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Hidden probabilistic one counter models (HPOCA) that are a 
specific model where spotting between hidden Markov models 
(HMMs) and probabilistic context-free grammars (PCFGs) 
which is a subclass of probabilistic pushdown automata contains 
only one stack symbol In this study, we propose a new model in 
which the final terminal counter value is different from zero. 
With this proposed model, we enhance the existing HPOCA, 
making it more complex. Consequently, as there will be a greater 
number of paths to reach the final terminal, we also evaluate the 
probability of reaching the target through alternative routes 
based on the given observation sequence. It makes the model 
more expressive than default HPOCA due to providing 
alternative final terminals. However, the inference of the final 
counter value could easily go to an infinite number without any 
threshold. A boundary is applied to prevent the occurrence of 
this unexpected condition. By applying this threshold value, we 
ensured that the computational complexity of the model is 
quadratic rather than cubic. 
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Sıfırdan Farklı Sayaç Değerlerine Sahip Final Terminalleri İçeren Tek Sayaçlı Sistemlerin 
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Gizli olasılıklı bir sayaç modeli (HPOCA), gizli Markov
modelleri (HMMs) ile olasılıklı bağlamdan bağımsız gramerler 
(PCFGs) arasında tespitin yalnızca bir yığın sembolü içerdiği 
belirli bir modeldir. Bu çalışmada, son terminal sayaç değerinin 
sıfırdan farklı olduğu yeni bir model öneriyoruz. Önerilen bu 
modelle, mevcut HPOCA'yı geliştirerek daha karmaşık hale 
getiriyoruz. Sonuç olarak, son terminale ulaşmak için daha fazla 
yol olacağından, verilen gözlem dizisine göre alternatif yollar
aracılığıyla hedefe ulaşma olasılığını da değerlendiriyoruz. 
Alternatif son terminaller sağladığı için modeli varsayılan 
HPOCA'dan daha anlamlı hale getiriyor. Ancak, son sayaç 
değerinin çıkarımı herhangi bir eşik olmaksızın kolayca sonsuz 
bir sayıya gidebilir. Bu beklenmeyen durumun oluşmasını 
önlemek için bir sınır uygulanır. Bu eşik değerini uygulayarak, 
modelin hesaplama karmaşıklığının kübik değil, ikinci 
dereceden olmasını sağlamış oluyoruz. 
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1. INTRODUCTION 
 
Complex nested hierarchical structures are a major issue for modelling sequential data. They might be 
found in many different fields such as natural language, gene modelling, and queuing systems. There are 
two major types of models to challenge this issue: Hidden Markov Models (HMMs) and probabilistic 
context-free grammars (PCFGs). It Is known that HMMs are commonly used for both their computational 
complexity and simplicity, however, it is not sufficient while facing more complex problems. On the other 
hand, PCFGs are a sufficient model to be used for complex problems but they are slow learners (i.e. higher 
computational complexity than HMMs).  
 
In the light of this consideration, we propose a model that has an attractive spot in between standard HMM 
and PCFG. This model is more suitable to face more complex problems than HMMs provide, and it has 
less computational complexity than PCFGs have. In this paper, we introduce the characteristic feature of 
the final terminal, which is substantially formed with zero counter value in the default HPOCA model. 
Probabilistic one counter automata (POCA) is a trending known model that is used to recognize the subclass 
language of probabilistic context-free languages. This aspect is used as a comprehensible model for queuing 
systems [1] or epidemic modelling [2]. In these systems the counter value is used as a key role when 
tracking the number of clients in the queue or figure out the number of infected patients. POCAs are also 
commonly used in the analysis of software such as [3] and [4]. 
 
The language recognition of this model is a subclass of probabilistic context-free languages as HPOCA 
recognises. It is called probabilistic one-counter languages. The parsing of these languages is notably 
expensive due the parsing algorithm used for these languages (i.e. known as CYK algorithm) has a cubic 
computational complexity. Reducing this computational complexity, the structure of HMM which has 
quadratic algorithms and recognizes the probabilistic regular languages encompassed by probabilistic 
context-free languages is adapted to HPOCA as mentioned in [6]. 
 
In systems with queues, the counter value is constrained as much as possible, despite the system potentially 
presenting an infinite appearance.  In order to further approach the potential of an infinite system and to 
develop a more impactful model, a modification was made to the final terminal feature of the existing 
HPOCA [5]. In this update, even if a process ends at a final terminal and the counter value is different from 
zero, it still indicates that the process was accepted, unlike in the present HPOCA where the counter value 
should always be zero. This new HPOCA model renders the current model more complex. This augmented 
feature places the model into the spot where it challenges more complex problems than the current model 
does. Along with this enables it to parse the recognized language more accurately.   
 
1.1. Related Work 
 
The definition of deterministic one-counter automata (OCA) and its structure that accepts the languages are 
represented in [7]. According to this definition, we see that one-counter automatas, which has only one 
stack symbol, accept the subclass of context-free languages which is called one-counter languages. POCA 
is augmented by adding probability values to the transition functions of the OCA. It is extensively discussed 
in [8] and [9]. According to the definitions, the proposed model also sits between two distinct models which 
are Markov chains (MCs) and probabilistic pushdown automata (PPDA) [10,11] as the model discussed in 
this work.   
 
When examining the applications used by OCA, there are several purposes. For instance, it is employed in 
parsing bracketed arithmetic expressions [12]. Additionally, OCA is utilized for validating XML documents 
[13]. The work presented in [14] adapts only the Viterbi algorithm for POCA decoding. However, it is less 
concise than [5]. Because, [5] studies adapt all algorithms of HMM to enable the updating of parameters 
and yielding more favourable results. 
 
On the other hand, HMM is widely utilized in various fields. For instance, in natural language processing 
[15]. In other instances, some other extensions are applied to create HMM models of different structures. 
Lexicon free-HMMs [16] has been employed for handwriting recognition and Weighted features in HMM 
[17] model has been used in removing spam from SMS. The other extension applied to HMM is called 
hierarchical hidden Markov model. It is applied to detect the resistance gene in biolgy [18] and inferring 
behaviour [19].  
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None of the models under consideration in this study are capable of simulating the model proposed here. 
The reason is that these models have finite states. However, the proposed model contains infinite states and 
thus this makes it a more complex structure and being applicable to more intricate problems. 
 
1.2. Structure of the Paper 
 
This article is adapted from the thesis discussed in [6]. Unlike [5], it allows final terminals to have non-
zero counter value. The structure of the article proceeds as follows: In Section 2, the definition of the model 
and its constraints are discussed. Adapted algorithms are addressed in Section 3. The results of the 
comparison with HMM and [5] are examined in Section 4. The last section, Section 5, contains the 
conclusion part.  
 
2.2. MODEL DEFINITION  
 
In [5], the distinctive feature of the final terminal of the model is produced with zero counter value. In this 
new model, we do, however, slightly strengthen the traditional acceptance rule of the counter machines by 
accepting that the counter value of the final terminal is non-zero. To accommodate non-zero counter values, 
we will introduce an appropriate notation for the final terminal of this model by defining as (Equation 1):  
 
𝑄ி ൌ ሼሺ𝑞ி, 𝑐ሻ|𝑐 ൒ 0ሽ (1)

 
where 𝑞ி ∈ 𝑄. 
 
The formal definition of this proposed model is quite similar as defined in [5]. The model has tuple             
𝐻 ൌ ሺ𝑄, 𝛴, 𝐴଴, 𝐴ା, 𝐵, 𝑞଴ , 𝑞ிሻ where 
 

 𝑄 is a finite set of hidden states 

 𝛴 is finite set of observations 
 𝐴଴ is transition function and it is enabled when the counter value equals to zero where 𝐴଴: 𝑄 ൈ Δ଴ ൈ

𝑄 → ሾ0,1ሿ  
 𝐴ା is transition function and it is enabled when the counter value is non-zero where 𝐴ା: 𝑄 ൈ Δା ൈ

𝑄 → ሾ0,1ሿ  
 𝐵 is emission function where 𝐵: 𝑄 ൈ Σ → ሾ0,1ሿ 
 𝑞଴ ∈ 𝑄 is initial terminal 
 𝑞ி ∈ 𝑄 is designated the final terminal 

 
The Δ଴ and Δା are possible changes for the counter value. They are enabled depending on the current 
counter value. If the current counter value is zero then Δ଴={0,1} is enabled. According to the possible 
changes, at the next step, the counter ought to be still zero or increase one. If the counter value is non-zero 
then Δା={-1,0,1} is enabled and at the next step the counter might be still zero, increase one or decrease 
one.  
 
The probability distribution of every state 𝑞 ∈ 𝑄 we have; 
 

 Σ୼∈୼బ,௤ᇲ∈ொ𝐴଴ሺ𝑞, Δ, 𝑞ᇱሻ ൌ 1 

 Σ୼∈୼శ,௤ᇲ∈ொ𝐴ାሺ𝑞, Δ, 𝑞ᇱሻ ൌ 1 

 Σ୭∈ஊ𝐵ሺ𝑞, 𝑜ሻ ൌ 1 
 

The form of the proposed model is shown as a pair (𝑞, 𝑐). Here, 𝑞 ∈ 𝑄 is a hidden state, and 𝑐 ∈ ℕ଴ is a non-
negative integer. The initial state, it is unique, is formed as (𝑞଴, 0) and the final terminal is configured as 
(𝑞ி, 𝑐). We will show these configurations by 𝑆௧ where t is a time step. When we run this configurations at 
time t and counter value equals to zero, we will get a probabilistic value as (Equation 2). 
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𝑃𝑟ሺ𝑆௧ାଵ ൌ ሺ𝑞ᇱ, Δሻ|𝑆௧ ൌ ሺ𝑞, 0ሻሻ ൌ 𝐴଴ሺ𝑞, Δ, 𝑞′ሻ                  (2) 
 
If the counter value is non-zero at time t, then the configuration is formed as (Equation 3) 
 
𝑃𝑟ሺ𝑆௧ାଵ ൌ ሺ𝑞ᇱ, 𝑐 ൅ Δሻ|𝑆௧ ൌ ሺ𝑞, 0ሻሻ ൌ 𝐴ାሺ𝑞, Δ, 𝑞′ሻ                (3) 
 
Here, 𝑞 is the current hidden state at time t. 𝑞′ is the next hidden state at time step t+1.  Δ is the difference 
of the counter values between states. If counter value equals to zero Δ ∈ Δ଴ and if counter value is non-zero 
Δ ∈ Δା. 
 
A processing (i.e. run) of T (i.e. length of given observation sequence) in this model is a finite trace as 
shown in Figure 1. It starts at initial terminal (𝑞଴, 0) at time t=0. It is terminated (i.e. accepted) if (𝑞், 𝑐்) 
=  (𝑞ி, 𝑐), 𝑐 ൒ 0.  
  

 
Figure 1. A simple trace of the model 

 
The inference of the counter value in this model may potentially escalate to infinity without a predefined 
threshold. It is necessary to include a boundary to mitigate the occurrence of this unexpected condition 
during model running. The threshold for the counter value boundary is actually determined by the length 
of the given observation sequence. The running terminates at the final terminal with a non-zero counter 
value upon emitting the last output symbol of the given output sequence. For example, Figure 2, let T denote 
the length of the given observation sequence. A potential worst-case scenario related to this aspect is that 
the counter value in the model arises when the model terminates at a different hidden variable. On the other 
hand,  the counter value is non-zero at time step t=T, yet. It is illustrated by the red line in Figure 2. In such 
a scenario, the probability of the processed output sequence becomes zero. 
 

 
Figure 2. Three examples for counter threshold 

 
2.1. Motivation Example  
 
To enhance the comprehensibility of the proposed model from the reader's perspective, it would be 
beneficial to illustrate it using a simple motivating example. For this purpose, let us assume that we have a 
model with a single state (e.g., q) and a single observation symbol (e.g., a). The model parameters are 
defined as follows: 
 

 Initial state distribution: 𝜋ሺ𝑞ሻ ൌ 1 
 Transition probabilities: 

o 𝐴଴ሺ𝑞, 0, 𝑞ሻ ൌ 0.4; 𝐴଴ሺ𝑞, 1, 𝑞ሻ ൌ 0.6 
o 𝐴ାሺ𝑞, െ1, 𝑞ሻ ൌ 0.4;  𝐴ାሺ𝑞, 0, 𝑞ሻ ൌ 0.2; 𝐴ାሺ𝑞, 1, 𝑞ሻ ൌ 0.4 

 Emission probabilities: 𝐵ሺ𝑞, 𝑎ሻ ൌ 1 
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Figure 3. The trellis diagram of motivation example 

Let us assume that the given observation sequence is "aa." The model will calculate the probabilistic value 
of this observation sequence (i.e., the forward likelihood value) by constructing a trellis diagram, as 
depicted in Figure 2. Since the model initiates at time t=0, the computation involves the initial probability 
of the state, the transition probabilities to possible state configurations at time t=1, and the emission 
probabilities for the symbol produced at time t=1. These probabilities are dynamically maintained as the 
product of the initial state probability, the transition probabilities, and the emission probabilities for the 
observed symbols. 

The activation of the state transition matrices is contingent upon the counter value at time t−1. At t=0, the 
counter value is 0, thus 𝐴଴ is activated. Consequently, the probability of producing the first symbol "a" in 
the given observation sequence at t=1 is calculated as follows: 𝜋ሺ𝑞ሻ ⋅ 𝐴଴ሺ𝑞, 0, 𝑞ሻ ⋅ 𝐵ሺ𝑞, 𝑎ሻ and 𝜋ሺ𝑞ሻ ⋅
𝐴଴ሺ𝑞, 1, 𝑞ሻ. 𝐵ሺ𝑞, 𝑎ሻ. The reason for performing these two calculations is that during the transition from t=0 
to t=1, the counter value may either remain 0 or increase by 1. 

During the transition from t=1 to t=2, it is essential to consider the transitions from (q,0) and (q,1), as the 
appropriate transition matrix is activated based on the counter value (where the tuple indicates the state q 
alongside the counter value). The calculations are then aggregated and continued according to the length of 
the given observation sequence. 

The main of this work, which is also mentioned in [5], is given a set of observation sequences 𝓞 to find a 
proper model 𝓗 with a set of hidden states 𝓠 that produces 𝓞. In simple terms, processing such calculations 
would require the multiplication of all possible hidden states with counter values. This would result in 
exponential computation. To avoid this extensive computation and bring it to a polynomial time we will 
adapt classic HMM algorithms in the next section.  
 
3. ADAPTATION OF HMM ALGORITHMS 
 
The learning problem in HMMs, there are three fundamental algorithms (i.e. Forward, Backward, and 
Baum-Welch ) used to deal with it. In our proposed model, we consider the counter value that evolves the 
calculation of learning problems while adapting those algorithms. 
 
When adapting the forward and backward algorithms, which are the first stage of the learning algorithm, 
we divided them into two separate phases. They are called preliminary and normalization, respectively. 
Here, the preliminary phase is similar to the calculations in the original algorithms. However, with this 
adaptation, considering the counter value results in a change in the calculation values. In the normalization 
phase, unnecessary paths are discarded to construct a complete trellis diagram connecting specific initial 
and final terminals. 
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The last adapted algorithm is the Baum-Welch algorithm. In the original version of this algorithm there are 
two distinct calculation functions. We use the same functions but also consider counter configuration. 
Among these functions, 𝛾 calculates the probability of being in a hidden state at time t based on the given 
observation sequence. The other function, 𝜉, calculates the transition probabilities between states based on 
the given observation sequence. 
 
3.1. The Adaptation of Forward Algorithm 
 
This algorithm is used to compute the probability value of a given observation sequence. This computation 
is obtained by summing the calculations of all possible paths that can generate the given observation 
sequence. 
 
First Phase: Preliminary Forward Calculation 
 
Let 𝑜௜:௝ ൌ 𝑜௜. . . 𝑜௝ is the part of the given observation sequence from i to j. In this calculation, we consider 
the joint probability distribution of the given observation sequence 𝑜ଵ:௧, the hidden state-counter pair 𝑆௧ ൌ
ሺ𝑞, 𝑐ሻ and all these are conditioned on initial terminal 𝑆଴ ൌ ሺ𝑞଴, 0ሻ. The calculation formally shown as 
(Equation 4); 
 
 𝛼ො௧ሺ𝑞, 𝑐ሻ ൌ Prሺoଵ:௧, S௧|S଴ሻ                  (4) 
 
Here,  𝛼ො represents the preliminary Forward calculation.  
 
The calculation start initial state at t=0 as shown in Figure 4. It continues the calculation by summing all 
over the paths until reaches the hidden state 𝑆௧. The calculation is performed into two steps: Base step and 
Recursion step. 
 
At Base step (i.e. t=0): 
 

                (5) 
 

 
Figure 4. Trellis diagram of preliminary Forward calculation 

At the Recursion step (i.e. t>0) : 
 
If 𝑐 െ Δ ൌ 0: 
 
𝛼ො௧ሺ𝑞, 𝑐ሻ ൌ ∑ ∑ 𝛼ො௧ିଵሺ𝑞ᇱ, 𝑐 െ Δሻ𝐴଴ሺ𝑞ᇱ, Δ, 𝑞ሻ𝐵ሺ𝑞, 𝑜௧ሻଵ

୼ୀ଴௤ᇲ∈ொ                   (6) 
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If 𝑐 െ Δ ൐ 0: 
 
𝛼ො௧ሺ𝑞, 𝑐ሻ ൌ ∑ ∑ 𝛼ො௧ିଵሺ𝑞ᇱ, 𝑐 െ Δሻ𝐴ାሺ𝑞ᇱ, Δ, 𝑞ሻ𝐵ሺ𝑞, 𝑜௧ሻଵ

୼ୀିଵ௤ᇲ∈ொ                 (7) 
 
 
Theorem-1:  𝛼ො௧ሺ𝑞, 𝑐ሻ calculates Prሺoଵ:௧, S௧|S଴ሻ. 
 
Proof-1: The calculation start t=0, thus the function calculates Prሺoଵ:଴, S଴|S଴ሻ. Here 𝑜ଵ:଴ is irrelevant. 
PrሺS଴|S଴ሻ ൌ PrሺS଴ሻ ൌ 1 and at the base step if 𝑞 ൌ 𝑞଴ and 𝑐 ൌ 0, then 𝛼ො଴ሺ𝑞, 𝑐ሻ ൌ 1 otherwise it is equal 
to zero. Let assume that t=k is correct. Then we need to prove that t=k+1. If we put the t into calculation 
formulae, we get: 𝛼ො௞ାଵሺ𝑞, 𝑐ሻ ൌ Prሺoଵ:௞ାଵ, S௞ାଵ|S଴ሻ. If we apply chain rule, then we get: 𝛼ො௞ାଵሺ𝑞, 𝑐ሻ ൌ
𝑃𝑟ሺoଵ:௞ାଵ|𝑆଴, 𝑆௞ାଵሻ𝑃𝑟ሺ𝑆௞ାଵ|𝑆଴ሻ. Here 𝑜௞ାଵ is conditionally independent from 𝑆଴ according to the d-
separation rule. We get, 𝛼ො௞ାଵሺ𝑞, 𝑐ሻ ൌ 𝑃𝑟ሺoଵ:௞|𝑆଴, 𝑆௞ାଵሻ𝑃𝑟ሺ𝑆௞ାଵ|𝑆଴ሻ Prሺ𝑜௞ାଵ| 𝑆௞ାଵሻ. If we apply first 
chain rule, then apply sum rule over on 𝑆௞, and then again apply chain rule, then the calculation becomes 
𝛼ො௞ାଵሺ𝑞, 𝑐ሻ ൌ ∑ 𝑃𝑟ሺoଵ:௞, 𝑆௞ାଵ|𝑆௞, 𝑆଴ሻPr ሺ𝑆௞|𝑆଴ሻ Prሺ𝑜௞ାଵ| 𝑆௞ାଵሻௌೖ

According to the d-separation rule, 𝑆௞ାଵ 
is independent from 𝑆଴ condition on 𝑆௞. Thus we got the proof if apply again chain rule 𝛼ො௞ାଵሺ𝑞, 𝑐ሻ ൌ
∑ 𝑃𝑟ሺoଵ:௞, 𝑆௞|𝑆଴ሻPr ሺ𝑆௞ାଵ|𝑆௞ሻ Prሺ𝑜௞ାଵ| 𝑆௞ାଵሻௌೖ

. Here 𝑃𝑟ሺoଵ:௞, 𝑆௞|𝑆଴ሻ is previous calculation 𝛼ො௞ሺ𝑞, 𝑐ሻ, 
Pr ሺ𝑆௞ାଵ|𝑆௞ሻ is state transition and Prሺ𝑜௞ାଵ| 𝑆௞ାଵሻ is an observation transition. ∎ 
 
Second Phase: Normalization of Forward Calculation 
 
This second phase of the adapted algorithm is based on discarding the irrelevant path between initial and 
final terminals. Thus, this part calculates the joint probability distribution of the given observation sequence 
oଵ:௧ and being in hidden state 𝑆௧ condition on initial terminal 𝑆଴ and final terminals 𝑆் ∈ 𝑄ி. 
 
The formal definition of this phase is shown as follow (Equation 8): 
 

𝛼௧ሺ𝑞, 𝑐ሻ ൌ Pr ሺoଵ:௧, 𝑆௧|𝑆଴, 𝑆் ∈ 𝑄ிሻ (8) 

 
The calculation of this phase starts at the end of the trellis diagram (i.e. designated final terminal with non-
zero counter value) 𝑆் ∈ 𝑄ி as shown in Figure 5. 
 

 
Figure 5. Trellis diagram of normalization phase of the Forward flow 
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As mentioned above, this model has a unique final terminal but the counter value can be non-zero depending 
on the length of the given observation sequence. Consequently, a run is terminated in the corresponding 
final terminal with non-zero counter value which is ranging from 0 ൑ 𝑐 ൑ 𝑇, where T denotes the length 
of the output sequence. The computation of this phase stars at time t=T. It is called Base step (Equation 9): 
 

𝛼்ሺ𝑞, 𝑐ሻ ൌ
𝛼ො்ሺ𝑞, 𝑐ሻ

∑ Pr ሺ𝑆் ൌ ሺ𝑞, 𝑐ᇱሻ|𝑆଴ሻ்
௖ᇲୀ଴

 (9) 

where 𝑞 ൌ 𝑞ி and 𝑐 is non-zero counter value: 0 ൑ 𝑐 ൑ 𝑇.  The computation continues to the first terminal 
at the recursion step (i.e. 𝑡 ൏  𝑇), taking into account whether the counter value is zero or non-zero due to 
enable the transition matrices: 

 

(10)

 
Theorem-2:  𝛼௧ሺ𝑞, 𝑐ሻ calculates the joint probability of Pr ሺoଵ:௧, 𝑆௧|𝑆଴, 𝑆் ∈ 𝑄ிሻ. 
 
Proof-2: At the base step t=T:  𝛼்ሺ𝑞, 𝑐ሻ ൌ Pr ሺoଵ:், 𝑆் ൌ ሺ𝑞, 𝑐ሻ|𝑆଴, 𝑆் ∈ 𝑄ிሻ. If we apply production rule 

then we get 𝛼்ሺ𝑞, 𝑐ሻ ൌ
୔୰ ሺ୭భ:೅,ௌ೅ୀሺ௤,௖ሻ,ௌ೅∈ொಷ|ௌబሻ

୔୰ ሺௌ೅∈ொಷ|ௌబሻ
. Here, if the hidden state 𝑞 is the final state and the counter 

value is 0 ൑ 𝑐 ൑ 𝑇, then 𝛼்ሺ𝑞, 𝑐ሻ ൌ
୔୰ ሺ୭భ:೅,ௌ೅ୀሺ௤,௖ሻ|ௌబሻ

୔୰ ሺௌ೅∈ொಷ|ௌబሻ
. The nominator of this fraction equals to preliminary 

calculation of forward flow at time t=T, and the denominator equals the sum of the probability of whole 

paths from initial state to final states. Thus, we get 𝛼்ሺ𝑞, 𝑐ሻ ൌ
ఈෝ೅ሺ௤,௖ሻ

∑ ୔୰ ሺௌ೅ୀሺ௤,௖ᇲሻ|ௌబሻ೅
೎ᇲసబ

. At the recursion part, 

we again assume that the calculation is true for t=k where 𝛼௞ሺ𝑞, 𝑐ሻ ൌ
୔୰ ሺ௢భ:ೖశభ,ௌೖశభ|ௌబ,ௌ೅∈ொಷሻ୔୰ ሺௌೖశభ|ௌೖሻ୔୰ ሺ௢భ:ೖ,ௌೖ|ௌబሻ

୔୰ ሺ௢భ:ೖశభ,ௌೖశభ|ௌబሻ
 and we would like to proof the calculation is also correct for 

t=k-1 and equals to 𝛼௞ିଵሺ𝑞, 𝑐ሻ ൌ Pr ሺoଵ:௞ିଵ, 𝑆௞ିଵ|𝑆଴, 𝑆் ∈ 𝑄ிሻ. We apply two production rules separately. 

First we apply to Pr ሺoଵ:௞, 𝑆௞|𝑆଴, 𝑆் ∈ 𝑄ிሻ  and get 
୔୰ ሺ୭భ:ೖ,ௌೖ,ௌబ,ௌ೅∈ொಷሻ  

୔୰ ሺௌబ,ௌ೅∈ொಷሻ  
 , then the second production rule is 

applied to Pr ሺoଵ:௞, 𝑆௞, 𝑆଴, 𝑆் ∈ 𝑄ிሻ as Pr ሺoଵ:௞, 𝑆଴, 𝑆் ∈ 𝑄ி|𝑆௞ሻPr ሺ𝑆௞ሻ. According to the d-separation rule 
o௞ is independent from 𝑆଴ and 𝑆் depending on 𝑆௞. Thus we get Pr ሺoଵ:௞ିଵ, 𝑆଴, 𝑆் ∈ 𝑄ி|𝑆௞ሻPr ሺ𝑜௞|𝑆௞ሻ. If 
we apply chain rule to Pr ሺ𝑜ଵ:௞ିଵ, 𝑆௞ିଵ|𝑆଴ሻ  then we get Pr ሺ𝑜ଵ:௞ିଵ|𝑆଴, 𝑆௞ିଵሻPr ሺ𝑆௞ିଵ|𝑆଴ሻ. We can merge 
Pr ሺ𝑆௞|𝑆௞ିଵሻ with Pr ሺ𝑜ଵ:௞ିଵ|𝑆଴, 𝑆௞ିଵሻ  according to the d-separation rule. We get here 
Pr ሺ𝑜ଵ:௞ିଵ, 𝑆௞|𝑆଴, 𝑆௞ିଵሻ. We can again merge Pr ሺ𝑆௞ିଵ|𝑆଴ሻ with Pr ሺ𝑜ଵ:௞ିଵ, 𝑆௞|𝑆଴, 𝑆௞ିଵሻ and we get 
Pr ሺ𝑜ଵ:௞ିଵ, 𝑆௞, 𝑆௞ିଵ|𝑆଴ሻ.  If we apply chain rule to denominator item Pr ሺ𝑜ଵ:௞, 𝑆௞|𝑆଴ሻ  then we get 
Pr ሺ𝑜ଵ:௞|𝑆଴, 𝑆௞ሻPr ሺ𝑆௞|𝑆଴ሻ. According to d-separation rule 𝑜௞ is independent from 𝑆଴ depending on 𝑆௞. Then 
we get Pr ሺ𝑜ଵ:௞ିଵ|𝑆଴, 𝑆௞ሻPr ሺ𝑜௞|𝑆௞ሻ. We can eliminate each Pr ሺ𝑜௞|𝑆௞ሻ from both numerator and 
denominator. In Pr ሺoଵ:௞ିଵ, 𝑆଴, 𝑆் ∈ 𝑄ி|𝑆௞ሻ, 𝑆் ∈ 𝑄ி is independent from both oଵ:௞ିଵ and 𝑆଴ depending on 
𝑆௞ according to the d-separation rule. We can get Pr ሺoଵ:௞ିଵ, 𝑆଴|𝑆௞ሻPr ሺ𝑆் ∈ 𝑄ி|𝑆௞ሻ. We can merge both 
Pr ሺ𝑆௞ሻ and Pr(𝑜ଵ:௞ିଵ, 𝑆଴|𝑆௞) in the numerator section. Then we get 𝑃𝑟ሺ𝑜ଵ:௞ିଵ, 𝑆଴,𝑆௞ሻ. If we apply product 
rule to 𝑃𝑟ሺ𝑜ଵ:௞ିଵ|𝑆଴, 𝑆௞ሻ and 𝑃𝑟ሺ𝑆௞|𝑆଴ሻ then we get 𝑃𝑟ሺ𝑜ଵ:௞ିଵ, 𝑆௞| 𝑆଴ሻ. After that we can apply again chain 
rule to 𝑃𝑟ሺ𝑜ଵ:௞ିଵ, 𝑆଴,𝑆௞ሻ as 𝑃𝑟ሺ𝑜ଵ:௞ିଵ, 𝑆௞|𝑆଴ሻ𝑃𝑟ሺ𝑆଴ሻ. Now, we can eliminate 𝑃𝑟ሺ𝑜ଵ:௞ିଵ, 𝑆௞|𝑆଴ሻ from both 
numerator and denominator. We can apply production rule to merge 𝑃𝑟ሺ𝑜ଵ:௞ିଵ, 𝑆௞, 𝑆௞ିଵ|𝑆଴ሻ and 𝑃𝑟ሺ𝑆଴ሻ in 
the numerator, then we get 𝑃𝑟ሺ𝑜ଵ:௞ିଵ, 𝑆௞, 𝑆௞ିଵ, 𝑆଴ሻ.  If we apply chain rule depending on 𝑆௞, we get 
𝑃𝑟ሺ𝑜ଵ:௞ିଵ, 𝑆௞ିଵ, 𝑆଴|𝑆௞ሻ𝑃𝑟ሺ𝑆௞ሻ. According to the d-separation rule, 𝑃𝑟ሺ𝑆் ∈ 𝑄ி|𝑆௞ሻ can be merged with 
𝑃𝑟ሺ𝑜ଵ:௞ିଵ, 𝑆௞ିଵ, 𝑆଴|𝑆௞ሻ depending on 𝑆௞. Thus, we can get 𝑃𝑟ሺ𝑜ଵ:௞ିଵ, 𝑆௞ିଵ, 𝑆଴, 𝑆் ∈ 𝑄ி|𝑆௞ሻ. After that, we 
can merge 𝑃𝑟ሺ𝑆௞ሻ with it, then we get 𝑃𝑟ሺ𝑜ଵ:௞ିଵ, 𝑆௞ିଵ, 𝑆଴, 𝑆் ∈ 𝑄ி, 𝑆௞ሻ. In here, actually we have 

∑ ௉௥ሺ௢భ:ೖషభ,ௌೖషభ,ௌబ,ௌ೅∈ொಷ,ௌೖሻ

୔୰ ሺௌబ,ௌ೅∈ொಷሻௌೖ
. If we look at this fraction carefully, it is actually equals to 

∑ 𝑃𝑟ሺ𝑜ଵ:௞ିଵ, 𝑆௞ିଵ, 𝑆௞|𝑆଴, 𝑆் ∈ 𝑄ிሻௌೖ
. In here we can remove sum rule production over 𝑆௞ variable, then we 

have 𝑃𝑟ሺ𝑜ଵ:௞ିଵ, 𝑆௞ିଵ, 𝑆௞|𝑆଴, 𝑆் ∈ 𝑄ிሻ where it is equivalent to 𝛼௞ିଵሺ𝑞, 𝑐ሻ. ∎ 
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3.2. The Adaptation of Backward Algorithm 
 
This suggested model might be implemented using the second modified dynamic programming method 
backward algorithm, which consists of two primary computing phases again: preliminary backward 
calculation and normalisation of backward flow. The probability of the future observation sequence o௧ାଵ:் 
condition hidden variable 𝑆௧ is being computed in this calculation. 
 
First Phase: Preliminary Backward Calculation 
 
In this phase, the calculation begins from the final terminal. Therefore, if we consider the length of a given 
observation sequence as T, and since this computation also calculates the probability of future observation 
sequences, the calculation starts from the final terminal would be appropriate. 
 
In the proposed model, since the counter value at the final terminal will be non-zero. Thus, the counter 
value of the final terminal in the range 0 ൑ 𝑐 ൑ 𝑇 might be considered. Therefore, the computation will 
take into account all counter values, as illustrated in Figure 6. 
 

 
Figure 6. Trellis diagram of preliminary calculation of adapted Backward algorithm 

 

This calculation is denoted as  𝛽௧
෡ ሺ𝑞, 𝑐ሻ. It starts from the final terminal towards the initial terminal. At time 

t=T, the preliminary Backward calculation value of the final terminal, considering all designated counter 
values, is set to one. This knowledge is obtained from the initiation of the calculation at the final terminal, 
whose location is also known. It differs from Forward flow normalisation in that there is no additional 
symbol probability added to the computation. 
 
The calculation can be shown formally as follow (Equation 11): 
 

𝛽௧
෡ ሺ𝑞, 𝑐ሻ ൌ 𝑃𝑟ሺ𝑆் ∈ 𝑄ி|𝑆௧ ൌ ሺ𝑞, 𝑐ሻ, 𝑆଴ሻ
 
At Base Step (t=T): 
 

  𝛽௧
෡ ሺ𝑞, 𝑐ሻ ൌ 1 If 𝑞 ൌ 𝑞ி and 𝑐: 0 ൑ 𝑐 ൑ 𝑇

 
At Recursion Step (t<T):  

(11)

   

(12) 
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Theorem-3: 𝛽௧
෡ ሺ𝑞, 𝑐ሻ computes the probability of 𝑃𝑟ሺ𝑆் ∈ 𝑄ி|𝑆௧ ൌ ሺ𝑞, 𝑐ሻ, 𝑆଴ሻ correctly. 

 
Proof-3: We can start with the base step of the calculation. For t=T, the calculation becomes as  
𝛽መ்ሺ𝑞, 𝑐ሻ ൌ 𝑃𝑟ሺ𝑆் ∈ 𝑄ி|𝑆் ൌ ሺ𝑞, 𝑐ሻ, 𝑆଴ሻ. Here, 𝑆் ∈ 𝑄ி is conditionally independent from initial terminal 
𝑆଴. Thus, we get 𝑃𝑟ሺ𝑆் ∈ 𝑄ி|𝑆் ൌ ሺ𝑞, 𝑐ሻሻ.  Here, if the hidden variable 𝑞 ൌ 𝑞ி and the counter value 0 ൑
𝑐 ൑ 𝑇 then 𝑃𝑟ሺ𝑆் ∈ 𝑄ி|𝑆் ∈ 𝑄ிሻ. Thus the probability equals 1. At the recursion part (i.e. 0<t< T), we 
assume that the calculation is correct for t=k, and now we need to prove that the same equation also provides 
the correct calculation for t=k-1. We can start the proof of this part by adding sum rule over hidden state 
𝑆௞ as ∑ Pr ሺ𝑆் ∈ 𝑄ி, 𝑆௞|𝑆௞ିଵ, 𝑆଴ሻௌೖ

. Then we can apply chain rule as ∑ Pr ሺ𝑆் ∈ௌೖ

𝑄ி|𝑆௞ିଵ, 𝑆௞, 𝑆଴ሻPr ሺ𝑆௞|𝑆௞ିଵ, 𝑆଴ሻ. The first order of the Markov assumption: the future state only depends 
on the current state. Thus, Pr ሺ𝑆௞|𝑆௞ିଵ, 𝑆଴ሻ becomes to Pr ሺ𝑆௞|𝑆௞ିଵሻ. According to the d-separation rule, 
any 𝑆் ∈ 𝑄ி is conditionally independent from 𝑆௞ିଵ condition on 𝑆௞ and we get ∑ Pr ሺ𝑆் ∈ௌೖ

𝑄ி|𝑆௞, 𝑆଴ሻPr ሺ𝑆௞|𝑆௞ିଵሻ. Here,  Pr ሺ𝑆் ∈ 𝑄ி|𝑆௞, 𝑆଴ሻ is 𝛽௞
෢ሺ𝑞, 𝑐ሻ and Pr ሺ𝑆௞|𝑆௞ିଵሻ is state transition probability 

distribution which depends on whether the counter value is zero or non-zero. If counter equals to zero then 
𝐴଴  is enabled and Δ ൌ ሼ0,1ሽ. If counter is non-zero then 𝐴ା is enabled and Δ ൌ ሼെ1,0,1ሽ.  ∎ 
 
Second Phase: Normalization of Backward Calculation 
 
In this computation phase, the probability value of the future observation sequence is calculated both with 
respect to the current hidden variable and conditionally with respect to the terminals (i.e., initial and final) 
as shown in Figure 7.  It is shown formally as (Equation 13) 
 

𝛽௧ሺ𝑞, 𝑐ሻ ൌ 𝑃𝑟ሺ𝑜௧ାଵ:்|𝑆௧ ൌ ሺ𝑞, 𝑐ሻ, 𝑆் ∈ 𝑄ி, 𝑆଴ሻ 
 

(13) 

In the recursion part of the above formulae is used as follows: 
 

𝛽௧ሺ𝑞, 𝑐ሻ ൌ ∑ Pr ሺ𝑜௧ାଶ:்|𝑆௧ାଵ, 𝑆் ∈ 𝑄ி, 𝑆଴ሻPr ሺ𝑆௧ାଵ|𝑆௧ሻPr ሺ𝑜௧ାଵ|𝑆௧ାଵሻ
୔୰ ሺௌ೅∈ொಷ|ୗ౪శభ,ୗబሻ

୔୰ ሺௌ೅∈ொಷ|ୗ౪,ୗబሻௌ೟శభ            (14) 

 
 

 
Figure 7. The calculation of Backward normalization 

 
The normalization part of Backward flow also initiates at the end of the time scale of t=T as preliminary 
Backward flow does. 
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At Base Step (t=T): 
 
𝛽௧ሺ𝑞, 𝑐ሻ ൌ 1 If 𝑞 ൌ 𝑞ி and c: 0 ൑ 𝑐 ൑ 𝑇. 
 
At Recursion Step (t<T):  
 

(15) 

 
Theorem-4: 𝛽௧ሺ𝑞, 𝑐ሻ calculates the joint probability of the future observation sequence 𝑃𝑟ሺ𝑜௧ାଵ:்|𝑆௧ ൌ
ሺ𝑞, 𝑐ሻ, 𝑆் ∈ 𝑄ி, 𝑆଴ሻ correctly.  
 
Proof-4: First at t=T the calculation becomes 𝛽்ሺ𝑞, 𝑐ሻ ൌ 𝑃𝑟ሺ𝑜்ାଵ:்|𝑆் ൌ ሺ𝑞, 𝑐ሻ, 𝑆் ∈ 𝑄ி, 𝑆଴ሻ. Here, 𝑜்ାଵ:் 
is trivial and 𝑆் ൌ ሺ𝑞, 𝑐ሻ is one if the hidden variable is final terminal otherwise, it is zero. Let assume that 
the calculation is correct at t=k and we need to proof that it is also correct for t=k-1. If we put to time value 

to Equation 9 and applying the product rule to 𝑃𝑟ሺ𝑜௞ାଵ:்|𝑆௞, 𝑆் ∈ 𝑄ி, 𝑆଴ሻ then we get 
୔୰ሺ௢ೖశభ:೅,ௌೖ,ௌ೅∈ொಷ,ௌబሻ

୔୰ ሺௌೖ,ௌ೅∈ொಷ,ௌబሻ
. 

Again applying second time production rule to 𝑃𝑟ሺ𝑜௞ାଵ:், 𝑆௞, 𝑆் ∈ 𝑄ி, 𝑆଴ሻ and we get 𝑃𝑟ሺ𝑜௞ାଵ:், 𝑆் ∈
𝑄ி, 𝑆଴|𝑆௞ሻ𝑃𝑟ሺ𝑆௞ሻ. We can merge these two arguments depending on 𝑆௞: 𝑃𝑟ሺ𝑜௞ାଵ:், 𝑆் ∈ 𝑄ி, 𝑆଴|𝑆௞ሻ and 
𝑃𝑟ሺ𝑜௞|𝑆௞ሻ then we get 𝑃𝑟ሺ𝑜௞:், 𝑆் ∈ 𝑄ி, 𝑆଴|𝑆௞ሻ. If we merge 𝑃𝑟ሺ𝑆௞ሻ with it then it becomes 𝑃𝑟ሺ𝑜௞:், 𝑆் ∈
𝑄ி, 𝑆଴, 𝑆௞ሻ. If we apply product rule to 𝑃𝑟ሺ𝑆் ∈ 𝑄ி|𝑆௞, 𝑆଴ሻ then it becomes 

௉௥ሺௌ೅∈ொಷ,ௌೖ,ௌబሻ

௉௥ሺௌೖ,ௌబሻ
.  We can 

eliminate 𝑃𝑟ሺ𝑆் ∈ 𝑄ி, 𝑆௞, 𝑆଴ሻ argument from both numerator and denominator. Again we can apply chain 
rule to 𝑃𝑟ሺ𝑜௞:், 𝑆் ∈ 𝑄ி, 𝑆଴, 𝑆௞ሻ then it becomes 𝑃𝑟ሺ𝑜௞:், 𝑆் ∈ 𝑄ி|𝑆଴, 𝑆௞ሻ 𝑃𝑟ሺ𝑆଴, 𝑆௞ሻ. We can again 
eliminate the same argument 𝑃𝑟ሺ𝑆଴, 𝑆௞ሻ from both numerator and denominator. If we use chain rule for the 

argument of denominator 𝑃𝑟ሺ𝑆் ∈ 𝑄ி|𝑆଴, 𝑆௞ିଵሻ then we get 
୔୰ ሺௌబ,ௌೖషభሻ

௉௥ሺௌ೅∈ொಷ,ௌబ,ௌೖషభሻ
. Here, if we can apply chain 

rule to Pr ሺ𝑆଴, 𝑆௞ିଵሻ as Pr ሺ𝑆଴|𝑆௞ିଵሻ Pr ሺ𝑆௞ିଵሻ. The following arguments Pr ሺ𝑆଴|𝑆௞ିଵሻ  and Pr ሺ𝑆௞|𝑆௞ିଵሻ can 
be merged according to d-separation rule conditionally 𝑆௞ିଵ. Thus, we can get Pr ሺ𝑆଴, 𝑆௞|𝑆௞ିଵሻ  . Now we 
can convert the conditional distribution to joint distribution by merging Pr ሺ𝑆଴, 𝑆௞|𝑆௞ିଵሻ   and Pr ሺ𝑆௞ିଵሻ.  
Then we get Pr ሺ𝑆଴, 𝑆௞, 𝑆௞ିଵሻ . If we again apply the chain rule this last argument as Pr ሺ𝑆௞ିଵ|𝑆଴, 𝑆௞ሻ  
Pr ሺ𝑆଴, 𝑆௞ሻ and then we can merge Pr ሺ𝑆௞ିଵ|𝑆଴, 𝑆௞ሻ   with 𝑃𝑟ሺ𝑜௞:், 𝑆் ∈ 𝑄ி|𝑆଴, 𝑆௞ሻ  depending on the same 
conditional states. Then we can get 𝑃𝑟ሺ𝑜௞:், 𝑆௞ିଵ𝑆் ∈ 𝑄ி|𝑆଴, 𝑆௞ሻ. After this, we can merge again 
𝑃𝑟ሺ𝑜௞:், 𝑆௞ିଵ𝑆் ∈ 𝑄ி|𝑆଴, 𝑆௞ሻ with 𝑃𝑟ሺ𝑆଴, 𝑆௞ሻ to handle the joint probability as 𝑃𝑟ሺ𝑜௞:், 𝑆௞ିଵ𝑆் ∈
𝑄ி, 𝑆଴, 𝑆௞ሻ. Now we can again use chain rule to get rid of the denominator part 𝑃𝑟ሺ𝑆் ∈ 𝑄ி, 𝑆଴, 𝑆௞ିଵሻ. Here 
we get the numerator arguments as 𝑃𝑟ሺ𝑜௞:், 𝑆௞|𝑆௞ିଵ𝑆் ∈ 𝑄ி, 𝑆଴ሻ Pr ሺ𝑆௞ିଵ𝑆் ∈ 𝑄ி, 𝑆଴ሻ after applying chain 
rule. Now we can eliminate the same argument, Pr ሺ𝑆௞ିଵ𝑆் ∈ 𝑄ி, 𝑆଴ሻ, from both numerator and 
denominator. Here, we have ∑ 𝑃𝑟ሺ𝑜௞:், 𝑆௞|𝑆௞ିଵ𝑆் ∈ 𝑄ி, 𝑆଴ሻௌೖ

  and we can remove the sum rule then we 
will get 𝑃𝑟ሺ𝑜௞:், 𝑆௞|𝑆௞ିଵ𝑆் ∈ 𝑄ி, 𝑆଴ሻ which is equal to 𝛽௞ିଵሺ𝑞, 𝑐ሻ calculation at time t=k-1. ∎ 
 
3.3. The Adaptation of Baum-Welch Algorithm 
 
The original form of the Baum-Welch algorithm, which is a special case of the EM algorithm, is used to 
update the model's parameters in HMMs. The parameters are made to converge to their respective values 
by applying a certain number of iterations. In our proposed model, we will use the adapted version that 
takes counter values into account to update the parameters.  
 
The algorithm consists of two steps as its original version has. The first step, called the E-step, involves 
two distinct calculations: the probabilities of being in hidden states and the transition probabilities between 
hidden states. The second step, known as the M-step, involves updating the parameters. 
 
 
E-step 
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In this step, the two different calculations used are denoted as 𝛾௧ሺ𝑞, 𝑐ሻ and 𝜉௧ሺሺ𝑞′, 𝑐′ሻ, ሺ𝑞, 𝑐ሻሻ, respectively. 
The 𝛾௧ሺ𝑞, 𝑐ሻ calculation provides the probabilities of being in the current hidden states for a given 
observation sequence. Formally (Equation 16),  
 

γ୲ሺq, cሻ ൌ PrሺS୲ ൌ ሺq, cሻ|O, S଴, S୘ ∈ Q୊ሻ  (16) 

here O is the given observation sequence. The consideration of the non-zero counter value of the final 
terminal is proceed in this model, then there need to be sum over the counter value at time t=T. Thus, the 
formula is represented as follow (Equation 17):  
 

γ୲ሺq, cሻ ൌ
𝛼ො௧ሺ𝑞, 𝑐ሻ𝛽௧ሺ𝑞, 𝑐ሻ𝛽መ௧ሺ𝑞, 𝑐ሻ

∑ 𝛼ො்ሺ𝑞ி, 𝑐ᇱሻ்
௖ᇲୀ଴

 (17)

 
Theorem-5: γ୲ሺq, cሻ calculates correctly the marginal posterior distribution of 𝑆௧ where PrሺS୲ ൌ
ሺq, cሻ|O, S଴, S୘ ∈ Q୊ሻ. 
 

Proof-5: The proof can start by applying the production rule to Equation 10. We can get 
୔୰ሺୗ౪,୓,ୗ౐∈୕ూ|ୗబሻ

୔୰ሺ୓,ୗ౐∈୕ూ|ୗబሻ
. 

The observation sequence can be expended into two separated parts as 𝑜ଵ:௧ and 𝑜௧ାଵ:். We can apply this 
separated parts into numerator as arguments: PrሺS୲, 𝑜ଵ:௧, 𝑜௧ାଵ:், S୘ ∈ Q୊|S଴ሻ. After this adding if we apply 
production rule again, we get Prሺ𝑜ଵ:௧, 𝑜௧ାଵ:், S୘ ∈ Q୊|S଴, S୲ሻ𝑃𝑟ሺ𝑆௧|𝑆଴ሻ. According to d-separation rule, 𝑜ଵ:௧ 
is conditionally independent from both 𝑜௧ାଵ:் and , 𝑆் ∈ Q୊ condition on S୲. Thus, we have Prሺ𝑜ଵ:௧|S଴, S୲ሻ 
Prሺ𝑜௧ାଵ:், S୘ ∈ Q୊|S଴, S୲ሻ𝑃𝑟ሺ𝑆௧|𝑆଴ሻ. If we apply chain rule to Prሺ𝑜௧ାଵ:், S୘ ∈ Q୊|S଴, S୲ሻ, then it becomes 
Prሺo௧ାଵ:்|S଴, S୲, S୘ ∈ Q୊ሻ𝑃𝑟ሺS୘ ∈ Q୊|S଴, S୲ሻ. We can merge Prሺ𝑜ଵ:௧|S଴, S୲ሻ  and PrሺS୲|S଴ሻ depending on 
initial terminal S଴, then we get Prሺ𝑜ଵ:௧, S୲|S଴ሻ  . At last, here, Prሺ𝑜ଵ:௧, S୲|S଴ሻ  is equivalent calculation of 
preliminary Forward algorithm  𝛼ො௧ሺ𝑆௧ሻ (i.e. equation 4), Prሺo௧ାଵ:்|S଴, S୲, S୘ ∈ Q୊ሻ is equivalently equal to 
the normalization of Backward algorithm 𝛽௧ሺ𝑆௧ሻ (i.e. equation 8), and 𝑃𝑟ሺS୘ ∈ Q୊|S଴, S୲ሻ is equivalent to 
preliminary Backward flow 𝛽መ௧ሺ𝑆௧ሻ  (i.e. equation 7). The denominator part of the proof (i.e. 𝑃𝑟ሺ𝑂, S୘ ∈
Q୊|S଴ሻ) is a preliminary Forward flow by summing over all the counter values of the final terminal. ∎ 
 
The 𝜉௧ሺሺ𝑞′, 𝑐′ሻ, ሺ𝑞, 𝑐ሻሻ calculation, on the other hand, computes the transition probabilities between hidden 
states for the given observation sequence. Formally (Equation 18),  
 

𝜉௧൫ሺ𝑞ᇱ, 𝑐ᇱሻ, ሺ𝑞, 𝑐ሻ൯ ൌ Pr ሺS୲ିଵ, S୲|O, S଴, S୘ ∈ Q୊ሻ   (18) 

here O is the given observation sequence, S୲ିଵ ൌ ሺ𝑞ᇱ, 𝑐ᇱሻ previous hidden state and counter pair, S୲ ൌ ሺ𝑞, 𝑐ሻ 
current hidden state and counter pair. The multiple counter values of the final terminal is also considered 
in this calculation. Therefore, the formula becomes as follow (Equation 19) : 
 

𝜉௧൫ሺ𝑞ᇱ, 𝑐ᇱሻ, ሺ𝑞, 𝑐ሻ൯ ൌ
𝛼ො௧ሺ𝑞ᇱ, 𝑐ᇱሻ𝐴ఋ൫௖ᇲ൯ሺ𝑞ᇱ, Δ, 𝑞ሻ𝐵ሺ𝑞, 𝑜ሻ𝛽መ௧ሺ𝑞, 𝑐ሻ𝛽௧ሺ𝑞, 𝑐ሻ

∑ 𝛼ො்ሺ𝑞ி, 𝑐ᇱሻ்
௖ᇲୀ଴

 (19) 

 
Here, 𝛿ሺ𝑐ᇱሻ=0 if c'=0 and 𝛿ሺ𝑐ᇱሻ= + if c'>0. Also, Δ={0,1} if c'=0 and Δ ={-1,0,1} if c'>0. 
 
Theorem-6: 𝜉௧൫ሺ𝑞ᇱ, 𝑐ᇱሻ, ሺ𝑞, 𝑐ሻ൯ correctly calculates the joint posterior distribution of two hidden 
states  S୲ିଵ ൌ ሺ𝑞ᇱ, 𝑐ᇱሻ  and S୲ ൌ ሺ𝑞, 𝑐ሻ  where Pr ሺS୲ିଵ, S୲|O, S଴, S୘ ∈ Q୊ሻ. 
 

Proof-6: The proof can start by applying the production rule to equation 12. We can get 
୔୰ሺୗ౪షభ,ୗ౪,୓,ୗ౐∈୕ూ|ୗబሻ

୔୰ሺ୓,ୗ౐∈୕ూ|ୗబሻ
. 

We can expand the given observation sequence as we already did in proof-5 as 𝑜ଵ:௧ and 𝑜௧ାଵ:். The 
numerator part becomes PrሺS୲ିଵ, S୲, 𝑜ଵ:௧, 𝑜௧ାଵ:், S୘ ∈ Q୊|S଴ሻ. After that we can apply chain rule as 
Prሺ𝑜ଵ:௧, 𝑜௧ାଵ:், S୘ ∈ Q୊|S଴, S୲ିଵ, S୲ሻ𝑃𝑟ሺ𝑆௧ିଵ, 𝑆௧|𝑆଴ሻ.  According to the d-separation rule, 𝑜௧ is conditionally 
independent from 𝑜ଵ:௧ିଵ , 𝑜௧ାଵ:், S୘ ∈ Q୊ , S୲ିଵ ,and S଴ condition on S୲. Thus, we have 



 Mehmet KURUCAN, Dominik WOJTCZAK 

Ç.Ü. Müh. Fak. Dergisi, 39(4), Aralık 2024 - 1011 - 

Prሺ𝑜ଵ:௧ିଵ, 𝑜௧ାଵ:், S୘ ∈ Q୊|S଴, S୲ିଵ, S୲ሻ𝑃𝑟ሺ𝑆௧ିଵ, 𝑆௧|𝑆଴ሻPrሺo୲|S୲ሻ. According to the d-separation rule, the 
previous observation sequence part 𝑜ଵ:௧ିଵ is conditionally independent from   𝑜௧ାଵ:், S୘ ∈ Q୊ , and 
S୲ condition on S୲ିଵ. Thus, we have Prሺoଵ:୲ିଵ|S୲ିଵ, S଴ሻPrሺ𝑜௧ାଵ:், S୘ ∈
Q୊|S଴, S୲ିଵ, S୲ሻ𝑃𝑟ሺ𝑆௧ିଵ, 𝑆௧|𝑆଴ሻPrሺo୲|S୲ሻ.. Here, S୲ିଵ is irrelevant in Prሺ𝑜௧ାଵ:், S୘ ∈ Q୊|S଴, S୲ିଵ, S୲ሻ due to 
the future observation sequence part and the set of final terminals are conditionally independent with it. 
Thus, we have Prሺ𝑜௧ାଵ:், S୘ ∈ Q୊|S଴, S୲ሻ. Now, we can apply chain rule it and we get Prሺo௧ାଵ:்|S଴, S୲, S୘ ∈
Q୊ሻPrሺS୘ ∈ Q୊|S଴, S୲ሻ . We can apply chain rule to 𝑃𝑟ሺ𝑆௧ିଵ, 𝑆௧|𝑆଴ሻ as 𝑃𝑟ሺ𝑆௧|𝑆଴, 𝑆௧ିଵሻPrሺS୲ିଵ|S଴ሻ. Then, 
we can merge Prሺoଵ:୲ିଵ|S୲ିଵ, S଴ሻand PrሺS୲ିଵ|S଴ሻ  to handle Prሺoଵ:୲ିଵ, S୲ିଵ|S଴ሻ.According to Markov 
property S଴ is irrelevant in 𝑃𝑟ሺ𝑆௧|𝑆଴, 𝑆௧ିଵሻ. We can remove it and this argument becomes 𝑃𝑟ሺ𝑆௧|𝑆௧ିଵሻ.  At 
the end of this proof, Prሺoଵ:୲ିଵ, S୲ିଵ|S଴ሻ is preliminary Forward calculation at time t-1: 𝛼ො௧ିଵሺ𝑆௧ିଵሻ, 
Prሺo௧ାଵ:்|S଴, S୲, S୘ ∈ Q୊ሻ is normalization of Backward flow at time t: 𝛽௧ሺ𝑆௧ሻ, PrሺS୘ ∈ Q୊|S଴, S୲ሻ  is 
preliminary Backward calculation at time t: 𝛽መ௧ሺ𝑆௧ሻ, 𝑃𝑟ሺ𝑆௧|𝑆௧ିଵሻ  is the probability of state transition 
𝐴ఋ൫௖ᇲ൯ሺ𝑆௧ିଵ, Δ, 𝑆௧ሻ where 𝛿ሺ𝑐ᇱሻ=0 if c'=0 and 𝛿ሺ𝑐ᇱሻ= + if c'>0. Also, Δ={0,1} if c'=0 and Δ ={-1,0,1} if 
c'>0. The last argument Prሺo୲|S୲ሻ is symbol emitting probability where is equivalent to 𝐵ሺ𝑆௧, 𝑜௧ሻ. The 
denominator part of the proof (i.e. 𝑃𝑟ሺ𝑂, S୘ ∈ Q୊|S଴ሻ)  is a preliminary Forward flow by summing over all 
the counter values of the final terminal.∎ 
 
M-step 
 
In the M-step, the model's parameters (𝜃) are updated using the previous parameters (𝜃ᇱ). This process is 
similar to the approach in [5]. Multiple observation sequences are used to ensure convergence of the 
parameters when updating them.Here, D represents the observation sequence number. This calculation 
proceeds through the joint probability distribution over the hidden variables, counter values and the set of 
given observation sequences (Equation 20): 
 

Prሺ𝑆, 𝐶, 𝑂|𝜃ሻ ൌ ∏ ∏ 𝐵൫𝑆௧
ሺௗሻ, 𝑜௧

ሺௗሻ൯𝐴ఋቀ஼೟
ሺ೏ሻቁሺ𝑆௧

ሺௗሻ, 𝐶௧ାଵ
ሺௗሻ െ 𝐶௧

ሺௗሻ, 𝑆௧ାଵ
ሺௗሻ ሻ்

௧ୀଵ
஽
ௗୀଵ             (20) 

 
where 𝛿൫𝐶௧

ሺௗሻ൯=0 if 𝐶௧
ሺௗሻ=0 and 𝛿൫𝐶௧

ሺௗሻ൯=+ if 𝐶௧
ሺௗሻ>0. The Lagrange Multipliers is used in equation 14 to 

get the converged parameters of the model. The update formulas of the parameters are shown as follows, 
respectively: 
 

𝐵෠ሺ𝑞, 𝑜ሻ ൌ
∑ ∑ ఊ೟

ሺ೏ሻሺௌ೟
ሺ೏ሻሻூሺ௢೟

ሺ೏ሻୀ௢ሻ೅
೟సభ

ವ
೏సభ

∑ ∑ ఊ೟
ሺ೏ሻሺௌ೟

ሺ೏ሻሻ೅
೟సభ

ವ
೏సభ

                 (21) 

 

𝐴መ଴ሺ𝑞, Δ, 𝑞ᇱሻ ൌ
∑ ∑ క೟

ሺ೏ሻሺௌ೟
ሺ೏ሻ,ௌ೟శభ

ሺ೏ሻ ሻ
ሼ೟|಴೟

ሺ೏ሻ
సబሽ

ವ
೏సభ

∑ ∑ ∑ క೟
ሺ೏ሻሺௌ೟

ሺ೏ሻ,ௌ೟శభ
ሺ೏ሻ ሻ

ሼ೟|಴೟
ሺ೏ሻ

సబሽೄ೟శభ
ሺ೏ሻ

ವ
೏సభ

               (22) 

 

𝐴መାሺ𝑞, Δ, 𝑞ᇱሻ ൌ
∑ ∑ క೟

ሺ೏ሻሺௌ೟
ሺ೏ሻ,ௌ೟శభ

ሺ೏ሻ ሻ
ሼ೟|಴೟

ሺ೏ሻ
ಭబሽ

ವ
೏సభ

∑ ∑ ∑ క೟
ሺ೏ሻሺௌ೟

ሺ೏ሻ,ௌ೟శభ
ሺ೏ሻ ሻ

ሼ೟|಴೟
ሺ೏ሻ

ಭబሽೄ೟శభ
ሺ೏ሻ

ವ
೏సభ

               (23) 

 
4. IMPLEMENTATION AND RESULTS 
 
The proposed model is compared with the HMM. The original algorithms and adapted algorithms were 
implemented in Python. 10 different models were created in this work and they are illustrated as 𝓗 to 
represent all models. ℋ௞ ൌ ሺ𝒬௞, Σ௞, 𝐴௞

଴, 𝐴௞
ା, 𝐵௞, 𝑞଴, 𝑞ிሻ where k=1,,10. Here, 𝐴௞

଴ , 𝐴௞
ା, and 𝐵௞ are used as 

parameters in the models were generated randomly. 𝑞଴ and 𝑞ி were selected manually. 
 
Subsequently, each model generated 30,000 observation sequences. Since each run is terminated at a final 
terminal with multiple counter values. Thus, we kept the length of each observation sequence fixed at 14. 
As mentioned in [5], to have a fair and quality comparison, the HMM must have an equal number of 
parameters (i.e., according to the Bayesian Information Criterion) as the proposed model has. Therefore, 
we set the number of states in the HMM to be 2.24 times the number of states in the proposed model. We 
used the technique which was applied in [5] during the training models. In the first step, 100 different 



 The Utilization of Single-Counter Systems Featuring Final Terminals with Non-Zero Counter Values 

 

- 1012 -  Ç.Ü. Müh. Fak. Dergisi, 39(4), Aralık 2024 

models were randomly used. Then, in each iteration, 25% of these models were discarded as measured by 
the probability value. This process continued until convergence, leaving only one model at the end. Thus, 
we prevent the local minima issue using this method. 
 
Table 1. KL scores of the models after testing step 

Model 𝓗1 𝓗2 𝓗3 𝓗4 𝓗5 𝓗6 𝓗7 𝓗8 𝓗9 𝓗10 

Proposed 
Model 

0.000693 0.001459 0.002913 0.003941 0.010453 0.009671 0.011952 0.016158 0.013957 0.010571 

H1MM 0.01047 0.02183 0.03021 0.04023 0.12098 0.10879 0.12103 0.15941 0.14184 0.11210 

HMM 3.4107 4.1067 4.5739 5.0137 4.7218 5.2167 5.7846 6.1146 6.0478 5.8362 

 
In terms of time consumption, times used in the learning process can be shown as evidence that considering 
the counter value in models has higher time consumption compared to HMM. 
 
In terms of the efficiency of the comparison, the learning durations for each of the three models were 
evaluated on the same task, taking into account the counter value. As shown in Table 2, for models that 
include a counter, the learning process was manually initialized by the user (as shown “---” in the table) 
after a certain threshold, due to the extended duration of learning beyond that point.   
 
Table 2. The comparison of time consumption in learning phase 

Model 𝓗1 𝓗2 𝓗3 𝓗4 𝓗5 𝓗6 𝓗7 𝓗8 𝓗9 𝓗10 

Proposed 
Model 

1h 5m 7h 17m 26h 51m 84h 48m 236h 57m --- --- --- --- --- 

H1MM 58m 5h 43m 23h 7m 79h 21m 218h 36m --- --- --- --- --- 

HMM 9m 28m 1h 5m 4h 11m 7h 3m 9h 47m 13h 17m 16h 28m 21h 3m 27h 23m 

 
It should also be noted that since the counter value of the final terminal is non-zero, it can approach the 
length of the given observation sequence. This will lead to an increase in computational complexity (though 
it will still remain quadratic). We set a boundary to prevent this issue:  the feasible maximum counter values 
will be equal to or less than half the length of the given observation sequence. 
 
The adapted Baum-Welch algorithm used as the learning algorithm consists of multiple iterations. When 
we consider the length of the observation sequence as 𝑇, the feasible counter 𝑀 value will approach 𝑇 since 
we determine the counter value of the final terminal to be non-zero. In the proposed model, as noted in 
Section 2, we can constrain this approach using a threshold. In light of this information, considering an 
observation sequecne of length 𝑇 and 𝑛 ൌ |𝑄| states with n state transitions, the computational complexity 
of the proposed model will be 𝑂ሺ𝑛ଶ𝑇𝑀ሻ where the counter value can exceed half of the length of the given 
observation sequence. 
 
In the testing phase, the Kullback-Leibler (KL) divergence was used as the metric to compare the 
performance values of the trained models (Equation 24).  
 

𝐾𝐿ሺ𝑃||𝑄ሻ ൌ 𝑃ሺ𝑥ሻ𝑙𝑜𝑔
௉ሺ௫ሻ

ொሺ௫ሻ
                (24) 

 
Here, the trained models calculate the probability values 𝑄ሺ𝑥ሻ of the observation sequences (i.e. for each 
𝑥) of the test set. Then, these values are compared logarithmically with the original probability values 𝑃ሺ𝑥ሻ 
to generate a score.  If this score is close to zero, it indicates that the trained model is closely similar to the 
original model.  
 
As shown in Table-1, the KL-scores of the 10 different models indicate that the proposed model is quite 
similar to the original model, while the HMM is significantly distant from the original model. The trade-
off in our model comparison is time consumption. However, we are confident that our model is still faster 
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than PCFG. Additionally, the fact that it is more complex than HMM. Thus, it addresses the research 
question of this study. 
 
5. CONCLUSIONS 
 
In this study, we propose a new model with a final terminal counter value that is non-zero, similar to a 
hidden one-counter automaton, which reduces the computational cost of the learning algorithm for 
probabilistic one-counter languages—a subclass of stochastic context-free languages—from cubic to 
quadratic. The presence of a final terminal with a non-zero counter value enables the creation of alternative 
final terminals. This not only renders the existing model more complex but also allows for the evaluation 
of non-zero counter values with a higher likelihood through various alternative paths leading to the final 
terminal. The learning and testing algorithms of the model have been adapted from the forward, backward, 
Baum-Welch, and Viterbi algorithms used in hidden Markov models. This adaptation allows us to benefit 
from the quadratic computational complexity of these algorithms. Although the proposed model achieves 
better results in practical applications compared to hidden Markov models (HMMs), it has been observed 
that the time required for learning is longer than that of HMMs. Additionally, due to the final terminal 
having a non-zero counter value, the counter value can increase significantly depending on the length of 
the given observation sequence. To address this issue, a threshold has been implemented, thus maintaining 
the computational complexity at a quadratic level. 
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