, . . , 𝑠𝑚]𝑇 is unknown source vector, 𝑋 is source signal mixtures (observed 

signals) via unknown mixing matrix 𝐴 . The purpose of PCA is to estimate the inverse of mixing 

matrix 𝐴−1 by using the assumption of uncorrelatedness of the source signals. It transforms a set of 

observations of potentially correlated variables into a set of values of linearly uncorrelated variables 

known as principal components (Li et al., 2018). 

 

In fault detection applications, PCA algorithm decomposes data matrix 𝑋 into principal 

component subspace and residual subspace as follows: 

𝑋 = 𝑇𝑃𝑇 + 𝐸 = ∑ 𝑡𝑖𝑝𝑖
𝑇

𝑎

𝑖=1

+ 𝐸 

 

 

(2) 

where 𝑋 ∈ 𝑅𝑛x𝑚  is data matrix with 𝑛 (the number of observation) rows and 𝑚 (measured 

variables) columns, 𝑇 ∈ 𝑅𝑛x𝑎 is score matrix which contains information about relationships between 

observations, 𝑃 ∈ 𝑅𝑚x𝑎 is  loading matrix which has information about relationship between 
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variables, 𝐸 ∈ 𝑅𝑛x𝑚 is  residual matrix, and superscript T means transposition of the matrix. An 

important part of equation (2) is the  (𝑎 ≤ 𝑚), which is the number of principal components and 

determined by different techniques (Chatfield & Collins, 2018; SW, Afifi, & Clark, 1997). To find 

the principal component and the residual subspace, first, the covariance matrix of the data matrix (𝑅𝑥) 

is calculated as follows 

𝑅𝑥 = 𝐸{𝑋𝑋𝑇} 
(3) 

Then, using Eigen-decomposition of 𝑅𝑥 = 𝑃𝐷𝑃𝑇 , the loading matrix 𝑃 can be found as 

eigenvectors of  𝑅𝑥, and the score matrix can be expressed as 

𝑇 = 𝑃𝑇𝑋 
(4) 

Once the loading and score matrixes have been calculated, the residuals can be calculated in 

the following fashion, 

𝐸 = 𝑋 − 𝑋̂ = 𝑋 − 𝑇𝑃𝑇 
(5) 

To monitor system and detect fault, Hotteling’s 𝑇2statistics and second statistics SPE are used 

in PCA based methods.  𝑇2 statistics at sample k can be calculated as 

𝑇2(𝑘) = 𝑥(𝑘)𝑇𝑃𝐷−1𝑃𝑇𝑥(𝑘) 
(6) 

where 𝑇2(𝑘) is the kth sample vector of 𝑇2, 𝑥(𝑘) is the kth sample vector in 𝑋 . If the X data 

are from a multivariate normal distribution, F distribution can be used to obtain the upper confidence 

limit  for 𝑇2 (threshold for 𝑇2 ) as follows, 

𝑇𝑎,𝑛,𝛼
2 =

𝑎(𝑛 − 1)

𝑛 − 𝑎
𝐹𝑎,𝑛−𝑎,𝛼 

(7) 

where n represents the number of samples in the dataset, a denotes the number of the principal 

components, and 𝛼 signifies the level of significance.  

Squared prediction error (SPE) statistic, associated with noise, does not suffer from inaccuracies 

in the smaller eigenvalues and is calculated as 

𝑆𝑃𝐸(𝑘) = 𝑒(𝑘)𝑇𝑒(𝑘) = 𝑥(𝑘)𝑇(𝐼 − 𝑃𝑃𝑇)𝑥(𝑘)  
(8) 

where 𝑒(𝑘) is the kth observation vector of 𝐸, I  is identity matrix. Calculation for the upper 

confidence limit of the SPE (threshold for SPE) depends on its approximate distribution (Bakdi & 

Kouadri, 2017) 
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𝑆𝑃𝐸𝛼 = 𝜃1 (
ℎ𝑜𝑐𝛼√2𝜃2

𝜃1
+ 1 +

𝜃2ℎ𝑜(ℎ𝑜 − 1)

𝜃1
2 )

1
ℎ𝑜

 

(9) 

with  

𝜃𝑖 = ∑ 𝜆𝑗
𝑖

𝑚

𝑗=𝑎+1

 

 

(10) 

ℎ𝑜 = 1 −
2𝜃1𝜃3

3𝜃2
2  

(11) 

where 𝑐𝛼 is the confidence interval and taken from standard tables of the error function.  

 Block diagram of PCA algorithm for fault detection can be seen in detail in Figure 3. First, the 

block of the PCA model is applied only one time to calculate the threshold values. In this block, only 

faultless current signals are used in the PCA as the training signals. The thresholds are calculated 

from the principal components using the confidence limit finding methods. Then, the current values 

of the tested system are processed one by one by using (6) and (8) to calculate 𝑇2, SPE statistics. If 

there is a fault in the system, these calculated statistics must be bigger than the thresholds calculated 

in PCA model. Upon fault detection, the fault classification phase commences, as illustrated in the 

block diagram in Figure 3. In this phase, the features are extracted only once and classified using 

classifiers. 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

  Figure 3. The block diagram of PCA for fault detection and classification. 
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2.2. FastICA fault detection method 

 

The main difference between PCA and ICA is that ICA uses higher-order statistics to 

decompose mixed signals into a set of independent signals, whereas PCA uses second-order statistics. 

Also, PCA can be used as preprocessing step in some ICA algorithm. Among ICA algorithms that 

follow a linear combination of variables, the FastICA algorithm is the most popular and fastest 

algorithm. The FastICA algorithm utilizes kurtosis, negentropy, or maximum likelihood method to 

measure statistical independence. In this paper, negentropy based FastICA algorithm is used, and its 

cost function is defined as follows 

𝐽(𝑦) = [𝐸{𝐺(𝑦)} − 𝐸{𝐺(𝑣)}]2 
(12) 

where 𝐽(𝑦) is the non-Gaussian measurement function, 𝑣 is a Gaussian variable, G is a non-

quadratic function, and 𝑦  can be computed using  𝑦 = 𝐷
−1

2⁄ 𝑃𝑇𝑋, where 𝐷 is diagonal eigenvalue 

matrix of 𝑅𝑥. The process of decomposition of signals is  accomplished by optimization of equation 

(12) and constituted as follows (Hyvarinen, 1999)  

1. Define a random initial vector 𝑤 and normalize it to unity. 

2. Set 𝑤 ← 𝐸{𝑦𝑔(𝑤𝑇𝑦)} − 𝐸{𝑔́(𝑤𝑇𝑦)}𝑤, where 𝑔, 𝑔́  are the first and second-order derivatives 

of 𝐺, respectively.  

3. Normalize 𝑤 ← 𝑤
‖𝑤‖⁄ . 

4. If not converged, return to step 2. Otherwise, calculate one independent component 𝑦 = 𝑤𝑥.   

The function 𝐺 could be any non-quadratic function, and three most used nonlinear functions 

are seen as follows, 

𝐺1(𝑦) =
1

𝑎1
log cosh(𝑎1𝑦) 

(13) 

𝐺2(𝑦) = exp (
−𝑎2𝑦2

2
⁄ ) 

(14) 

𝐺3(𝑦) = 𝑦4 
(15) 

where 1 ≤ 𝑎1 ≤ 2 and 𝑎2 ≈ 1. 𝐺1 was used as nonlinear function in this work. 

Three types of monitoring statistics are utilized to calculate the confidence limit in the fault 

detection studies of the ICA algorithms: 𝐼2 statistics for the systematic part of the data, SPE statistics 

for the non-symmetric part of the data, and  𝐼𝑒
2 statistics for the excluded part of the data. The three 

statistics at sample k are defined as follows, 

𝐼2(𝑘) = 𝑥(𝑘)𝑇𝑊𝑑
𝑇𝑊𝑑𝑥(𝑘) 

(16) 

𝐼𝑒
2(𝑘) = 𝑥(𝑘)𝑇𝑊𝑒

𝑇𝑊𝑒𝑥(𝑘) (17) 
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𝑆𝑃𝐸(𝑘) = 𝑒(𝑘)𝑇𝑒(𝑘) = (𝑥(𝑘) − 𝑥̂(𝑘)𝑇)𝑇(𝑥(𝑘) − 𝑥̂(𝑘)𝑇) = (𝑊𝑒𝑥(𝑘))
𝑇

(𝑊𝑒𝑥(𝑘)) (18) 

where 𝑊𝑑 is the dominant part, 𝑊𝑒  is the remaining rows of the matrix 𝑊. The confidence 

limits of the three statistics (thresholds) can be calculated by kernel density estimation (KDE) method 

(Martin & Morris, 1996; Silverman, 1986). The confidence limit of the data is point occupying 99% 

of area under the KDE function. A  kernel density estimator is defined as follows 

𝑓(𝑥) =
1

𝑛ℎ
∑ 𝐾 {

𝑥 − 𝑥𝑖

ℎ
}

𝑛

𝑖=1

 

 

 

(19) 

where 𝑥 is the sample point for KDE, 𝑥𝑖 is a sample data from the measured signal, ℎ is the bandwidth, 

𝑛 is the number of measurement signals, and 𝐾 is the nonlinear kernel function. While the specific 

type of kernel 𝐾 is not of critical importance, this study employed the Gaussian kernel function, which 

is the most commonly utilized kernel function (Silverman, 1986). Block diagram of  ICA for fault 

detection can be seen in Figure 4. As can be seen in the block diagram, all stages of PCA and ICA 

algorithms are similar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The block diagram of ICA for fault detection and classification. 
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Vector Machine (SVM), Artificial Neural Network (ANN), Decision Trees (DT), and K-Nearest 

Neighbors (KNN) were used as classification algorithms to identify fault types. 

 

3.1.  Feature Extraction 

 

In the literature, a number of feature extraction methods have been employed to deal with fault 

detection in power transmission line (Godse & Bhat, 2020; Kumar et al., 2018; Yumurtaci et al., 

2016; Yusuff, Jimoh, & Munda, 2011) . It is expected from the feature extraction method that they 

extract features quickly and have high classification results. For feature extraction, (Abd Allah, 2014; 

Thirumala, Kanjolia, Jain, & Umarikar, 2020) used post-fault samples for a half cycle period. But the 

features of the faultless phases for the half-cycle period will change according to the inception 

position of the feature extraction. This can  increase the number of training samples required per class.  

As a solution of this problem, it is proposed to extract features from one cycle in this work. The main 

advantage of this is that these features never change for faultless phases and are almost zero for the 

mean value. Therefore, mean value, variance and kurtosis of the one cycle signals were used to reduce 

the feature extraction time and the number of the training samples. To observe the classification 

performance of the features for one cycle signals, Wavelet transform (WT) and S-Transform (ST) 

based features were also extracted and the classification performances were compared. 

 

3.1.1.  Feature Extraction using ST 

 

The Stockwell Transform (ST) extends the Wavelet Transform (WT) by utilizing the Morlet 

wavelet as its fundamental wavelet. A notable advantage of ST is that the Gaussian window is 

adaptable over time, a property not shared by traditional wavelets (Pinnegar & Mansinha, 2003). ST 

transform of x(t) signal is given as 

𝑠(𝑡, 𝑓) = ∫ 𝑥(𝑡)𝑤(𝑡 − 𝜏, 𝑓)𝑒−2𝜋𝑖𝑓𝜏𝑑𝜏
∞

−∞

 

(20) 

where 𝑤(𝑡 − 𝜏, 𝑓) is called the window function and can be expanded to form ST as follows 

𝑠(𝑡, 𝑓) = ∫ 𝑥(𝑡)
1

𝜎(𝑓)√2𝜋
𝑒((𝑡−𝜏)2) (2𝜎𝑓2)⁄ 𝑒−2𝜋𝑖𝑓𝜏𝑑𝜏

∞

−∞

 
(21) 

where 𝜏 regulates the temporal position of the Gaussian window, 𝜎(𝑓) represents the standard 

deviation of the Gaussian window, calculated as follows 
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𝜎(𝑓) =
1

|𝑓|
 

(22) 

When the standard deviation of the Gaussian window is modified as follows, the performance 

of ST in terms of  time-frequency contours can be improved. 

𝜎(𝑓) =
1

𝑎 + 𝑏
√𝑓⁄

 
(23) 

where the values of a and b range between 0 and 1. Using the new 𝜎(𝑓) Gaussian window can be 

expressed as follows 

𝑤(𝑡, 𝑓) =
𝑎 + 𝑏√𝑓

𝑘√2𝜋
𝑒((𝑎+𝑏√𝑓)

2
𝑡2) (2𝑘2)⁄

 
(24) 

where 𝑘 < √𝑎2 + 𝑏2. ST can now be formulated as follows 

𝑠(𝑡, 𝑓) = ∫ 𝑥(𝛼 + 𝑓)𝑒
(−2𝜋2𝛼2𝑘2) (𝑎+𝑏√|𝑓|)

2
⁄

𝑒2𝜋𝑖𝛼𝜏𝑑𝛼
∞

−∞

 
(25) 

ST transform, as defined in equation (25), is applied to single cycle of post-fault current signals  

following fault detection. The standard deviation, energies, entropies, kurtosis values of the ST 

signals are utilized as features and computed as follows 

𝑀𝑒𝑎𝑛(𝑠) =
1

𝑛 + 𝑗
∑ 𝑎𝑏𝑠(𝑠(𝑗, 𝑛)) 

(26) 

𝑆𝑡. 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = √
1

𝑛 + 𝑗
∑(𝑎𝑏𝑠(𝑠(𝑗, 𝑛)) − 𝑀𝑒𝑎𝑛(𝑠))

2
 

(27) 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ (𝑎𝑏𝑠(𝑠(𝑗, 𝑛)))
2
 

(28) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ −𝑃(𝑠(𝑗, 𝑛))𝑙𝑜𝑔 (𝑃(𝑠(𝑗, 𝑛))) 
(29) 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =

1
𝑛 + 𝑗

∑(𝑎𝑏𝑠(𝑠(𝑗, 𝑛)) − 𝑀𝑒𝑎𝑛(𝑠))
4

(
1

𝑛 + 𝑗
∑(𝑎𝑏𝑠(𝑠(𝑗, 𝑛)) − 𝑀𝑒𝑎𝑛(𝑠))

2
)

2 

(30) 

 

3.1.2. Feature Extraction using Mean,Variance and Kurtosis Values 

 

The mean value of a signal is a well-known and widely used statistical technique for feature 

extraction (Abd Allah, 2014). The reason for choosing the mean value of one cycle signal as a feature 

in this study is that the mean value of the periodic and symmetric signal is zero for one cycle. It can 
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be clearly seen from Figure 5.a that when the mean value of one cycle signal is used, the starting 

point of the mean value calculation is not important. The important thing is to calculate the mean 

value of a signal for one period after the starting point, and the result is zero (M1=M2=M3=0). As 

shown in Figure 5.b, if the symmetry of a signal is distorted by a fault, the mean value of the affected 

region will be different from zero (F1≠0, F2=F3=0). Also, it can be said that the mean value calculation 

for half or quarter cycle is different than zero, and depends on the starting point of the calculation.   

 

 

 

 

 

                      Figure 5. Definition of periods for a) faultless signal and b) faulty signal 

 

The mean value of a periodic signal can be defined as follows 

𝑀𝑖 =
1

𝑇
∫ 𝐼(𝑡)𝑑𝑡

𝑛+𝑇

𝑛

 

(31) 

where T is period. The number of samples per cycle is calculated  as follows 

𝑆𝑎𝑚𝑝𝑙𝑒𝑠 =
𝑓𝑠

𝑓𝑙
 

(32) 

where 𝑓𝑠  is sampling frequency and 𝑓𝑙 is line frequency. The variance and kurtosis values of a 

periodic signal can be defined as follows  

𝑉𝑖 =
1

𝑇
∫ (𝐼(𝑡) − 𝑀𝑖)

2𝑑𝑡

𝑛+𝑇

𝑛

 

 

(33) 

𝐾𝑖 =

1
𝑇 ∫ (𝐼(𝑡) − 𝑀𝑖)4𝑑𝑡

𝑛+𝑇

𝑛

(
1
𝑇 ∫ (𝐼(𝑡) − 𝑀𝑖)2𝑑𝑡

𝑛+𝑇

𝑛
)

2 

 

(34) 
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4. Simulation and Discussions 

 

 

 

 

 

Figure 6. Simulated Transmission Line. 

 

Since there is no open database for power transmission line faults, a transmission line model, 

given in Figure 6, was designed and simulated with certain parameters in MATLAB/Simulink. The 

sampling frequency of Simulink model is 10 kHz. In this model, there is a generator, a measurement 

unit, a transformer, a load and two buses. The base value of the voltage is 154 kV, and the length of 

the transmission line is 203 km, and some of the other parameters of the transmission line are given 

in Table 1. 

 

   Table 1. Electrical parameters for transmission lines. 

Parameter Positive 

Sequence 

Zero Sequence 

Resistance per unit length (Ohms/km) 0,01273 0,3864 

Capacitance per unit length (F/km) 12,74.10-9 7,751. 10-9 

Inductance per unit length (H/km) 0,9337.10-3 4,1264.10-3 

 

The operating condition of the simulated transmission line is selected as follows: 

• Fault resistance are selected from 0 ohm to 150 ohm 

• Fault distances are selected among 3 to 200 km from bus 1.  

• Inception angles are varied from 0o to 90o. 

• Fault types are a-g, b-g, c-g, a-b, a-c, b-c, a-b-g, a-c-g, b-c-g, a-b-c, a-b-c-g. 

 

The block diagrams of the fault detection and classification algorithms can be seen in Figure 3 

and 4. To show the validity of the PCA and ICA algorithms for fault detection, all possible short 

circuit fault types were considered, each fault type has 100 fault data, and a fault database with 1100 

fault data was created. The threshold values of  the PCA and ICA algorithms were found  first using 

the confidence limit definitions, then the accuracies and average fault detection times (AFDT)  of the 

algorithms were obtained by using the database. The results are presented in Table 2. As illustrated 

Load 

Measurement 

Unit Transformer 203 km 

Transmission Line 

Bus 2 Bus 1 Fault 

Generator 
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in Table 2, the most suitable statistics for the given data are the 𝑇2 statistics for the PCA, and   𝐼𝑒
2  

statistics for the ICA.  

                     Table 2. Fault detection rates and times of the statistics 

 

 

PCA (%) 

 
ICA (%) AFDT(ms) 

𝑇2 100 - 0,84 

SPE 73 65 0,03 

𝐼2 - 45 0,59 

𝐼𝑒
2 - 100 0,87 

 

       Table 3. Fault detection accuracies and times of the classification algorithms. 

 

SVM KNN DT ANN 

Accuracy 

(%) 

AFDT 

 (ms) 

Accuracy 

(%) 

AFDT 

 (ms) 

Accuracy 

(%) 

AFDT 

 (ms) 

Accuracy 

(%) 

AFDT 

 (ms) 

M 89,86 34 95,13 31,1 95,34 10,4 89,79 7 

V 87,09 33,3 90,05 30,3 92,51 12,5 82,81 8,4 

K 81,87 50.1 94,41 45,5 93,83 29,6 84,60 25,9 

W1 86,01 146,1 92,26 132,8 92,26 166,3 69,69 151 

W2 85,05 104,4 92,59 94,8 92,27 74,5 90,86 76,5 

W3 83,86 202,1 90,56 183,6 88,98 144,3 79,96 148,1 

W4 81,87 187.5 91,61 170,4 89,64 133,9 88,40 137,4 

 

Additionally, to evaluate the accuracy of the fault detection capabilities of the classification 

algorithms, features from the time domain and time-frequency domain were extracted and analysed. 

The results are presented in Table 3, while the parameter settings of the classification algorithms are 

detailed in Table 4. As illustrated in Table 3, the accuracies and fault detection speeds are lower than 

the PCA and ICA algorithms.  ST transform features were not taken into account due to the long 

calculation time of the ST transformation.  

 

                                Table 4. Parameter settings of the classification algorithms. 

 Parameter Settings 

KNN 

 

 

Number of Neighbors = 4 

Distance = Euclidean 

Distance Weight = Equal 

Standardize Data = True 

SVM 

 

Kernel = Linear 

Kernel Scale = Automatic 

Standardize Data = True 

DT 

 
Max Number of Split = 100 

Split Criterion = Gini’s diversity index 

ANN 

 

 

Layer Size =30 

Activations = relu 

Output Layer Activation = softmax 

Solver = LBFGS 
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After the fault detection, the fault classification stage starts to identify the faults. Features can 

be obtained with different scenarios and methods for fault classification. In this study, one and quarter 

cycle of the post fault current signals are chosen to extract the features because in case of a fault, the 

current values increase and are no longer sinusoidal. Energy, entropy, standard deviation, and kurtosis 

values of ST and WT transformations of current signals in time frequency-domain are used as 

features. In addition, mean, variance and kurtosis values of one and quarter cycle current signals in 

time domain are used as features. The features and corresponding labels are given in Table 5.  

The efficiency verification of one-cycle features was conducted using SVM, ANN, DT, and 

KNN classifiers, employing 10-fold cross-validation on the database. The cross-validation method 

involves randomly dividing the entire dataset into 10 subsets of equal size. Subsequently, a single 

subset is designated as the test set, while the remaining subsets are utilized as the training set. This 

procedure is repeated 10 times, and the final result is determined by averaging the outcomes of the 

10 iterations. 

 

                Table 5. Features and labels. 

M Mean value of one cycle signal in time domain 

V Variance of one cycle signal in time domain 

K Kurtosis of one cycle signal in time domain 

S1 Energy of ST transformed signal 

S2 Standart deviation of ST transformed signal 

S3 Entropy of ST transformed signal 

S4 Kurtosis of ST transformed signal 

W1 Energy of WT transformed signal 

W2 Standart deviation of WT transformed signal 

W3 Entropy of WT transformed signal 

W4 Kurtosis of WT transformed signal 

 

Two studies were conducted for comparison of the performances of the classifiers with different 

features and feature windows. In the first study, all possible fault types that may occur in the power 

transmission line were taken into consideration and the classification results were shown in Table 6. 

It is seen that ICA and PCA algorithms do not affect the classification process since they only estimate 

faults and the estimation position of the faults are close to each other. Upon verification of the results 

for accuracy, the superior classification outcomes were achieved utilizing the SVM algorithm, 

employing the mean value and energy of the  ST transformed signal. In terms of the effect of length 

of feature window, it is seen that the classification results of features with one cycle window length 

are higher. These results show that for periodic signals, extracting features from one period signal 

will increase the classification performance of classification algorithms. 
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Table 6. Comparisons of classification performances of features for one and quarter cycle signal lengths (11 

faults). 

 

Classification Results for PCA 

with One Cycle Signal 

Length(%) 

Classification Results for ICA 

with One Cycle Signal Length 

(%) 

 Classification Results for PCA 

with Quarter Cycle Signal 

Length(%) 

Classification Results for ICA 

with Quarter Cycle Signal 

Length (%) 

 SVM KNN DT ANN SVM KNN DT ANN SVM KNN DT ANN SVM KNN DT ANN 

M 95,7 83,5 93,1 90,9 96,7 83,1 93,5 90,9 88,1 82,4 91,4 87,9 89,5 80,7 90,5 86,9 

V 95,9 81,8 94,8 90,5 95,9 82,3 93,9 90,9 92,2 81,3 93,1 85,5 91,3 81,3 89,6 86,1 

K 93,5 89,6 90,9 91,8 94,4 90,0 91,3 91,3 70,1 77,6 69,1 87,8 77,4 80,7 72,3 86,5 

S1 95,7 82,8 94,8 89,2 96,5 83,1 94,4 90,9 91,4 80,9 88,7 84,2 93,75 81,1 92,8 85,2 

S2 91,8 81,5 87,4 89,6 92,2 81,0 89,6 89,6 89,7 80,0 83,1 85,1 90,8 80,4 87,0 84,3 

S3 78,4 68,0 66,2 82,1 79,2 68,4 66,7 83,1 73,7 67,2 60,5 77,8 76,6 65,3 60,9 78,9 

S4 86,6 91,8 90,9 90,2 86,6 92,6 93,5 93,1 85,6 84,3 86,1 85,2 84,6 85,9 85,9 85,6 

W1 87,4 60,0 81,0 81,1 86,1 60,2 81,2 84,1 84,1 59,9 80,9 74,2 85,1 59,0 80,6 75,3 

W2 86,6 77,5 79,7 89,2 88,7 75,3 79,2 90,0 83,2 75,2 78,6 82,5 86,9 72,0 75,9 83,0 

W3 83,3 79,7 72,7 88,7 83,5 80,5 72,3 90,0 74,7 77,6 70,3 83,3 75,4 72,8 68,3 84,1 

W4 72,3 60,8 69,7 65,4 64,9 55,8 63,6 87,0 58,1 56,5 59,1 60,3 56,4 54,6 60,3 61,5 

 

Furthermore, it is also seen that the classification accuracies are lower than 95% for some 

classifiers. The main reason for this issue is that a-b-c-g and a-b-c faults are similar and  not easy to 

separate these faults from each other. As a solution to this problem, most of the power line fault works 

suggest using 10 faults for fault classification (Roy & Bhattacharya, 2015; Samantaray, 2013; 

Upendar, Gupta, & Singh, 2008). Therefore, as the second study, the performances of the 

classification algorithms were also calculated for only  10 faults (without a-b-c-g), and the results are 

shown in Table 7. 

As can be seen in Table 7, the accuracies of the SVM, KNN, and ANN with the features M, V, 

and S1 are increased to 100% for one cycle feature window. The accuracies of the other features are 

also increased but  not as good as the M, V and S1. On the other hand, M and S1 features with SVM 

and KNN algorithms show 100%  accuracy for the quarter cycle window. However, the classification 

accuracies of the other features decrease for the quarter cycle. 
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Table 7. Comparisons of classification performances for one and quarter cycle signal lengths (10 faults without 

a-b-c-g)  

 

Classification Results for PCA 

with One Cycle Signal 

Length(%) 

Classification Results for ICA 

with One Cycle Signal Length 

(%) 

 Classification Results for PCA 

with Quarter Cycle Signal 

Length(%) 

Classification Results for ICA 

with Quarter Cycle Signal 

Length (%) 

 SVM KNN DT ANN SVM KNN DT ANN SVM KNN DT ANN SVM KNN DT ANN 

M 
100 100 98,6 100 100 100 98,6 100 100 97,1 97,2 95,7 100 100 97,0 96,3 

V 
100 100 98,6 100 100 100 98,1 100 98,0 99,0 99,0 95,5 99,0 99,1 96,4 94,3 

K 
96,2 91,9 94,3 93,3 95,2 93,3 95,2 93,8 84,5 85,4 74,7 91,3 84,6 87,5 77,8 92,1 

S1 
100 100 99,0 100 100 100 99,0 100 100 100 99,0 96,1 100 100 97,0 96,8 

S2 
96,7 96,7 96,7 98,6 95,2 96,7 96,7 95,0 95,0 94,0 99,0 93,3 94,0 95,0 95,0 92,7 

S3 
90,5 83,3 81,0 93,3 90,0 82,9 81,0 93,8 86,8 80,0 79,1 79,1 87,5 79,9 75,3 79,6 

S4 
98,6 97,6 99,0 98,6 98,6 97,6 99,0 98,1 96,2 94,3 89,3 90,2 96,2 96,2 91,3 91,1 

W1 
98,1 71,9 96,7 98,1 98,1 73,8 95,2 95,5 97,2 95,2 93,0 93,4 96,2 72,0 94,2 94,2 

W2 
98,1 88,6 96,7 99,5 99,0 90,5 95,2 95,2 98,0 95,2 93,2 92,2 98,1 89,4 93,6 92,8 

W3 
95,7 96,2 87,6 97,1 95,7 96,2 89,0 88,1 85,7 86,9 83,8 93,4 90,2 86,3 82,6 93,9 

W4 
76,7 77,6 79,0 64,8 72,9 70,5 69,5 72,9 66,3 68,2 70,6 61,4 71,4 69,9 65,1 62,9 

 

 

5. Conclusions 

 

In this paper, PCA and ICA algorithms, which use only faultless data to find faults, are 

presented instead of ANN or classification algorithms because they are more appropriate to operate 

in real-time for detecting faults in a power transmission line. The fault detection performances of 

these algorithms are 100% with the 𝑇2 and 𝐼𝑒
2  statistics. It is clear from these results that both 

algorithms are the most suitable algorithms for real-time fault detection in the power transmission 

line. Furthermore, one cycle signals are suggested to use for feature extraction in the classification. 

The major benefit of extracting features from one cycle signals is that it guarantees that all time-

domain features are the same for faultless data, regardless of where the starting point of the feature 

is. The results in Tables 6 and 7 also support the use of one cycle time-domain features. The M and 

V features over one cycle give better classification results than all WT features and most of the ST 

features. It is seen in Table 7 that the classification performances of M and V are 100% for 10 fault 

types. Besides, it is observed that the SVM algorithm can be chosen as a classification algorithm for 

power transmission faults because it has the best results for 10 and 11 fault types. 
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