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Hidden probabilistic one counter models (HPOCA) that are a
specific model where spotting between hidden Markov models
(HMMs) and probabilistic context-free grammars (PCFGs)
which is a subclass of probabilistic pushdown automata contains
only one stack symbol In this study, we propose a new model in
which the final terminal counter value is different from zero.
With this proposed model, we enhance the existing HPOCA,
making it more complex. Consequently, as there will be a greater
number of paths to reach the final terminal, we also evaluate the
probability of reaching the target through alternative routes
based on the given observation sequence. It makes the model
more expressive than default HPOCA due to providing
alternative final terminals. However, the inference of the final
counter value could easily go to an infinite number without any
threshold. A boundary is applied to prevent the occurrence of
this unexpected condition. By applying this threshold value, we
ensured that the computational complexity of the model is
quadratic rather than cubic.
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Gizli olasilikli bir saya¢ modeli (HPOCA), gizli Markov
modelleri (HMMs) ile olasilikli baglamdan bagimsiz gramerler
(PCFGs) arasinda tespitin yalnizca bir y1gin sembolii igerdigi
belirli bir modeldir. Bu galismada, son terminal saya¢ degerinin
sifirdan farkli oldugu yeni bir model 6neriyoruz. Onerilen bu
modelle, mevcut HPOCA'y1 gelistirerek daha karmasik hale
getiriyoruz. Sonug olarak, son terminale ulagmak i¢in daha fazla
yol olacagindan, verilen gozlem dizisine gore alternatif yollar
araciligiyla hedefe ulasma olasiligint da degerlendiriyoruz.
Alternatif son terminaller sagladigi i¢in modeli varsayilan
HPOCA'dan daha anlamli hale getiriyor. Ancak, son sayag
degerinin ¢gikarimi herhangi bir esik olmaksizin kolayca sonsuz
bir sayiya gidebilir. Bu beklenmeyen durumun olusmasini
onlemek icin bir sinir uygulanir. Bu esik degerini uygulayarak,
modelin  hesaplama karmasikligimm kiibik degil, ikinci
dereceden olmasini saglamis oluyoruz.
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1. INTRODUCTION

Complex nested hierarchical structures are a major issue for modelling sequential data. They might be
found in many different fields such as natural language, gene modelling, and queuing systems. There are
two major types of models to challenge this issue: Hidden Markov Models (HMMs) and probabilistic
context-free grammars (PCFGs). It Is known that HMMs are commonly used for both their computational
complexity and simplicity, however, it is not sufficient while facing more complex problems. On the other
hand, PCFGs are a sufficient model to be used for complex problems but they are slow learners (i.e. higher
computational complexity than HMMs).

In the light of this consideration, we propose a model that has an attractive spot in between standard HMM
and PCFG. This model is more suitable to face more complex problems than HMMs provide, and it has
less computational complexity than PCFGs have. In this paper, we introduce the characteristic feature of
the final terminal, which is substantially formed with zero counter value in the default HPOCA model.
Probabilistic one counter automata (POCA) is a trending known model that is used to recognize the subclass
language of probabilistic context-free languages. This aspect is used as a comprehensible model for queuing
systems [1] or epidemic modelling [2]. In these systems the counter value is used as a key role when
tracking the number of clients in the queue or figure out the number of infected patients. POCAs are also
commonly used in the analysis of software such as [3] and [4].

The language recognition of this model is a subclass of probabilistic context-free languages as HPOCA
recognises. It is called probabilistic one-counter languages. The parsing of these languages is notably
expensive due the parsing algorithm used for these languages (i.e. known as CYK algorithm) has a cubic
computational complexity. Reducing this computational complexity, the structure of HMM which has
quadratic algorithms and recognizes the probabilistic regular languages encompassed by probabilistic
context-free languages is adapted to HPOCA as mentioned in [6].

In systems with queues, the counter value is constrained as much as possible, despite the system potentially
presenting an infinite appearance. In order to further approach the potential of an infinite system and to
develop a more impactful model, a modification was made to the final terminal feature of the existing
HPOCA [5]. In this update, even if a process ends at a final terminal and the counter value is different from
zero, it still indicates that the process was accepted, unlike in the present HPOCA where the counter value
should always be zero. This new HPOCA model renders the current model more complex. This augmented
feature places the model into the spot where it challenges more complex problems than the current model
does. Along with this enables it to parse the recognized language more accurately.

1.1. Related Work

The definition of deterministic one-counter automata (OCA) and its structure that accepts the languages are
represented in [7]. According to this definition, we see that one-counter automatas, which has only one
stack symbol, accept the subclass of context-free languages which is called one-counter languages. POCA
is augmented by adding probability values to the transition functions of the OCA. It is extensively discussed
in [8] and [9]. According to the definitions, the proposed model also sits between two distinct models which
are Markov chains (MCs) and probabilistic pushdown automata (PPDA) [10,11] as the model discussed in
this work.

When examining the applications used by OCA, there are several purposes. For instance, it is employed in
parsing bracketed arithmetic expressions [12]. Additionally, OCA is utilized for validating XML documents
[13]. The work presented in [14] adapts only the Viterbi algorithm for POCA decoding. However, it is less
concise than [5]. Because, [5] studies adapt all algorithms of HMM to enable the updating of parameters
and yielding more favourable results.

On the other hand, HMM is widely utilized in various fields. For instance, in natural language processing
[15]. In other instances, some other extensions are applied to create HMM models of different structures.
Lexicon free-HMMs [16] has been employed for handwriting recognition and Weighted features in HMM
[17] model has been used in removing spam from SMS. The other extension applied to HMM is called
hierarchical hidden Markov model. It is applied to detect the resistance gene in biolgy [18] and inferring
behaviour [19].
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None of the models under consideration in this study are capable of simulating the model proposed here.
The reason is that these models have finite states. However, the proposed model contains infinite states and
thus this makes it a more complex structure and being applicable to more intricate problems.

1.2. Structure of the Paper

This article is adapted from the thesis discussed in [6]. Unlike [5], it allows final terminals to have non-
zero counter value. The structure of the article proceeds as follows: In Section 2, the definition of the model
and its constraints are discussed. Adapted algorithms are addressed in Section 3. The results of the
comparison with HMM and [5] are examined in Section 4. The last section, Section 5, contains the
conclusion part.

2.2. MODEL DEFINITION

In [5], the distinctive feature of the final terminal of the model is produced with zero counter value. In this
new model, we do, however, slightly strengthen the traditional acceptance rule of the counter machines by
accepting that the counter value of the final terminal is non-zero. To accommodate non-zero counter values,
we will introduce an appropriate notation for the final terminal of this model by defining as (Equation 1):

Qr ={(gr, 0)|c =0} (1

where qr € Q.

The formal definition of this proposed model is quite similar as defined in [5]. The model has tuple
H=(Q,2 A%A% B, qo,qr) where

e ( is a finite set of hidden states

® ) is finite set of observations

o A% is transition function and it is enabled when the counter value equals to zero where A°%: Q X A, X
Q —~[01]

® A% is transition function and it is enabled when the counter value is non-zero where A*: Q X A, X
Q —~[01]

® B is emission function where B: Q X ¥ — [0,1]

® g, € Q is initial terminal

® g € Q is designated the final terminal

The A, and A, are possible changes for the counter value. They are enabled depending on the current
counter value. If the current counter value is zero then Ay={0,1} is enabled. According to the possible
changes, at the next step, the counter ought to be still zero or increase one. If the counter value is non-zero
then A,={-1,0,1} is enabled and at the next step the counter might be still zero, increase one or decrease
one.

The probability distribution of every state ¢ € Q we have;

* ZAer,q’EQAO(CI: Aq)=1
® ZAEA+,q'EQA+(q' Aq)=1
*YoezB(q,0) =1

The form of the proposed model is shown as a pair (g, ¢). Here, g € Q is a hidden state, and ¢ € N is a non-
negative integer. The initial state, it is unique, is formed as (q,, 0) and the final terminal is configured as
(qr, ¢). We will show these configurations by S, where ¢ is a time step. When we run this configurations at
time ¢ and counter value equals to zero, we will get a probabilistic value as (Equation 2).
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Pr(Ses1 = (¢, 0)IS, = (q,0)) = A%(q,4A,q") 2)

If the counter value is non-zero at time ¢, then the configuration is formed as (Equation 3)

Pr(Ses1 = (q',c +A)|S; = (q,0)) = A*(q,A,q") 3)

Here, q is the current hidden state at time 7. q’ is the next hidden state at time step #+1. A is the difference
of the counter values between states. If counter value equals to zero A € A, and if counter value is non-zero
A€EA,.

A processing (i.e. run) of T (i.e. length of given observation sequence) in this model is a finite trace as
shown in Figure 1. It starts at initial terminal (qg, 0) at time #=0. It is terminated (i.e. accepted) if (qy, cr)

= (qp,c),c = 0.
start —>.—'\/\/\/\/\,—»

Figure 1. A simple trace of the model

The inference of the counter value in this model may potentially escalate to infinity without a predefined
threshold. It is necessary to include a boundary to mitigate the occurrence of this unexpected condition
during model running. The threshold for the counter value boundary is actually determined by the length
of the given observation sequence. The running terminates at the final terminal with a non-zero counter
value upon emitting the last output symbol of the given output sequence. For example, Figure 2, let T denote
the length of the given observation sequence. A potential worst-case scenario related to this aspect is that
the counter value in the model arises when the model terminates at a different hidden variable. On the other
hand, the counter value is non-zero at time step =7, yet. It is illustrated by the red line in Figure 2. In such
a scenario, the probability of the processed output sequence becomes zero.

counter

o0

0 T 20 length
Figure 2. Three examples for counter threshold

2.1. Motivation Example

To enhance the comprehensibility of the proposed model from the reader's perspective, it would be
beneficial to illustrate it using a simple motivating example. For this purpose, let us assume that we have a
model with a single state (e.g., ¢) and a single observation symbol (e.g., @). The model parameters are
defined as follows:

o Initial state distribution: w(q) = 1
e Transition probabilities:

o A%q,0,9) =04; A%(q,1,9) = 0.6

o A*(q,—1,q) =0.4; A*(q,0,q) = 0.2; A*(q,1,q) = 0.4
« Emission probabilities: B(q,a) = 1

C.U. Miih. Fak. Dergisi, 39(4), Aralik 2024




Mehmet KURUCAN, Dominik WOJTCZAK

][]

Figure 3. The trellis diagram of motivation example

OO ON
(o~

Let us assume that the given observation sequence is "aa." The model will calculate the probabilistic value
of this observation sequence (i.e., the forward likelihood value) by constructing a trellis diagram, as
depicted in Figure 2. Since the model initiates at time =0, the computation involves the initial probability
of the state, the transition probabilities to possible state configurations at time 7=/, and the emission
probabilities for the symbol produced at time /=/. These probabilities are dynamically maintained as the
product of the initial state probability, the transition probabilities, and the emission probabilities for the
observed symbols.

The activation of the state transition matrices is contingent upon the counter value at time t—1/. At t=0, the
counter value is 0, thus A° is activated. Consequently, the probability of producing the first symbol "a" in
the given observation sequence at =1 is calculated as follows: (q) - A°(q,0,q) - B(q,a) and m(q) -
A%(q,1,q).B(q, a). The reason for performing these two calculations is that during the transition from =0

to t=1, the counter value may either remain 0 or increase by /.

During the transition from =1 to t=2, it is essential to consider the transitions from (g,0) and (gq,1), as the
appropriate transition matrix is activated based on the counter value (where the tuple indicates the state g
alongside the counter value). The calculations are then aggregated and continued according to the length of
the given observation sequence.

The main of this work, which is also mentioned in [5], is given a set of observation sequences O to find a
proper model H with a set of hidden states @ that produces O. In simple terms, processing such calculations
would require the multiplication of all possible hidden states with counter values. This would result in
exponential computation. To avoid this extensive computation and bring it to a polynomial time we will
adapt classic HMM algorithms in the next section.

3. ADAPTATION OF HMM ALGORITHMS

The learning problem in HMMs, there are three fundamental algorithms (i.e. Forward, Backward, and
Baum-Welch ) used to deal with it. In our proposed model, we consider the counter value that evolves the
calculation of learning problems while adapting those algorithms.

When adapting the forward and backward algorithms, which are the first stage of the learning algorithm,
we divided them into two separate phases. They are called preliminary and normalization, respectively.
Here, the preliminary phase is similar to the calculations in the original algorithms. However, with this
adaptation, considering the counter value results in a change in the calculation values. In the normalization
phase, unnecessary paths are discarded to construct a complete trellis diagram connecting specific initial
and final terminals.
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The last adapted algorithm is the Baum-Welch algorithm. In the original version of this algorithm there are
two distinct calculation functions. We use the same functions but also consider counter configuration.
Among these functions, y calculates the probability of being in a hidden state at time ¢ based on the given
observation sequence. The other function, &, calculates the transition probabilities between states based on
the given observation sequence.

3.1. The Adaptation of Forward Algorithm

This algorithm is used to compute the probability value of a given observation sequence. This computation
is obtained by summing the calculations of all possible paths that can generate the given observation
sequence.

First Phase: Preliminary Forward Calculation

Let 0;,; = 0;...0; is the part of the given observation sequence from i to ;. In this calculation, we consider
the joint probability distribution of the given observation sequence 0;.;, the hidden state-counter pair S; =
(q,c) and all these are conditioned on initial terminal Sy = (qg, 0). The calculation formally shown as
(Equation 4);

a:(q,¢) = Pr(o1., S¢|So) “4)
Here, & represents the preliminary Forward calculation.

The calculation start initial state at /=0 as shown in Figure 4. It continues the calculation by summing all
over the paths until reaches the hidden state S;. The calculation is performed into two steps: Base step and

Recursion step.

At Base step (i.e. 1=0):

. _J1: ifg=qgande=0
aﬂ(q’c)_{ 0: otherwise

(5)
t=0 t=1 t=2
start —=
Figure 4. Trellis diagram of preliminary Forward calculation
At the Recursion step (i.e. £>0) :
Ifc—A=0:
a.(q,c) = Zq’EQ Zi:o @_1(q',c —A)A°(q', A, q)B(q,0,) (6)
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Ifc—A>0:

@:(q,¢) = Lgreq La=-18c-1(q’,c = DA™ (q',A,9)B(q, 0,) ()

Theorem-1: @,(q, c) calculates Pr(o4.;, S¢|So)-

Proof-1: The calculation start =0, thus the function calculates Pr(04.q, So|So). Here 04, is irrelevant.
Pr(So|So) = Pr(Sy) = 1 and at the base step if ¢ = g, and ¢ = 0, then @,(q, ¢) = 1 otherwise it is equal
to zero. Let assume that /=Fk is correct. Then we need to prove that /=k+1/. If we put the ¢ into calculation
formulae, we get: @y41(q,¢) = Pr(01.441,Sk+1/S0). If we apply chain rule, then we get: @,,(q,c) =
Pr(04.411S0, Sk+1)PT(Sk411S0)- Here o, is conditionally independent from S, according to the d-
separation rule. We get, @i41(q,¢) = Pr(01.11S0, Sic+1)PT(Si411S0) Pr(0x41] Si41). If we apply first
chain rule, then apply sum rule over on Sj, and then again apply chain rule, then the calculation becomes
Ar41(q,€) = X, PT(01:40) S411Sk, So)Pr(Sic|So) Pr(041] Sg+1)According to the d-separation rule, Sy.q
is independent from S, condition on Sj. Thus we got the proof if apply again chain rule & ,,(q,c) =
25, PT(01:40, SiclSo)Pr(Skc411Sk) Pr(0g41] Sg41). Here Pr(oq., SklSo) is previous calculation @ (q, c),
Pr(Sy.41|Sk) is state transition and Pr(oy4| Si4+1) is an observation transition. m

Second Phase: Normalization of Forward Calculation
This second phase of the adapted algorithm is based on discarding the irrelevant path between initial and
final terminals. Thus, this part calculates the joint probability distribution of the given observation sequence

01.; and being in hidden state S; condition on initial terminal S, and final terminals S € Q.

The formal definition of this phase is shown as follow (Equation 8):
a;(q,¢) = Pr(oy., SelSo, St € QF) )

The calculation of this phase starts at the end of the trellis diagram (i.e. designated final terminal with non-
zero counter value) S € Qr as shown in Figure 5.

t=0 fi=1 t=T-1 t=T

ap_1(g,0)

ar-1(g,1)

start —» @

ar(g,T)

Figure 5. Trellis diagram of normalization phase of the Forward flow
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As mentioned above, this model has a unique final terminal but the counter value can be non-zero depending
on the length of the given observation sequence. Consequently, a run is terminated in the corresponding
final terminal with non-zero counter value which is ranging from 0 < ¢ < T, where T denotes the length
of the output sequence. The computation of this phase stars at time #=T. It is called Base step (Equation 9):

C,27' (q! C)
Xero Pr(Sr = (q,¢)ISo)
where ¢ = g and c is non-zero counter value: 0 < ¢ < T. The computation continues to the first terminal

at the recursion step (i.e. t < T), taking into account whether the counter value is zero or non-zero due to
enable the transition matrices:

ar(q,c) = (€)]

o fc=0:
1 ('(:_;[G'.(";l'lfi:[q..l.@':lf!:i'{l‘.f:l
(@)= 3 ,
q'€Q4=0 %, (@cth) (10)
o if ¢=0:
1 a (qc+0)A (g.0q)a(q.)
@)= X X o
q'€QA=—1 a..(q c+4)

Theorem-2: a,(q, c) calculates the joint probability of Pr(0;., S¢|So, St € QF).

Proof-2: At the base step t=T: a;(q,c) = Pr(o1.r, St = (q,¢)|So, St € QF). If we apply production rule

then we get ar(q,¢) = Pr(01.7S1=(0.0) STEQrlSo) Here, if the hidden state q is the final state and the counter
T Pr(STEQF|So)

. P . = . . . .
valueis 0 < ¢ < T,thenay(q,c) = W. The nominator of this fraction equals to preliminary
TEYFI20

calculation of forward flow at time =7, and the denominator equals the sum of the probability of whole

ar(q.c)
20y Pr(sr=(a.cNISo)’
we again  assume that the calculation is true for =k where @ai(q,c)=
Pr(01:x+1.Sk+11S0,STEQF)Pr(Sk+1|Sk)Pr(01:k.Sk|S0)
Pr(01:k+1.Sk+1150)
t=k-1 and equals to a;_1(q,c) = Pr(0y.x_1,Sk—1/50, St € Qr). We apply two production rules separately.
Pr(04:k,5k.S0,STEQF)
Pr(So,STEQF)
applied to Pr(o4.x, Sk, So, St € Q) as Pr(o4.x, So, St € Qr|Sk)Pr(Sk). According to the d-separation rule
0y is independent from S, and S; depending on S;,. Thus we get Pr(04.x-1, S0, St € Qr|Si)Pr(ox|Sy). If
we apply chain rule to Pr(oq.x_1, Sk-1|S0) then we get Pr(01.k-11S0, Sk—1)Pr(Sk-1|S,). We can merge
Pr(Sg|Sk—1) with Pr(oq.4_1]S0,Sk—1) according to the d-separation rule. We get here
Pr(04.x—1,Sk|S0, Sk—1). We can again merge Pr(S,_,|Sy) with Pr(o0q.,_1,Sk|So,Sk—1) and we get
Pr(04.x—1, Sk, Sk—1|S0). If we apply chain rule to denominator item Pr(o;.,Sk|S,) then we get
Pr(o1.x|So, Si)Pr(Sk|So)- According to d-separation rule oy, is independent from S, depending on Sj.. Then
we get Pr(0q.x-11S0, Sk)Pr(ox|Sx). We can eliminate each Pr(og|S;) from both numerator and
denominator. In Pr(04.,_1,So, ST € Qr|Sk), St € QF is independent from both 0,.,_; and S, depending on
Sy according to the d-separation rule. We can get Pr(04.x_1, So|Sk)Pr(Sr € Qr|Sk). We can merge both
Pr(Sx) and Pr(04.x_1, So|Sk) in the numerator section. Then we get Pr(01.x—1, So,5x)- If we apply product
rule to Pr(01._1|S0, Sk) and Pr(S,|S,) then we get Pr(04.x_1, Sk| So)- After that we can apply again chain
rule to Pr(04.k—1, So»Sk) as Pr(04.x—1, Sk|So)Pr(Sy). Now, we can eliminate Pr(04.x_1, Sk|So) from both
numerator and denominator. We can apply production rule to merge Pr(04.x_1, Sk, Sk—11S0) and Pr(S,) in
the numerator, then we get Pr(01.x-1,Sk, Sk—1,Sp). If we apply chain rule depending on S, we get
Pr(01.k-1,Sk-1,S0|Sk)Pr(Sy). According to the d-separation rule, Pr(S; € Qg|Sk) can be merged with
Pr(01.5-1,Sk-1,S0|Sx) depending on Sj.. Thus, we can get Pr(01.—1, Sk—1, S0, St € Qr|Sk). After that, we
can merge Pr(Sy) with it, then we get Pr(0q.k—1,Sk—1,50,St € QF, Si). In here, actually we have
Y PT(O1:k—1r3k—1r30r5TEQF‘5k).
k Pr(So,STEQF)
Zsk Pr(01.k-1,Sk-1,Sk|S0, ST € QF). In here we can remove sum rule production over S, variable, then we
have Pr(01.x-1, Sk-1,Sk|S0, St € QF) where it is equivalent to a,_;(q,c). m

paths from initial state to final states. Thus, we get ar(q,c) = At the recursion part,

and we would like to proof the calculation is also correct for

First we apply to Pr(oq.k, Sk|So, St € QF) and get , then the second production rule is

If we look at this fraction carefully, it is actually equals to
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3.2. The Adaptation of Backward Algorithm

This suggested model might be implemented using the second modified dynamic programming method
backward algorithm, which consists of two primary computing phases again: preliminary backward
calculation and normalisation of backward flow. The probability of the future observation sequence 0.7
condition hidden variable S, is being computed in this calculation.

First Phase: Preliminary Backward Calculation

In this phase, the calculation begins from the final terminal. Therefore, if we consider the length of a given
observation sequence as T, and since this computation also calculates the probability of future observation
sequences, the calculation starts from the final terminal would be appropriate.

In the proposed model, since the counter value at the final terminal will be non-zero. Thus, the counter
value of the final terminal in the range 0 < ¢ < T might be considered. Therefore, the computation will
take into account all counter values, as illustrated in Figure 6.

Figure 6. Trellis diagram of preliminary calculation of adapted Backward algorithm

This calculation is denoted as f3;(q, ¢). It starts from the final terminal towards the initial terminal. At time
t=T, the preliminary Backward calculation value of the final terminal, considering all designated counter
values, is set to one. This knowledge is obtained from the initiation of the calculation at the final terminal,
whose location is also known. It differs from Forward flow normalisation in that there is no additional
symbol probability added to the computation.

The calculation can be shown formally as follow (Equation 11):

Be(q,¢) = Pr(Sr € Q¢lS: = (4,¢),So)

At Base Step (t=T):

(1D
B:(q,c)=11fq=qrandc:0<c<T
At Recursion Step (t<T):
e Ifc=0:
. r,
B.(q,0) = EQ 20 B.y(@.c + DA (4,4,0)
'€Q A=
e Ifc>0: ! (12)
A 1 A 4
Bac)=3X I B, (¢ c+ DA (a0d4)
g'eQA=—1

C.U. Miih. Fak. Dergisi, 39(4), Aralik 2024




The Utilization of Single-Counter Systems Featuring Final Terminals with Non-Zero Counter Values

Theorem-3: f,(g, ¢) computes the probability of Pr(S; € Qr|S; = (g,¢),S,) correctly.

Proof-3: We can start with the base step of the calculation. For #=T7, the calculation becomes as
Br(q,c) = Pr(Sy € Qr|Sy = (q,¢),S,). Here, Sy € Qp is conditionally independent from initial terminal
So- Thus, we get Pr(Sr € Qr|Sr = (q,¢)). Here, if the hidden variable ¢ = g5 and the counter value 0 <
¢ < T then Pr(Sr € Qr|St € Q). Thus the probability equals 1. At the recursion part (i.e. 0<t< T), we
assume that the calculation is correct for t=k, and now we need to prove that the same equation also provides
the correct calculation for t=k-1. We can start the proof of this part by adding sum rule over hidden state
Sk as  Xg, Pr(Sr € Qp, Sk|Sk-1,50). Then we can apply chain rule as g Pr(Sr €
Qr|Sk—1,Sk, So)Pr(Sk|Sk-1,So)- The first order of the Markov assumption: the future state only depends
on the current state. Thus, Pr(Sy|Sk_1,So) becomes to Pr(S|S,_1). According to the d-separation rule,
any Sr € Qr is conditionally independent from S,_; condition on S, and we get X Pr(Sr €
Qr|Sk, So)Pr(S|Sk_1). Here, Pr(Sy € Qr|Sk, So) is B (q, ¢) and Pr(Sy|Sj_,) is state transition probability
distribution which depends on whether the counter value is zero or non-zero. If counter equals to zero then
A is enabled and A = {0,1}. If counter is non-zero then A" is enabled and A = {—1,0,1}. =

Second Phase: Normalization of Backward Calculation

In this computation phase, the probability value of the future observation sequence is calculated both with
respect to the current hidden variable and conditionally with respect to the terminals (i.e., initial and final)
as shown in Figure 7. It is shown formally as (Equation 13)

B:(q,¢) = Pr(0¢41.71Se = (q,¢), St € QF, So) (13)

In the recursion part of the above formulae is used as follows:
Pr(ST€QF|St+1,S
Be(@,©) = Zsi., PrlOvszrSess, Sr € Qr SoIPT(Sea1lSOPE(0r411Se41) Tt beit0) (14)

Pr(ST€QF|St,So)

t=0 t=1 t=T-1 t=T

Br-1(g,0)

Br-1(g,1)

Figure 7. The calculation of Backward normalization

The normalization part of Backward flow also initiates at the end of the time scale of r=T as preliminary
Backward flow does.
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At Base Step (t=T):
Bi(q,c) =11fg=qrandc:0<c <T.
At Recursion Step (t<T):

e Ifc=0:
: B_____I.G'-_\:-n"-lS_l...\r_."lsf_r_.".:l____|B_____:r;'...‘.j|

Blao=X X

7'€Qa=0 B,(a)

(15)
e Ifc>0:
B,. (@ c+D)A” (qAq)B(q'0,, )B,, (3'c+D)

Ba=3 T -

ﬁ:iq.ﬂ

q'€QA=-1

Theorem-4: 5.(q, c) calculates the joint probability of the future observation sequence Pr(0¢4q1.7|S¢ =
(q,¢), St € Qg, Sy) correctly.

Proof-4: First at =T the calculation becomes f(q, ¢) = Pr(or4+1.71St = (q,¢), St € Q, Sy). Here, 074 1.7
is trivial and S = (g, c) is one if the hidden variable is final terminal otherwise, it is zero. Let assume that
the calculation is correct at t=k and we need to proof that it is also correct for t=k-1. If we put to time value
Pr(0k+1:7:SkSTEQFS0)
Pr(Sk,STEQF.So0)
Again applying second time production rule to Pr(0y41.70 Sk, St € QF, Sp) and we get Pr(0x41.7,St €
Qr, So|Sk)Pr(S). We can merge these two arguments depending on Sy: Pr(0y41.7, St € QF, So|Sk) and
Pr(0g|Si) then we get Pr(oy.r, St € Qp, So|Sk). If we merge Pr(Sy) with it then it becomes Pr(oy.;, St €
Pr(STEQF.Sk:S0)
PT(Sk.So)
eliminate Pr(Sy € Q, S, Sp) argument from both numerator and denominator. Again we can apply chain
rule to Pr(og.r, St € Qr, Sy, Sk) then it becomes Pr(oy.r, St € Qr|So, Sk) Pr(Sy, Sk). We can again

eliminate the same argument Pr(Sy, Si) from both numerator and denominator. If we use chain rule for the
Pr(So,Sg-1)

Pr(STEQF,S0,Sk-1)"
rule to Pr(Sy, Sk_1) as Pr(Sy|Sx—1) Pr(Sk_1). The following arguments Pr(Sy|S,_;) and Pr(Sy|S,_1) can
be merged according to d-separation rule conditionally S;_;. Thus, we can get Pr(S,, Sk|Sk—-1) . Now we
can convert the conditional distribution to joint distribution by merging Pr(Sy, Si|Sx—1) and Pr(S;_;).
Then we get Pr(Sy, S, Sx—1) - If we again apply the chain rule this last argument as Pr(Sy_1|So, S)
Pr(Sy, Sx) and then we can merge Pr(S,_1|Sg, Sx) with Pr(oy.;, St € Qr|S, Si) depending on the same
conditional states. Then we can get Pr(og.r,Sx_1St € Qp|Sy, Sk). After this, we can merge again
Pr(og.r)Sk—1St € Qr|So,S;) with Pr(S,,Sy) to handle the joint probability as Pr(oy.r,Sk_1St €
Qr, So, Sk)- Now we can again use chain rule to get rid of the denominator part Pr(Sy € Q, Sy, Sx—1)- Here
we get the numerator arguments as Pr (0.7, Si|Sk-1St € QF, So) Pr(Sx_1St € QF, Sy) after applying chain
rule. Now we can eliminate the same argument, Pr(S;_;St € Qf,Sy), from both numerator and
denominator. Here, we have Y5, P (0.1, Sk|Sk-1ST € QF,So) and we can remove the sum rule then we

will get Pr(og.r, Sk|Sk—1ST € Qr,Sp) which is equal to S,_,(q, ¢) calculation at time r=k-/. m

to Equation 9 and applying the product rule to Pr(0g,1.7|Sk, St € QF,Sp) then we get

Qr, So, Sx). If we apply product rule to Pr(S; € Qr|Sk,Sy) then it becomes . We can

argument of denominator Pr(S; € Qr|Sy, Sk—1) then we get Here, if we can apply chain

3.3. The Adaptation of Baum-Welch Algorithm

The original form of the Baum-Welch algorithm, which is a special case of the EM algorithm, is used to
update the model's parameters in HMMs. The parameters are made to converge to their respective values
by applying a certain number of iterations. In our proposed model, we will use the adapted version that
takes counter values into account to update the parameters.

The algorithm consists of two steps as its original version has. The first step, called the E-step, involves
two distinct calculations: the probabilities of being in hidden states and the transition probabilities between
hidden states. The second step, known as the M-step, involves updating the parameters.

E-step
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In this step, the two different calculations used are denoted as y,(q, ¢) and &,((q', ¢"), (g, ¢)), respectively.
The y.(q,c) calculation provides the probabilities of being in the current hidden states for a given
observation sequence. Formally (Equation 16),

Yt(q,©) = Pr(S¢ = (q,0)|0, So, St € Qp) (16)

here O is the given observation sequence. The consideration of the non-zero counter value of the final
terminal is proceed in this model, then there need to be sum over the counter value at time r=7. Thus, the
formula is represented as follow (Equation 17):

( C) _ ézt(q' C).Bt(qt C)ﬁt(q' C)
e D N ¢ D)

amn

Theorem-5: y.(q,c) calculates correctly the marginal posterior distribution of S; where Pr(S; =
(a,9)10,S0, St € QF).

Pr(S,0,ST€QF|So)
Pr(0,ST€QE|So)
The observation sequence can be expended into two separated parts as 0,.; and 0,,41.7. We can apply this
separated parts into numerator as arguments: Pr(Sg, 01.¢, 0¢41.7> St € Qp|So)- After this adding if we apply
production rule again, we get Pr(0;.¢, 0¢41.7, St € Qp|S0, St) Pr(S:|So)- According to d-separation rule, 04.¢
is conditionally independent from both 0,,4.7 and , Sy € Qg condition on S;. Thus, we have Pr(0;.£|So, St)
Pr(os+1.7 St € QF|So, St)Pr(S:]Sy). If we apply chain rule to Pr(os41.7, St € Qf|So, St), then it becomes
Pr(0o¢4+1.71S0, St St € Qp)Pr(St € QF|So, St). We can merge Pr(01.+|Sy, St) and Pr(S;|Sy) depending on
initial terminal Sy, then we get Pr(o4.;, S¢|Sy) . At last, here, Pr(o4., S¢|So) is equivalent calculation of
preliminary Forward algorithm &, (S;) (i.e. equation 4), Pr(0;41.7|So, St, St € QF) is equivalently equal to
the normalization of Backward algorithm S, (S;) (i.e. equation 8), and Pr(St € Qg|Sy, St) is equivalent to
preliminary Backward flow B,(S,) (i.e. equation 7). The denominator part of the proof (i.e. Pr(0, St €
Qg|Sy)) is a preliminary Forward flow by summing over all the counter values of the final terminal. m

Proof-5: The proof can start by applying the production rule to Equation 10. We can get

The &.((q', ¢"), (g, ¢)) calculation, on the other hand, computes the transition probabilities between hidden
states for the given observation sequence. Formally (Equation 18),

ft((q,t C,)' (CI. C)) = pr(st—lt Stlo' SO! ST € QF) (18)

here O is the given observation sequence, S;_; = (q’, ¢") previous hidden state and counter pair, S; = (g, ¢)
current hidden state and counter pair. The multiple counter values of the final terminal is also considered
in this calculation. Therefore, the formula becomes as follow (Equation 19) :

a,(q',cNA%)(q', A, q)B(q,0)B:(q, ©)B:(q, ©)
YT o @r(qr,c’)

&((q'.c").(q.0) = (19)

Here, §(c")=0 if ¢'=0 and 6 (c’)= + if ¢'">0. Also, A={0,1} if ¢'=0 and A ={-1,0,1} if ¢">0.

Theorem-6: ft((q’,c’),(q, c)) correctly calculates the joint posterior distribution of two hidden
states Si_; = (q',¢') and S; = (q,c) where Pr(S;_4,S:]|0, Sy, St € QF).

Pr(St—1,5t,0,STEQF|So)
Pr(0,ST€QF|So)
We can expand the given observation sequence as we already did in proof-5 as o0,.; and 0;,q.7. The
numerator part becomes Pr(S;_i,St, 01.t, 0t41.75 ST € Qp|Sp). After that we can apply chain rule as
Pr(01.t, 0¢41.7 ST € QF|So, St—1, St)Pr(S¢—-1,S:|So). According to the d-separation rule, o, is conditionally
independent from o04.;:-1; , Op1.75STE€EQF , Si—; ,and S, condition on S;. Thus, we have

Proof-6: The proof can start by applying the production rule to equation 12. We can get
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Pr(01.t-1,9¢+1.7 ST € QF|So, St—1, SOPT(St—1, S¢1So)Pr(o¢|S;). According to the d-separation rule, the
previous observation sequence part 0;.._, is conditionally independent from 0;,q.7,St € Qp , and
S; condition on Se—1. Thus, we have Pr(04.t-11S¢t—1,So)Pr(0¢41.7, ST €
QrlSo, St—1, SO)PT(Si—1,S:|So)Pr(o¢|Sy).. Here, S,_; is irrelevant in Pr(0;41.7, St € Qf|So, St—1,St) due to
the future observation sequence part and the set of final terminals are conditionally independent with it.
Thus, we have Pr(o;1.7, St € Qg|So, St). Now, we can apply chain rule it and we get Pr(o¢,1.7|S¢, St, St €
Qr)Pr(St € Qr|So, St) - We can apply chain rule to Pr(S;_4,S:|So) as Pr(S:|So, St—1)Pr(Si_1|So)- Then,
we can merge Pr(o;.._1/Si—1,So)and Pr(S;_|Sy) to handle Pr(o04..—q,S¢—1|S¢).According to Markov
property S, is irrelevant in Pr(S;|Sy, S;—1). We can remove it and this argument becomes Pr(S:|S;_1). At
the end of this proof, Pr(04..—1,S¢-11Sp) is preliminary Forward calculation at time #-71: @._;(S¢—1),
Pr(0¢4+1.7/S0, St, ST € Qp) is normalization of Backward flow at time ¢ S.(S;), Pr(St € Qg|Sy, St) is
preliminary Backward calculation at time #: B,(S,), Pr(S¢|S,_;) is the probability of state transition
A8E)(S,_1, A, S,) where 8(c")=0 if ¢'=0 and 8(c')= + if ¢>0. Also, A={0,1} if ¢'=0 and A ={-1,0,1} if
¢>0. The last argument Pr(o|S;) is symbol emitting probability where is equivalent to B(S;, 0;). The
denominator part of the proof (i.e. Pr(0, St € Qg|Sy)) is a preliminary Forward flow by summing over all
the counter values of the final terminal. m

M-step

In the M-step, the model's parameters (6) are updated using the previous parameters (8'). This process is
similar to the approach in [5]. Multiple observation sequences are used to ensure convergence of the
parameters when updating them.Here, D represents the observation sequence number. This calculation
proceeds through the joint probability distribution over the hidden variables, counter values and the set of
given observation sequences (Equation 20):

(d)
Pr(S,C,016) = 13-, [Tr-1 B(S®, o(‘”)A5(Cr )(St(d), cih —c®, sy (20)
where § (Ct(d))ZO if Ct(d):O and § (Ct(d)):-i- if Ct(d)>0. The Lagrange Multipliers is used in equation 14 to
get the converged parameters of the model. The update formulas of the parameters are shown as follows,

respectively:

YR S v P (510 P =0)

B(g,0) = 21
(4.0) 28, 3 v P s @b
0 N 23=12{tlcgd)=0}€t(d)(5§d)ls§f)1)
A%(q,0,q") = 2y oy D@ @) (22)
d=1 Sgi_)l {t|c§d)=o} t t Ot+1
. 23212{t|c(d)>0}fgd)(st(d)'sgf)l)
A*(q,4,q9") = ‘ (23)

¥h_.% Sgd) % Et(d) (Sgd),sgf)l)

D “1c>0)

4. IMPLEMENTATION AND RESULTS

The proposed model is compared with the HMM. The original algorithms and adapted algorithms were
implemented in Python. 10 different models were created in this work and they are illustrated as # to
represent all models. Hy = (Qx, Zx, A%, AF, By, Qo ) Where k=1,,10. Here, A%, A}, and By, are used as
parameters in the models were generated randomly. q, and g were selected manually.

Subsequently, each model generated 30,000 observation sequences. Since each run is terminated at a final
terminal with multiple counter values. Thus, we kept the length of each observation sequence fixed at 14.
As mentioned in [5], to have a fair and quality comparison, the HMM must have an equal number of
parameters (i.e., according to the Bayesian Information Criterion) as the proposed model has. Therefore,
we set the number of states in the HMM to be 2.24 times the number of states in the proposed model. We
used the technique which was applied in [5] during the training models. In the first step, 100 different
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models were randomly used. Then, in each iteration, 25% of these models were discarded as measured by
the probability value. This process continued until convergence, leaving only one model at the end. Thus,
we prevent the local minima issue using this method.

Table 1. KL scores of the models after testing step

Model H1 H2 H3 H4 HS H6 H7 HS HO H10
Proposed
Model 0.000693  0.001459  0.002913  0.003941  0.010453  0.009671  0.011952  0.016158  0.013957  0.010571

HIMM 0.01047 0.02183 0.03021 0.04023 0.12098 0.10879 0.12103 0.15941 0.14184 0.11210

HMM 3.4107 4.1067 4.5739 5.0137 4.7218 5.2167 5.7846 6.1146 6.0478 5.8362

In terms of time consumption, times used in the learning process can be shown as evidence that considering
the counter value in models has higher time consumption compared to HMM.

In terms of the efficiency of the comparison, the learning durations for each of the three models were
evaluated on the same task, taking into account the counter value. As shown in Table 2, for models that
include a counter, the learning process was manually initialized by the user (as shown “---” in the table)
after a certain threshold, due to the extended duration of learning beyond that point.

Table 2. The comparison of time consumption in learning phase

Model H1 H2 H3 H4 S5 Ho H7 H8 H9 10
Proposed 15 7h17m  26hSim  84h48m  236h57m

Model

HIMM 58m  5h43m  23h7m  79h2Im  218h36m

HMM 9m 28m 1h 5m 4h11m 7h 3m 9h47m  13h17m  16h28m  21h3m  27h23m

It should also be noted that since the counter value of the final terminal is non-zero, it can approach the
length of the given observation sequence. This will lead to an increase in computational complexity (though
it will still remain quadratic). We set a boundary to prevent this issue: the feasible maximum counter values
will be equal to or less than half the length of the given observation sequence.

The adapted Baum-Welch algorithm used as the learning algorithm consists of multiple iterations. When
we consider the length of the observation sequence as T, the feasible counter M value will approach T since
we determine the counter value of the final terminal to be non-zero. In the proposed model, as noted in
Section 2, we can constrain this approach using a threshold. In light of this information, considering an
observation sequecne of length T and n = | Q] states with n state transitions, the computational complexity
of the proposed model will be O(n?TM) where the counter value can exceed half of the length of the given
observation sequence.

In the testing phase, the Kullback-Leibler (KL) divergence was used as the metric to compare the
performance values of the trained models (Equation 24).
P(x)

KL(P||Q) = P(x)log@ (24)

Here, the trained models calculate the probability values Q (x) of the observation sequences (i.e. for each
x) of the test set. Then, these values are compared logarithmically with the original probability values P (x)
to generate a score. If this score is close to zero, it indicates that the trained model is closely similar to the
original model.

As shown in Table-1, the KL-scores of the 10 different models indicate that the proposed model is quite
similar to the original model, while the HMM is significantly distant from the original model. The trade-
off in our model comparison is time consumption. However, we are confident that our model is still faster
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than PCFG. Additionally, the fact that it is more complex than HMM. Thus, it addresses the research
question of this study.

5. CONCLUSIONS

In this study, we propose a new model with a final terminal counter value that is non-zero, similar to a
hidden one-counter automaton, which reduces the computational cost of the learning algorithm for
probabilistic one-counter languages—a subclass of stochastic context-free languages—from cubic to
quadratic. The presence of a final terminal with a non-zero counter value enables the creation of alternative
final terminals. This not only renders the existing model more complex but also allows for the evaluation
of non-zero counter values with a higher likelihood through various alternative paths leading to the final
terminal. The learning and testing algorithms of the model have been adapted from the forward, backward,
Baum-Welch, and Viterbi algorithms used in hidden Markov models. This adaptation allows us to benefit
from the quadratic computational complexity of these algorithms. Although the proposed model achieves
better results in practical applications compared to hidden Markov models (HMMs), it has been observed
that the time required for learning is longer than that of HMMs. Additionally, due to the final terminal
having a non-zero counter value, the counter value can increase significantly depending on the length of
the given observation sequence. To address this issue, a threshold has been implemented, thus maintaining
the computational complexity at a quadratic level.
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