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Abstract  Keywords 

In a previous study, limits were calculated within the category of 2-crossed modules 

of groups over a fixed group R, where the group actions involved were specifically 

taken to be conjugation actions. While this framework provides a rich algebraic 

structure for constructing certain homotopical and categorical structures, the 

limitation of conjugation-based actions restricts the flexibility of this approach. In this 

paper, we extend this framework by introducing the notion of 2-generalized crossed 

modules (2GCM), which generalize the structure of 2-crossed modules by allowing 

more flexible and arbitrary group actions, rather than restricting them to conjugation 

actions. Furthermore, we prove that the category of 2-generalized crossed modules is 

finitely complete, meaning that it possesses all finite limits, such as products and 

equalizers. This property is important for higher-level categorical analysis and 

supports the application of 2-generalized crossed modules in both theoretical and 

applied contexts, particularly in higher-dimensional algebra and homotopy theory. 
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1. INTRODUCTION 
 

A generalized crossed module 𝜔:𝐹 → 𝐾 is a morphism of groups, together with the actions of 𝐹 on 𝐹 

and of 𝐾 on 𝐾 arbitrary instead of conjugation actions. Yavari and Salemkar defined the generalized 

crossed modules in [1]. They get the generalized crossed modules category, GCM, and investigated the 

relation between epimorphisms and surjective morphisms in GCM. 

 

A 2-crossed module of groups 𝐹
𝛼2
→ 𝐾

𝛼1
→ 𝐻 is a complex of groups, satisfying certain conditions along 

with the actions of 𝐻 on 𝐾 and 𝐹, and a mapping {−,−}:𝐾 × 𝐾 → 𝐹, which is often called the Peiffer 

lifting of 2-crossed module, such that the action of 𝐻 on 𝐻 is conjugation, α1 and α2 are 𝐻 -equivariant. 

2-crossed modules were first introduced by Conduché in [2] as models for connected homotopy 3-types. 

The commutative algebra version was also given by Arvasi in [3]. Later, the concept of a 2-crossed 

module is extended to various algebraic structures; see [4,5-6] for further details. 

 

Brown and Sivera [7], calculated algebraic (co)limits in the homotopy theory with using (co)fibred 

categories. They proved that, the inclusion map 𝑖𝐽: 𝑋𝐽 → 𝑋, where Ψ:𝑋 → 𝐵 is a fibration and J ∈ B, 

preserves colimits of connected diagram. In [8], they described colimits in the categories of crossed 

modules (over groupoids) and modules (over groupoids), which are derived by reducing the colimits in 

the category of crossed complexes. In many of the work, it is shown that a homotopically defined functor 
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Π: (topological data) → (algebraic data) 

  

in a fibred category preserves certain colimits [7,8,9-10]. In the literature, (co)limits of crossed modules 

were studied over time for various algebraic structures, as seen in [11,12,13,14-15]. The 2-crossed 

module version is studied in [16-17]. 

 

In this paper, we introduce the concept of 2-generalized crossed modules (2GCM), where group actions 

are arbitrary rather than restricted to conjugation actions. Furthermore, we prove that the category of 

2GCM is finitely complete. Put differently, we construct the product, pullback and equalizer objects 

within the category of 2GCM. 

 

2. GENERALIZED CROSSED MODULES 

 

We recall the definition of a generalized crossed module from [1]. 

Definition 2.1 A generalized crossed module (𝐹, 𝐾, 𝜔), consists of a group morphism 𝜔:𝐹 → 𝐾, 

together with the following properties: 

i) an action of F on F, denoted by 𝑓 ◁F 𝑓′, for every 𝑓, 𝑓′ ∈ 𝐹, 
ii) an action of K on K , denoted by 𝑘 ◁𝐾 𝑘′, for every 𝑘, 𝑘′ ∈ 𝐾, 
iii) an action of K on F, denoted by 𝑘𝑓, for every 𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹, 

satisfying the conditions: 

GCM1) ω(𝑘𝑓) = 𝑘 ◁𝐾 𝜔(𝑓)  

GCM2) 𝑓′ = 𝑓 ◁𝐹 𝑓′
𝜔(𝑓)

 

for all 𝑓, 𝑓′ ∈ 𝐹 and 𝑘 ∈ 𝐾. If ω only satisfies condition GCM1, we get a pre-generalized crossed 

module. 

Remark 2.2 Throughout this paper, an action of 𝐹 on 𝐹 is denoted by ∙ instead of ◁𝐹 for any group 𝐹. 

 

A morphism (𝜃, 𝜗): (𝐹, 𝐾, 𝜔) → (𝐹′, 𝐾′, 𝜔′) of generalized crossed modules consists of group 

morphisms 𝜃: 𝐹 → 𝐹′ and 𝜗:𝐾 → 𝐾′  such that the following diagram is commutative. 

 

 

 

 

 

 

 

 

i.e. ϑω = ω'θ and 

𝜃( 𝑓 
𝑘 ) = 𝜃(𝑓) 

𝜗(𝑘)  

for all 𝑓 ∈ 𝐹 and 𝑘 ∈ 𝐾. Thus we obtain the category of generalized crossed modules, denoted by 

GCM. 

Some examples of generalized crossed modules are given below:  

Example 2.3 If 𝜔: 𝐹 → 𝐾 is any crossed module, then it is also generalized crossed module. 

Example 2.4 Let 𝜔: 𝐹 → 𝐾 be a group morphism. If all actions are trivial, then ω becomes a generalized 

crossed module. 

Example 2.5 Let 𝐹 and 𝐾 be two groups. If the action of 𝐹 on 𝐹 is trivial and the actions of 𝐾 on 𝐾 and 

𝐾 on 𝐹 are arbitrary, then the trivial morphism 1: 𝐹 → 𝐾 is a generalized crossed module. 

Example 2.6 For any group 𝐹 and any action of on itself, then (𝐹, 𝐹, 𝑖𝑑𝐹) is a generalized crossed 

module. 

 

 

  

F’   F   

 ω   

K’‘ 

θ   

ω’   

K   ϑ

θ
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3. 2-GENERALIZED CROSSED MODULES 

 

Definition 3.1 A 2-generalized crossed module (𝐹, 𝐾, 𝐻, 𝜌2, 𝜌1) is a normal complex of groups 

 𝐹
𝜌2
→𝐾

𝜌1
→𝐻  

i) an action of 𝐻 on 𝐹 denoted by ℎ ◁ 𝑓 for all ℎ ∈ 𝐻, 𝑓 ∈ 𝐹, 
ii) an action of 𝐻 on 𝐾 denoted by ℎ ◁ 𝑘 for all ℎ ∈ 𝐻, 𝑘 ∈ 𝐾, 
iii) an action of 𝐾 on 𝐾 and H on H denoted by 𝑘 ∙ 𝑘′ and ℎ ∙ ℎ′ for all 𝑘, 𝑘′ ∈ 𝐾 and ℎ, ℎ′ ∈ 𝐻 and a 

mapping {−,−}:𝐾 × 𝐾 → 𝐹 which is called Peiffer lifting, such that 𝜌2 and 𝜌1 are 𝐻-equivarient, 

satisfying the following conditions: 

2GCM1) 𝜌2{𝑘0, 𝑘1} = (𝑘0 ∙ 𝑘1)(𝜌1(𝑘0) ◁ 𝑘1
−1)  

2GCM2) {𝜌2(𝑓0), 𝜌2(𝑓1)} = (𝑓0 ∙ 𝑓1)𝑓1
−1 

2GCM3) 

i) {𝑘0, 𝑘1𝑘2} = {𝑘0, 𝑘2}{𝑘0, 𝑘1} 
(𝑘0∙𝑘1)

ii){𝑘0𝑘1, 𝑘2} = {𝑘0, 𝑘1𝑘2}(𝜌1(𝑘0) ◁ {𝑘1, 𝑘2})
 

2GCM4) 

i) {𝜌2(𝑓), 𝑘} = 𝑓( 𝑓−1 
𝑘 )

ii) {𝑘, 𝜌2(𝑓)} = ( 𝑓 
𝑘 )(𝜌1(𝑘) ◁ 𝑓

−1)
 

or 

2GCM4*) {𝜌2(𝑓), 𝑘}{𝑘, 𝜌2(𝑓)} = 𝑓(𝜌1(𝑘) ◁ 𝑓
−1)  

2GCM5)  ℎ ◁ {𝑘0, 𝑘1} = {ℎ ◁ 𝑘0, ℎ ◁ 𝑘1} 
for all ℎ ∈ 𝐻, 𝑘, 𝑘0, 𝑘1, 𝑘2 ∈ 𝐾 and 𝑓, 𝑓0, 𝑓1 ∈ 𝐹. 

 

There is an action of 𝐾 on 𝐹, defined as 

𝑘𝑓 = {𝑘, 𝜌2(𝑓)}(𝜌1(𝑘) ◁ 𝑓) 

for all 𝑘 ∈ 𝐾 and 𝑓 ∈ 𝐹. 

 

Let (𝐹, 𝐾, 𝐻, 𝜌2, 𝜌1)  and (𝐹′, 𝐾′, 𝐻′, 𝜌2
′ , 𝜌1

′ )  be two 2-generalized crossed module. A morphism of 2-

generalized crossed modules is defined by the following diagram:  
 

 

 

 

 

 

  

 

where the diagram is commutative, i.e. 𝜗𝜌1 = 𝜌1
′𝜗′ and 𝜗′𝜌2 = 𝜌2

′𝜗′′. Furthermore the following 

equations are satisfied: 

𝜗′(ℎ ◁ 𝑘) = 𝜗(ℎ) ◁ 𝜗′(𝑘)

𝜗′′(ℎ ◁ 𝑓) = 𝜗(ℎ) ◁ 𝜗′′(𝑓)
 

{−,−}ϑ′ × ϑ′ = ϑ′′{−,−} 

for all ℎ ∈ 𝐻, 𝑘 ∈ 𝐾 and 𝑓 ∈ 𝐹. 

  

F’   F   

 𝜌2   

K’‘ 

𝜗′′ 

𝜌2
′    

K   𝜗′ 

 

H 

 

H’ 

  
 

𝜌  
𝜌1 𝜌1

′  

𝜗 
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Thus, we get the category of 2-generalized crossed module, which is denoted by 2GCM. 

Example 3.2 Any generalized crossed module gives a 2-generalized crossed module. If (𝐾,𝐻, 𝜌) is a 

generalized crossed module, then 𝐹 → 𝐾 → 𝐻 is a 2-generalized crossed module by taking 𝐹 = 1. 

Thus, we have a functor: 

∆: GCM → 2GCM 

defined by ∆(𝐾,𝐻, 𝜌) = (1,𝐾, 𝐻, 1, 𝜌). 

If 𝐹
𝜌2
→𝐾

𝜌1
→𝐻 is a 2-generalized crossed module, then 𝐼𝑚𝜌2 is a normal subgroup of 𝐾. Thus, we get an 

induced generalized crossed module, 𝜌′: 𝐾/𝐼𝑚𝜌2 → 𝐻. Hence, we get a functor: 

Ψ: 2GCM → GCM. 

So, ∆ is the adjoint functor of Ψ. Therefore, we have the adjunction: 

𝐻𝑜𝑚𝐆𝐂𝐌(Ψ(𝔗), 𝔛) ≌ 𝐻𝑜𝑚𝟐𝐆𝐂𝐌(𝔗, ∆(𝔛) 

between the category of 2GCM and the category of generalized crossed modules. 

4. THE COMPLETENESS of 2GCM 

 

Recall that, the ({𝑒}, {𝑒}, 𝑖𝑑) is the terminal object in the category of generalized crossed modules. 

Moreover, for given two generalized crossed module morphisms (𝜃, 𝜃′): (𝐾1, 𝐻1, 𝛼) → (𝐾3, 𝐻3, 𝛾) and 
(𝜗, 𝜗′): (𝐾2, 𝐻2, 𝛽) → (𝐾3, 𝐻3, 𝛾), we get the generalized crossed module (𝑃𝐾 , 𝑃𝐻 , 𝜇), where 𝑃𝐾 =
{(𝑘1, 𝑘2)|𝜃(𝑘1) = 𝜗(𝑘2)} and 𝑃𝐻 = {(ℎ1, ℎ2)|𝜃′(ℎ1) = 𝜗′(ℎ2)}, is the pullback of (𝜃, 𝜃′) and (𝜗, 𝜗′) 
in the category of generalized crossed modules GCM. Therefore, we say that GCM is finitely complete, 

[1]. 

In this section, we will prove the completeness of the category of 2GCM. 

Proposition 4.1 If (𝐹1, 𝐾1, 𝐻, 𝜌2, 𝜌1) and (𝐹2, 𝐾2, 𝐻, 𝜎2, 𝜎1) are two 2-generalized crossed module, then 

(𝑃𝐹 , 𝑃𝐾 , 𝐻, 𝜇, 𝜔) is a 2-generalized crossed module, where 

𝑃𝐹 = {(𝑓1, 𝑓2) | 𝜌2(𝑓1) = 𝜎2(𝑓2)} ⊂ 𝐹1 × 𝐹2 

𝑃𝐾 = {(𝑘1, 𝑘2) | 𝜌1(𝑘1) = 𝜎1(𝑘2)} ⊂ 𝐾1 × 𝐾2 

with the peiffer lifting 

{−,−}: 𝑃𝐾 × 𝑃𝐾 → 𝑃𝐹 

defined by 

{(𝑘1, 𝑘2), (𝑘1′, 𝑘2′)} = ({𝑘1, 𝑘2}, {𝑘1′, 𝑘2′}) 

for all (𝑘1, 𝑘2), (𝑘1
′ , 𝑘2

′ ) ∈ 𝑃𝐾 . 

Proof Define 𝜔:𝑃𝐾 → 𝐻 by 𝜔(𝑘1, 𝑘2) = 𝜌1(𝑘1) = 𝜎1(𝑘2), 𝜇: 𝑃𝐹 → 𝑃𝐾  by  

𝜇(𝑓1, 𝑓2) = (𝜌2(𝑓1), 𝜎2(𝑓2))  

for all (𝑓1, 𝑓2) ∈ 𝑃𝐹  and (𝑘1, 𝑘2) ∈ 𝑃𝐾. For all ℎ ∈ 𝐻 and (𝑓1, 𝑓2) ∈ 𝑃𝐾; 
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𝜔( (𝑓1, 𝑓2)) 
ℎ = 𝜔( 𝑓1, 𝑓2 

ℎ ) 
ℎ

 = 𝜌1( 𝑓1 
ℎ )

 = ℎ ∙ 𝜌1(𝑓1)

  

Then (𝑃𝐾 , 𝐻, 𝜔),  is a pre-generalized crossed module. For all ℎ ∈ 𝐻, 

(𝑘0, 𝑘0
′ ), (𝑘1, 𝑘1

′ ), (𝑘2, 𝑘2
′ ), (𝑘1, 𝑘2), (𝑘1

′ , 𝑘2
′ ) ∈ 𝑃𝐾  and (𝑓1, 𝑓2), (𝑓1

′, 𝑓2
′) ∈ 𝑃𝐹; 

 2GCM1) 

𝜇{(𝑘1, 𝑘2), (𝑘1
′ , 𝑘2

′ )} = 𝜇({𝑘1, 𝑘1
′ }, {𝑘2, 𝑘2′})

= (𝜌2{𝑘1, 𝑘1
′ }, 𝜎2{𝑘2, 𝑘2′})

= ((𝑘1 ∙ 𝑘1
′ )(𝜌1(𝑘1) ◁ (𝑘1)

−1, (𝑘2 ∙ 𝑘2
′ )(𝜎1(𝑘2) ◁ (𝑘2)

−1))

= ((𝑘1 ∙ 𝑘1
′ ), (𝑘2 ∙ 𝑘2

′ ))(𝜌1(𝑘1) ◁ (𝑘1)
−1, 𝜎1(𝑘2) ◁ (𝑘2)

−1)

= ((𝑘1, 𝑘2) ∙ (𝑘1
′ , 𝑘2′))(𝜌1(𝑘1) ◁ (𝑘1)

−1, 𝜎1(𝑘2) ◁ (𝑘2)
−1)

= ((𝑘1, 𝑘2) ∙ (𝑘1
′ , 𝑘2′))(𝜔(𝑘1, 𝑘2) ◁ (𝑘1

′ , 𝑘2
′ )−1)

 

2GCM2) 

{𝜇(𝑓1, 𝑓2), 𝜇(𝑓1
′, 𝑓2

′)} = {(𝜌2(𝑓1), 𝜎2(𝑓2)), (𝜌2(𝑓1
′), 𝜎2(𝑓2

′))}

= ({𝜌2(𝑓1), 𝜌2(𝑓1
′)}, {𝜎2(𝑓2), 𝜎2(𝑓2

′)})

= ((𝑓1 ∙ 𝑓1
′)(𝑓1

′)−1, (𝑓2 ∙ 𝑓2
′)(𝑓2

′)−1)

= ((𝑓1, 𝑓2) ∙ (𝑓1
′, 𝑓2

′))(𝑓1
′, 𝑓2

′)−1

 

2GCM3) 

i)   

{(𝑘0, 𝑘0
′ ), (𝑘1, 𝑘1

′ )(𝑘2, 𝑘2
′ )} = {(𝑘0, 𝑘0

′ ), (𝑘1𝑘2, 𝑘1
′𝑘2
′ )}

= ({𝑘0, 𝑘1𝑘2}, {𝑘0
′ , 𝑘1

′𝑘2
′ })

= ( {𝑘0, 𝑘2}
(𝑘0∙𝑘1) {𝑘0, 𝑘1}, {𝑘0

′ , 𝑘2
′ }

(𝑘0
′ ∙𝑘1

′ )
{𝑘0
′ , 𝑘1

′ })

= ({𝑘0, 𝑘2}{𝑘0, 𝑘1}
((𝑘0∙𝑘1),(𝑘0

′ ∙𝑘1
′ ))

, {𝑘0
′ , 𝑘2

′ }{𝑘0
′ , 𝑘1

′ })

= ({𝑘0, 𝑘2}, {𝑘0
′ , 𝑘2

′ })({𝑘0, 𝑘1}
((𝑘0∙𝑘1),(𝑘0

′ ∙𝑘1
′ ))

, {𝑘0
′ , 𝑘1

′ })

= {(𝑘0, 𝑘0
′ ), (𝑘2, 𝑘2

′ )}
((𝑘0,𝑘0

′)∙(𝑘1,𝑘1
′ ))

{(𝑘0, 𝑘0
′ ), (𝑘1, 𝑘1

′ )}

 

 

ii) 

{(𝑘0, 𝑘0
′ )(𝑘1, 𝑘1

′ ), (𝑘2, 𝑘2
′ )} = {(𝑘0𝑘1, 𝑘0

′𝑘1
′ ), (𝑘2, 𝑘2

′ )}

= ({𝑘0𝑘1, 𝑘2}, {𝑘0
′𝑘1
′ , 𝑘2

′ })

= ({𝑘0, 𝑘1𝑘2}𝜌1(𝑘0) ◁ {𝑘1, 𝑘2}, {𝑘0
′ , 𝑘1

′𝑘2
′ }𝜎1(𝑘0

′ ) ◁ {𝑘1, 𝑘2
′ })

= ({𝑘0, 𝑘1𝑘2}, {𝑘0
′ , 𝑘1

′𝑘2
′ })(𝜌1(𝑘0) ◁ {𝑘1, 𝑘2}, 𝜎1(𝑘0

′ ) ◁ {𝑘1, 𝑘2
′ })

= {(𝑘0, 𝑘0
′ ), (𝑘1, 𝑘1

′ )(𝑘2, 𝑘2
′ )}𝜔(𝑘0, 𝑘0

′ ) ◁ {(𝑘1, 𝑘1
′ ), (𝑘2, 𝑘2

′ )}
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2GCM4*) 

{𝜇(𝑓1, 𝑓2), (𝑘1, 𝑘2)}{(𝑘1, 𝑘2), 𝜇(𝑓1, 𝑓2)} = {(𝜌2(𝑓1), 𝜎2(𝑓2)), (𝑘1, 𝑘2)}{(𝑘1, 𝑘2), (𝜌2(𝑓1), 𝜎2(𝑓2))}

= ({𝜌2(𝑓1), 𝑘1}, {𝜎2(𝑓2), 𝑘2})({𝑘1, 𝜌2(𝑓1)}, {𝑘2, 𝜎2(𝑓2)})

= ({𝜌2(𝑓1), 𝑘1}{𝑘1, 𝜌2(𝑓1)}, {𝜎2(𝑓2), 𝑘2}{𝑘2, 𝜎2(𝑓2))

= (𝑓1(𝜌1(𝑘1) ◁ (𝑓1)
−1), 𝑓2(𝜎1(𝑘2) ◁ (𝑓2)

−1))

= (𝑓1, 𝑓2)(𝜌1(𝑘1) ◁ (𝑓1)
−1, 𝜎1(𝑘2) ◁ (𝑓2)

−1)

= (𝑓1, 𝑓2)(𝜔(𝑘1, 𝑘2) ◁ (𝑓1, 𝑓2)
−1)

 

2GCM5) 

ℎ ◁ {(𝑘1, 𝑘2), (𝑘1
′ , 𝑘2

′ )} = ℎ ◁ ({𝑘1, 𝑘1
′ }, {𝑘2, 𝑘2

′ })

= (ℎ ◁ {𝑘1, 𝑘1
′ }, ℎ ◁ {𝑘2, 𝑘2

′ })

= ({ℎ ◁ 𝑘1, ℎ ◁ 𝑘1
′ }, {ℎ ◁ 𝑘2, ℎ ◁ 𝑘2

′ })

= {(ℎ ◁ 𝑘1, ℎ ◁ 𝑘2), (ℎ ◁ 𝑘1
′ , ℎ ◁ 𝑘2

′ )}

= {ℎ ◁ (𝑘1, 𝑘2), ℎ ◁ (𝑘1
′ , 𝑘2

′ )}

 

 

Then, 

𝑃𝐹
𝜇
→𝑃𝐾

𝜔
→𝐻 

is a 2-generalized crossed module.   

Proposition 4.2 (𝐹1, 𝐾1, 𝐻, 𝜌2, 𝜌1) and (𝐹2, 𝐾2, 𝐻, 𝜎2, 𝜎1) are two 2-generalized crossed module, then 

we have natural morphisms of 2GCM; 

(𝑝1
′ , 𝑝1, 𝑖𝑑𝐻): (𝑃𝐹 , 𝑃𝐾 , 𝐻, 𝜇, 𝜔) → (𝐹1, 𝐾1, 𝐻, 𝜌2, 𝜌1)  

and 

(𝑝2
′ , 𝑝2, 𝑖𝑑𝐻): (𝑃𝐹 , 𝑃𝐾 , 𝐻, 𝜇, 𝜔) → (𝐹2, 𝐾2, 𝐻, 𝜎2, 𝜎1).  

Proof Consider the following diagram: 

 

 

 

 

 

 

 

For all ℎ ∈ 𝐻,  (𝑘1, 𝑘2) ∈ 𝑃𝐾  and (𝑓1, 𝑓2), (𝑓1
′, 𝑓2

′) ∈ 𝑃𝐹; 

𝑝1(ℎ ◁ (𝑘1, 𝑘2)) = 𝑝1(ℎ ◁ 𝑘1, ℎ ◁ 𝑘2)

= ℎ ◁ 𝑘1
= 𝑖𝑑𝐻(ℎ) ◁ 𝑘1
= 𝑖𝑑𝐻(ℎ) ◁ 𝑝1(𝑘1, 𝑘2)

 

𝐹1 𝑃𝐹 

𝜇 

 

𝐾1 

𝑝1
′  

𝜌2 

𝑃𝐾 
𝑝1 

H 

 

H 

𝜔 
 

𝜌  

  

𝜌1 

𝑖𝑑𝐻 
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𝑝1
′ (ℎ ◁ (𝑓1, 𝑓2)) = 𝑝1

′ (ℎ ◁ 𝑓1, ℎ ◁ 𝑓2)

= ℎ ◁ 𝑓1
= 𝑖𝑑𝐻(ℎ) ◁ 𝑓1
= 𝑖𝑑𝐻(ℎ) ◁ 𝑝1

′ (𝑓1, 𝑓2)

 

{−,−}𝑝1 × 𝑝1((𝑓1, 𝑓2), (𝑓1
′, 𝑓2

′)) = {−,−}𝑝1(𝑓1, 𝑓2) × 𝑝1(𝑓1
′, 𝑓2

′)

= {𝑓1, 𝑓1
′}

= 𝑝1
′ {(𝑓1, 𝑓2), (𝑓1

′, 𝑓2
′)}

 

Moreover, the verification of the following equations is straightforward and follows directly from the 

definitions: 

𝜌1𝑝1 = 𝑖𝑑𝐻 𝜔       and       𝜌2𝑝1
′ = 𝑝1 𝜇. 

Thus, (𝑝1
′ , 𝑝1, 𝑖𝑑𝐻): (𝑃𝐹 , 𝑃𝐾 , 𝐻, 𝜇, 𝜔) → (𝐹1, 𝐾1, 𝐻, 𝜌2, 𝜌1) is a morphism of 2GCM. Similarly, it is 

shown that (𝑝2
′ , 𝑝2, 𝑖𝑑𝐻): (𝑃𝐹 , 𝑃𝐾 , 𝐻, 𝜇, 𝜔) → (𝐹2, 𝐾2, 𝐻, 𝜎2, 𝜎1) is a morphism of 2GCM. 

Theorem 4.3 The category of 2GCM has product object. 

Proof: We just need to prove the universal property. Let (𝑇, 𝑅, 𝐻, 𝜏1, 𝜏2) be a 2-generalized crossed 

module with two morphisms of 2GCM; 
 

(𝛼1, 𝛽1, 𝑖𝑑𝐻): (𝑇, 𝑅, 𝐻, 𝜏1, 𝜏2)  → (𝐹1, 𝐾1, 𝐻, 𝜌2, 𝜌1) 

(𝛼2, 𝛽2, 𝑖𝑑𝐻): (𝑇, 𝑅, 𝐻, 𝜏1, 𝜏2) → (𝐹2, 𝐾2, 𝐻, 𝜎2, 𝜎1). 

Then, there is a unique morphism of 2GCM, 

(𝜑, 𝜓, 𝑖𝑑𝐻): (𝑇, 𝑅, 𝐻, 𝜏1, 𝜏2)  → (𝑃𝐹 , 𝑃𝐾 , 𝐻, 𝜇, 𝜔) 

such that the diagram commutes:   

 

 

 

 

 

 

 

 

 

    
Diagram 1. 

 

Define 𝜑(𝑡) = (𝛼1(𝑡), 𝛼2(𝑡)) and 𝜓(𝑟) = (𝛽1(𝑟), 𝛽2(𝑟)) for all 𝑡 ∈ 𝑇 and 𝑟 ∈ 𝑅. (𝜑, 𝜓, 𝑖𝑑𝐻) 
defines a morphism of 2GCM with the following diagram: 

 

 

𝑃𝐹 T 

𝜏2 

 

𝑃𝐾 

𝜑 

𝜇 

 

R 
𝜓 
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𝜓(ℎ ◁ 𝑟) = (𝛽1(ℎ ◁ 𝑟), 𝛽2(ℎ ◁ 𝑟))

= (ℎ ◁ 𝛽1(𝑟), ℎ ◁ 𝛽2(𝑟))

= 𝑖𝑑𝐻(ℎ) ◁ (𝛽1(𝑟), 𝛽2(𝑟))

= 𝑖𝑑𝐻(ℎ) ◁ 𝜓(𝑟)

 

𝜑(ℎ ◁ 𝑡) = (𝛼1(ℎ ◁ 𝑡), 𝛼2(ℎ ◁ 𝑡))

= (ℎ ◁ 𝛼1(𝑡), ℎ ◁ 𝛼2(𝑡))

= 𝑖𝑑𝐻(ℎ) ◁ (𝛼1(𝑡), 𝛼2(𝑡))

= 𝑖𝑑𝐻(ℎ) ◁ 𝜑(𝑡)

 

{−,−}𝜓 × 𝜓(𝑟, 𝑟′) = {𝜓(𝑟), 𝜓(𝑟′)}

= {(𝛽1(𝑟), 𝛽2(𝑟)), (𝛽1(𝑟′), 𝛽2(𝑟′)) }

= ({𝛽1(𝑟), 𝛽1(𝑟
′)}, {𝛽2(𝑟), 𝛽2(𝑟

′)})

= (𝛼1{𝑟, 𝑟
′}, (𝛼2{𝑟, 𝑟

′})

= 𝜑{𝑟, 𝑟′}

= 𝜑{−,−}(𝑟, 𝑟′)

 

for all 𝑡 ∈ 𝑇, 𝑟, 𝑟′ ∈ 𝑅 and ℎ ∈ 𝐻.  

Furthermore, for all 𝑟 ∈ 𝑅 and 𝑡 ∈ 𝑇,  

𝑝1𝜓(𝑟) = 𝑝1(𝛽1(𝑟), 𝛽2(𝑟)) = 𝛽1(𝑟) 

𝑝1
′𝜑(𝑡) = 𝑝1

′(𝛼1(𝑡), 𝛼2(𝑡)) = 𝛼1(𝑡). 

Then, we get (𝑝1
′ , 𝑝1, 𝑖𝑑𝐻)(𝜑, 𝜓, 𝑖𝑑𝐻) = (𝛼1, 𝛽1, 𝑖𝑑𝐻), similarly (𝑝2

′ , 𝑝2, 𝑖𝑑𝐻)(𝜑, 𝜓, 𝑖𝑑𝐻) =
(𝛼2, 𝛽2, 𝑖𝑑𝐻). Thus, the diagram 1 is commutative. Finally, let  

(𝜑′, 𝜓′, 𝑖𝑑𝐻): (𝑇, 𝑅, 𝐻, 𝜏1, 𝜏2)  → (𝑃𝐹 , 𝑃𝐾 , 𝐻, 𝜇, 𝜔) 

 be a morphism of 2GCM with the same properties of (𝜑, 𝜓, 𝑖𝑑𝐻). Define (𝑓1, 𝑓2) ∈ 𝑃𝐹  by 𝜑′(𝑡) =
(𝑓1, 𝑓2) and (𝑘1, 𝑘2) ∈ 𝑃𝐾 by 𝜓′(𝑟) = (𝑘1, 𝑘2). 

𝑝1
′𝜑′(𝑡) = 𝛼1(𝑡) ⇔ 𝑝1

′ (𝑓1, 𝑓2) = 𝛼1(𝑡) ⇔ 𝑓1 = 𝛼1(𝑡)

𝑝2
′𝜑′(𝑡) = 𝛼2(𝑡) ⇔ 𝑝2

′ (𝑓1, 𝑓2) = 𝛼2(𝑡) ⇔ 𝑓2 = 𝛼2(𝑡)

𝑝1𝜓
′(𝑟) = 𝛽1(𝑟) ⇔ 𝑝1(𝑘1, 𝑘2) = 𝛽1(𝑟) ⇔ 𝑘1 = 𝛽1(𝑟)

𝑝2𝜓
′(𝑟) = 𝛽2(𝑟) ⇔ 𝑝2(𝑘1, 𝑘2) = 𝛽2(𝑟) ⇔ 𝑘2 = 𝛽2(𝑟)

 

for all 𝑟 ∈ 𝑅 and 𝑡 ∈ 𝑇. 

Thus, this proves that (𝜑,𝜓, 𝑖𝑑𝐻) is unique. Consequently, we get the following product diagram of 

2GCM: 

H 

H 

𝜏1 

 

 

𝜌  

𝜔 

 
𝑖𝑑𝐻 
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Theorem 4.4 The category of 2GCM has pullback object. 

Proof: If (𝜈1, 𝜐1, 𝑖𝑑𝐻): (𝐹1, 𝐾1, 𝐻, 𝜌2, 𝜌1) → (𝐹3, 𝐾3, 𝐻, 𝜆2, 𝜆1) and (𝜈2, 𝜐2, 𝑖𝑑𝐻): (𝐹2, 𝐾2, 𝐻, 𝜎2, 𝜎1) →

(𝐹3, 𝐾3, 𝐻, 𝜆2, 𝜆1) are two morphisms of 2GCM, then we know from Proposition 4.1 that, 

(𝑃𝐹 , 𝑃𝐾 , 𝐻, 𝜂, 𝜀) is a 2-generalized crossed module, where 

𝑃𝐹 = {(𝑓1, 𝑓2) | 𝜈1(𝑓1) = 𝜈2(𝑓2)} ⊂ 𝐹1 × 𝐹2 

𝑃𝐾 = {(𝑘1, 𝑘2)  | 𝜐1(𝑘1) = 𝜐2(𝑘2)} ⊂ 𝐾1 × 𝐾2 

with the peiffer lifting 
{−,−}: 𝑃𝐾 × 𝑃𝐾 → 𝑃𝐹 

defined by 

{(𝑘1, 𝑘2), (𝑘1
′ , 𝑘2

′ )} = ({𝑘1, 𝑘1
′ }, {𝑘2, 𝑘2

′ }) 

for all (𝑘1, 𝑘2), (𝑘1
′ , 𝑘2

′ ) ∈ 𝑃𝐾. Also, we have two morphisms of 2GCM, 

(𝑝1
′ , 𝑝1, 𝑖𝑑𝐻): (𝑃𝐹 , 𝑃𝐾 , 𝐻, 𝜂, 𝜀)  → (𝐹1, 𝐾1, 𝐻, 𝜌2, 𝜌1) and (𝑝2

′ , 𝑝2, 𝑖𝑑𝐻): (𝑃𝐹 , 𝑃𝐾 , 𝐻, 𝜂, 𝜀)  →
(𝐹2, 𝐾2, 𝐻, 𝜎2, 𝜎1) from Proposition 4.2. Thus, we get the following commutative diagram: 

 

 

 

 

 

Now to check that (𝑝1
′ , 𝑝1, 𝑖𝑑𝐻) and (𝑝2

′ , 𝑝2, 𝑖𝑑𝐻) provide the universal porperty. (𝑃𝐹
′ , 𝑃𝐾

′ , 𝐻, 𝜂′, 𝜀′) be 

any 2-generalized crossed module and let (𝜈1
′ , 𝜐1

′ , 𝑖𝑑𝐻): (𝑃𝐹
′ , 𝑃𝐾

′ , 𝐻, 𝜂′, 𝜀′)  → (𝐹1, 𝐾1, 𝐻, 𝜌2, 𝜌1) and 

(𝜈2
′ , 𝜐2

′ , 𝑖𝑑𝐻): (𝑃𝐹
′ , 𝑃𝐾

′ , 𝐻, 𝜂′, 𝜀′) → (𝐹2, 𝐾2, 𝐻, 𝜎2, 𝜎1) be two morphisms of 2GCM such that the diagram 

 

 

 

 

 

(𝐹2, 𝐾2, 𝐻, 𝜎2, 𝜎1) 
(𝑃𝐹 , 𝑃𝐾 , 𝐻, 𝜂, 𝜀) 

(𝑝1
′ , 𝑝1, 𝑖𝑑𝐻) 

 

(𝐹3, 𝐾3, 𝐻, 𝜆2, 𝜆1) 

(𝑝2
′ , 𝑝2, 𝑖𝑑𝐻) 

(𝜈2, 𝜐2, 𝑖𝑑𝐻) 

(𝐹1, 𝐾1, 𝐻, 𝜌2, 𝜌1) 
(𝜈1, 𝜐1, 𝑖𝑑𝐻) 
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commutes, i.e.  (𝜈1, 𝜐1, 𝑖𝑑𝐻)(𝜈1
′ , 𝜐1

′ , 𝑖𝑑𝐻) = (𝜈2, 𝜐2, 𝑖𝑑𝐻)(𝜈2
′ , 𝜐2

′ , 𝑖𝑑𝐻). Then, there is a unique morphism 

of 2GCM (𝜃, 𝛾, 𝑖𝑑𝐻): (𝑃𝐹
′ , 𝑃𝐾

′ , 𝐻, 𝜂′, 𝜀′) → (𝑃𝐹 , 𝑃𝐾 , 𝐻, 𝜂, 𝜀) such that the following diagram is 

commutative: 

 
 

Define 𝜃: 𝑃𝐹
′ → 𝑃𝐹 by 𝜃(𝑓1

′, 𝑓2
′) = (𝜈1

′(𝑓1
′), 𝜈2

′ (𝑓2
′)) for all (𝑓1

′, 𝑓2
′) ∈ 𝑃𝐹

′ , and 𝛾: 𝑃𝐾
′ → 𝑃𝐾 , by 

𝛾(𝑘1
′ , 𝑘2

′ ) = (𝜐1
′(𝑘1

′ ), 𝜐2
′ (𝑘2

′ )) for all (𝑘1
′ , 𝑘2

′ ) ∈ 𝑃𝐾
′ . We can easily show that (𝜃, 𝛾, 𝑖𝑑𝐻) is a 

morphism of 2GCM. Furthermore, we get 

(𝑝1
′ , 𝑝1, 𝑖𝑑𝐻)(𝜃, 𝛾, 𝑖𝑑𝐻) = (𝜈1

′ , 𝜐1
′ , 𝑖𝑑𝐻)     

(𝑝2
′ , 𝑝2, 𝑖𝑑𝐻)(𝜃, 𝛾, 𝑖𝑑𝐻) = (𝜈2

′ , 𝜐2
′ , 𝑖𝑑𝐻)   

and this prove the commutativity of diagram above. The uniqueness of (𝜃, 𝛾, 𝑖𝑑𝐻) is shown similarly to 

the previous proof. 

Lemma 4.5 As a result, in the category of 2GCM, an equalizer object can be constructed using the 

product and pullback objects. More precisely, in any category, the equalizer of the parallel morphisms 

(𝜃, 𝜗): 𝑇 → 𝑆, is the pullback of (1𝑇 , 𝜃): 𝑇 → 𝑇 × 𝑆 and (1𝑇 , 𝜗): 𝑇 → 𝑇 × 𝑆. 

Remark 4.6 The category of 2GCM has a zero object ({𝑒}, {𝑒}, {𝑒}, 𝑖𝑑, 𝑖𝑑), where  ({𝑒}, {𝑒}, 𝑖𝑑) is the 

zero object in the category of generalized crossed modules. 

Theorem 4.7 The category of 2GCM is finitely complete. 

Proof: Follows from Theorem 4.3, Theorem 4.4 and Lemma 4.5.  

5. CONCLUSIONS 

 

We already know that, we have the adjunction: 

Hom𝐆𝐂𝐌(𝛹(ℜ), ℭ) ≅ Hom2GCM(ℜ,𝛺(ℭ)), 

between the category of 2GCM and the category of generalized crossed modules, where ℭ is a 

generalized crossed module and ℜ is a 2-generalized crossed module. As a result of this adjunction, we 

can say that the functor 𝛺 preserves limits, while Ψ preserves colimits. Consequently, all the 

constructions discussed in the previous section, which are the certain cases of limits, are preserved under 

the functor 𝛺. For instance, let ℋ and ℛ be two generalized crossed modules with the same codomain 

and P be the product of them. By using the adjunction above, we can say that, the product of 2GCM 

𝛺(ℋ) and 𝛺(ℛ) is 𝛺(𝑷). Moreover, as mentioned above, similar properties can be applied not only to 

the product object, but also to all of the notions we have defined. 
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