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ABSTRACT

The ability of Twitter to provide real-time information during disasters
is becoming more widely acknowledged, making it an essential forum
for people to voice their concerns and ask for help during emergencies.
These platforms can speed up the distribution of help, but they are
also prone to false information, which might make disaster response
more difficult. Using a carefully selected dataset of 10,200 tweets that
have been extensively preprocessed and tokenized for reliable training
and validation, this study uses deep learning models, such as LSTM,
BLSTM, and BLSTMA, to classify tweets during earthquake events
into two categories: “under the debris” and “not under the debris.”
The model performance was further improved via hyperparameter
adjustment, which included neuron counts, dropout rates, dimensions,
and embedding types. The results of this study showed that while the
BLSTMA model had the best accuracy (96.64%) and F1 score (0.9116),
conventional machine learning techniques like XGBoost and SVM.
However, in other measurements, it was shown that standard machine
learning techniques like SVM and XGBoost performed better. Using
Bag of Words vectorisation, SVM obtained 95.81% accuracy and an
F1 score of 0.9579, whereas XGBoost earned 95.84% accuracy and an
F1 score of 0.9584. By demonstrating the usefulness of the BLSTMA
model in real-time disaster response and the complementary advantages
of conventional approaches in the analysis of complex disaster data, these
findings highlight the significance of customising machine learning and
deep learning approaches to particular tasks.

Keywords: Deep Learning, Natural Language Processing, Disaster
Management, Twitter Analysis, Emergency Message Detection.
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Introduction

Natural disasters are among the foremost events that threaten human life and economies
on a global scale. Among these, earthquakes stand out as the most significant natural disaster,
leading to the loss of human life. The necessity for countries on active fault lines to establish
an effective disaster management system becomes increasingly evident with each passing day.
Therefore, leveraging all available technological resources should be a primary objective for
these nations. The greater the destruction caused by a disaster; the more critical communication
becomes. Considering this, implementing additional measures in disaster management has
become an essential requirement for every country. For instance, Hurricane Harvey, which
struck the United States in certain years, caused significant hardship for millions of Americans,
prompting the U.S. to take additional precautions. Similarly, taking extra measures against
earthquakes, which are even more impactful, should be a priority in the disaster management
strategies of all countries.

The role of social media platforms in crisis management has gained increasing importance
with advancements in technology. Platforms like Twitter, in particular, have become critical
tools for communication during disasters, facilitating rapid information flow for both
individuals and aid teams. In recent years, during an earthquake in Turkey, survivors trapped
under debris resorted to sharing their locations and conditions through social media platforms
like Twitter due to the inability to communicate via traditional phone lines or conventional
communication channels (Al Jazeera, 2023). These platforms proved instrumental for rescue
teams, helping to save many lives (Euronews, 2023). However, the dissemination of false
information on such social media platforms could not be entirely prevented.

Earthquakes, as one of the most destructive natural disasters, lead to significant loss of
life, widespread damage to infrastructure, and disruption of daily life. In the aftermath of an
carthquake, many individuals are trapped under debris, and the timely identification of those
in need of rescue becomes critical. In such chaotic situations, traditional communication
systems may fail, and the flow of information can be severely hindered, which delays rescue
efforts and worsens the crisis.

Social media platforms, particularly Twitter, play a pivotal role in these scenarios by
providing individuals with the opportunity to share real-time information about their location,
conditions, and urgent needs (Al Jazeera, 2023). While this communication channel holds
the potential to significantly aid disaster response teams, it also comes with the challenge of
filtering out irrelevant or false information. To address these challenges, this study aims to
analyse tweets shared by individuals trapped under debris during earthquakes using a deep
learning-based artificial intelligence system. The goal is to accurately determine whether
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these individuals are truly in need of rescue, thereby enhancing the effectiveness of disaster
management efforts by providing reliable information (Euronews, 2023).

Literature Review

Social media platforms have become a crucial source of information for crisis management.
In this context, Powers et al. (2023) investigated how social media may help during natural
disasters by detecting emergency signals. With an emphasis on tweets from Hurricane Harvey,
they investigated many methods for recognising messages from persons in imminent need.
Their results showed that certain models, such as XLNet and BERT, outperformed others;
CNN’s accuracy was 72%, but BERT’s was 78%. The paper makes the case that more data
might further improve these systems’ efficacy while highlighting the importance of social
media in disaster response. (Powers et al., 2023)

During natural disasters, Pradip Bhere and colleagues investigated the use of deep learning
to differentiate between relevant and irrelevant tweets. To improve tweet classification, they
created a system that combined a convolutional neural network (CNN) with Word2 Vec feature
vectors. They tested the model with different word embeddings (Custom Weight, Google
News, Twitter Glove) using a dataset of 10,000 tweets from Kaggle that dealt with disasters.
According to the results, the model’s accuracy using Google News embeddings was 86%, while
its accuracy using their proposed method was 84%. In addition, they evaluated its accuracy
using a confusion matrix on tweets from the 2013 Colorado floods. This work demonstrates
how deep learning can be used to identify social media data during emergencies and raises the
possibility that future performance could be improved with larger datasets. (Bhere et al., 2020).

Kumar et al. compared several machine learning and deep learning techniques for
classifying social media tweets regarding catastrophes in order to examine performance under
data imbalance. The study found that the deep learning models performed better than the
conventional classifiers. For the hurricane dataset, BIGRU got the greatest F1 score (0.87),
while for the earthquake dataset, GRU-CNN had the highest F1 score (0.88). These findings
demonstrate how well deep learning models categorise tweets concerning catastrophes and
how they may improve local disaster response activities. (Kumar et al., 2019).

Behl et al. (2021) investigated a range of machine learning and deep learning models to
classify Twitter data during COVID-19 and natural catastrophe occurrences. They examined
various models, including multilayer perceptions (MLP-TF and MLP-W), convolutional neural
networks (CNN-W and CNN-WF), and logistic regression (LR-TF). Their findings revealed
that the LR-TF model achieved the best performance, with 88% accuracy on a dataset of
earthquakes in Nepal and Italy and 81% accuracy on the COVID-19 dataset. Both CNN-W
and CNN-WF delivered similar performance across the datasets, though CNN-WEF’s accuracy
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was slightly lower at 78% on the COVID-19 dataset. The accuracy of MLP-TF decreased from
87% on the combined dataset to 77% on the COVID-19 dataset. In contrast, the MLP-W model
performed best on the COVID-19 dataset, achieving an accuracy of 83% (Behl et al., 2021).

Madichetty et al. developed a Stacked Convolutional Neural Network (SCNN) model to
identify resource-related tweets during emergencies. The model integrates CNN and KNN
classifiers at the base level, with an SVM meta-classifier processing the outputs for the final
classification. When tested on datasets from the 2015 Nepal and 2016 Italy earthquakes, the
SCNN model outperformed other combinations, achieving the highest accuracy of 77.5%
for Nepal and 76.99% for Italy. These results highlight the effective collaboration of CNN,
KNN, and SVM in categorizing social media data for disaster management (Madichetty &
Sridevi, 2020).

Muhammed Ali Sit and colleagues analysed tweets during Hurricane Irma to explore the use
of social media in disaster management. They found that Long Short-Term Memory (LSTM)
networks performed best, achieving 74.78% accuracy and 75.14% F1 score in classifying
disaster-related tweets. Other methods, such as CNN and logistic regression, performed less
well. The study highlights LSTM as the most effective model for analysing social media data
during crises.

All these studies have highlighted the potential of social media platforms in crisis
management and have provided valuable contributions to the disaster management literature
using deep learning, machine learning, and natural language processing techniques.

In our study, tweets from individuals trapped under the debris were successfully identified
using natural language processing and deep learning models applied to a unique dataset.

Studies in the literature emphasise the importance of artificial intelligence-based approaches
developed for analysing and interpreting social media data during crises. Various research
efforts have introduced innovative methods using natural language processing, deep learning,
and machine learning techniques to contribute to disaster management processes. Below is a
summary of the contributions these studies have made to the literature.

Materials and Methods

Artificial intelligence, with a deep-rooted history spanning from ancient times to the
modern era, has evolved into a discipline that finds applications in almost every field of
contemporary technology (Mijwel, 2015). This study focuses on deep learning and natural
language processing, which are subfields of artificial intelligence, aiming to effectively classify
social media data for disaster management. To achieve this goal, the performance of the
models developed using deep learning techniques and natural language processing methods
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was evaluated. We implemented a machine learning pipeline to classify the textual data using
various recurrent neural network (RNN) architectures. The preprocessing steps included
converting text to lowercase, removing URLSs and special characters, tokenization, stopwords
removal, and stemming using the TurkishStemmer library. The dataset was split into training
and validation sets, and word embeddings were generated using both a pre-trained Word2Vec
model and random initialisation. Three RNN architectures—LSTM, bidirectional LSTM
(BLSTM), and BLSTM with attention (BLSTMA)—were constructed using TensorFlow and
Keras. Each architecture was configured with different hyperparameters, such as the number of
units, dropout rates, and learning rates, to evaluate their performance. Training was conducted
using class-balanced weights and monitored using callbacks for early stopping and learning
rate adjustment. Performance metrics, including accuracy, precision, recall, and F1 score, were
calculated to assess the effectiveness of each model configuration. The experimental results
are presented in detail in the subsequent sections.
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Figure 1. Natural Language Processing Steps (Kang et al., 2020)
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Natural Language Processing (NLP)

Natural Language Processing (NLP) is an area of artificial intelligence that focuses on
enabling machines to understand, interpret and respond to human language in a meaningful
way. The core of NLP is the transformation of raw textual data into structured forms suitable
for machine learning algorithms. This transformation involves a series of preprocessing steps,
text representation techniques, and algorithmic methods tailored to specific applications such
as sentiment analysis, text classification, and machine translation (Kang et al., 2020).

Preprocessing in the NLP

A number of preprocessing steps are taken at the beginning of the NLP process to
prepare the textual input for the machine learning algorithms. These steps include encoding
compatibility, cleaning up HTML elements and redundant components, segmenting text
into units (tokenisation), spelling correction, tagging word types (POS tagging), removing
stop words, and reducing words to base or root forms (stemming or lemmatisation). These
procedures ensure that the raw text is standardised and cleaned, allowing for better performance
of downstream NLP models (Kang et al., 2020). Figure 1 shows these steps in detail. The
effects of these preprocessing steps are discussed in the Dataset and Experimental Results
sections.

Text representation techniques

Once pre-processing is complete, the cleaned text is converted into numerical
representations for the machine learning models. This conversion can be performed using
separate or distributed representation methods:

» Discrete representations: Techniques such as One-Hot Encoding, Bag-of-Words (BOW),
Term Frequency-Inverse Document Frequency (TF-IDF) and the shing trick are used to
represent text as vectors based on word occurrence or importance within a document. These
methods capture basic textual information but may lose contextual relationships (Kang et al.,
2020).

» Distributed representations: Advanced methods such as Word2Vec, GloVe, and FastText
generate dense vector representations that preserve the semantic relationships between words.
These embeddings are particularly useful for capturing word meaning and context, making
them suitable for tasks such as sentiment analysis and machine translation (Kang et al., 2020).

Applications such as text categorisation, machine translation and sentiment analysis often
use these representation techniques. Discrete representations are often paired with traditional
machine learning algorithms such as logistic regression (LR), support vector machines (SVM),
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and decision trees (DT), while distributed representations are often integrated with neural
networks such as convolutional neural networks (CNN), recurrent neural networks (RNN),
and long short-term memory (LSTM) (Kang et al., 2020).

This study was undertaken for evaluating the effectiveness of various NLP techniques in
a text classification task. As outlined in Figure 1, the NLP process begins with preprocessing,
the aim of which is to clean and standardise the raw text. Subsequently, both discrete and
distributed text representation techniques were applied to convert the text into machine-
readable formats. Finally, these representations were used to train and evaluate classification
models, such as LSTM-based neural networks. The study’s objective is to determine the
most effective techniques for enhancing text classification accuracy. In summary, this study
underscores the significance of preprocessing, investigates diverse text representation methods,
and employs sophisticated algorithms to attain optimal performance in NLP tasks. Figure 1
offers a comprehensive visual depiction of the entire NLP pipeline (Kang et al., 2020).

Dataset

For the analysis of messages shared on Twitter within the scope of disaster management,
a dataset comprising 10,200 tweets was prepared for the period between February 6 and 8.
The data collection process was conducted using the Python programming language and the
SntTwitter library. During this process, tweets were collected within a specific focus area by
using disaster-related hashtags (e.g., #earthquake, #help). The collected data were recorded
with attributes such as date, content, and hashtags used and subsequently manually classified.

The classification process divided the tweets into two categories: “emergency help
messages” (1) and “general information sharing” (0). This classification was performed to
facilitate the training process of the supervised learning algorithms. Table 1 provides examples
from the dataset, offering a framework for understanding how social media data are processed
in the context of disaster management.

Table 1. Twitter Dataset

Date Tweet HashTags Label
SITE 1 NO:20 HATAY
2023-02-06 MERKEZ MELISA [‘afaddeprem’,’yardim’,’deprem’ 1
23:59:56+00:00 YARDIM BEKLIYOR | ‘afad’]
Aksever Mahallesi
2023-02-06 Meltem Sokak Giiler [‘hatayyardimbekliyor’,’hatayafad’, 1
29:59:51+00:00 Apartmant ‘hatayardim’]
ONEMLI DUYURU
2023-02-06 YAYALIM hatay [‘hatay’,’hatayyardimbekliyor’, 0
23:59:38+00:00 hatayyardimbekliyor ‘ENKAZALTINDA’
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To provide a general perspective by analysing the frequency and contexts of words within
the dataset, a word cloud analysis was conducted. Figure 2 visualises the most frequently used
words, highlighting key themes that are prominent in the context of disaster management. This
analysis contributes significantly to the identification of critical themes and patterns in the data.
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Figure 2. Word Cloud in the Dataset

The dataset predominantly features earthquake-related emergency tweets, where the most
frequent words—"deprem” (earthquake), “yardim” (help), “liitfen” (please), and “enkaz”
(debris)—indicate a high volume of distress calls and urgent requests for rescue operations.
As illustrated in Figure 3, the frequency distribution of these keywords highlights their critical
role in disaster-related communication. Additionally, the presence of geographical terms like
“Hatay” and references to AFAD (Turkey’s Disaster and Emergency Management Authority)
suggests a focus on specific affected regions and official response efforts, emphasising the
critical need for immediate aid and coordinated rescue missions.
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Figure 3. Frequency analysis of the 20 most frequently mentioned words
Deep Learning Methods

Deep learning is a branch of machine learning that provides effective solutions to complex
problems by extracting meaningful insights from large datasets (Goodfellow, Bengio, &
Courville, 2016). This method, particularly prominent in sequential data, natural language
processing, and time-series analysis, has enabled groundbreaking advancements in data analysis
processes. At the core of deep learning techniques lie artificial neural networks (ANNs), which
are inspired by the neural system of the human brain. ANNs are structures capable of solving
non-linear problems by learning input and output values and processing them through a specific
algorithm to generate results (Goodfellow, Bengio, & Courville, 2016). The development
of this field, which began with single-layer perceptions, led to the creation of multilayer
perceptions (MLPs) to address the need for understanding non-linear relationships and complex
data structures. MLPs, capable of learning more intricate relationships, have found wide
applications in classification and regression problems within machine learning (Rosenblatt,
1958; Goodfellow, Bengio, & Courville, 2016). However, the processing of sequential and
time-dependent data highlighted the limitations of ANNSs, prompting the development of
Recurrent Neural Networks (RNNs) and their derivatives.

Recurrent Neural Networks (RNNs) are specialised architectures designed to work with
sequential data and are capable of learning from sequential inputs (Goodfellow, Bengio, &
Courville, 2016). However, RNNSs face challenges such as gradient vanishing when learning
long-term dependencies. To address these issues, Long Short-Term Memory (LSTM)
models were developed. LSTM models employ mechanisms such as forget, input, and output
gates, effectively controlling the flow of information and excelling in learning long-term
dependencies (Hochreiter & Schmidhuber, 1997). Due to these features, LSTM models are
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widely used in fields such as text processing, time-series analysis, and natural language
processing (Hochreiter & Schmidhuber, 1997; Graves, Mohamed, & Hinton, 2013).

An advanced version of LSTM, Bidirectional Long Short-Term Memory (BLSTM),
enhances contextual representation by learning both past and future contexts in sequential data
(Zhou et al., 2016). BLSTM processes information bidirectionally, achieving robust results
in preserving semantic coherence, particularly in text data. The performance of the BLSTM
further improves when combined with the attention mechanism. The attention mechanism
enables the model to focus on critical inputs, prioritising key information, especially in long
and complex sequences (Zhou et al., 2016).

Finally, the Bidirectional Long Short-Term Memory with Attention (BLSTMA) model,
which integrates the attention mechanism into BLSTM, not only remembers information during
the learning process but also focuses on the most critical elements, achieving higher accuracy
and efficiency (Zhong et al., 2020). This progressive evolution of the LSTM, BLSTM, and
BLSTMA models significantly enhances the sequential data processing capabilities of artificial
neural networks, paving the way for groundbreaking applications in various fields, particularly
natural language processing.

Training Parameters Of Deep Learning Models

In this study, a comprehensive performance comparison of the deep learning algorithms was
conducted using metrics such as accuracy, precision, recall, and F1 scores. In addition, various
combinations of hyperparameters were tested, including random embedding and FastText-
based embedding techniques with representations of 100, 200, and 300 dimensions; neuron
counts of 64, 128, and 256 units; and dropout rates of 0.2, 0.3, and 0.4. The results were
evaluated to assess the potential of optimising disaster management tasks, such as analysing
social media data, using deep learning algorithms (LSTM, Bidirectional LSTM - BLSTM,
and Attention-augmented Bidirectional LSTM - BLSTMA).

A total of 154 variations were created by testing these hyperparameter combinations within
the framework of the four specified parameter sets. For each variation, the average accuracy
values were calculated to enable a comprehensive performance comparison of the models,
particularly in their application to disaster management. This analysis identified the optimal
configuration for effectively processing and interpreting social media data in crisis scenarios.

Experimental Results

The dataset used in this study contained unnecessary words and was cleaned by applying
the data preprocessing steps outlined in Figure 1. The data cleaning steps employed in this
context can be summarised as follows:
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»  Turkish stopword removal: Common but semantically insignificant words such as “ve”
(and) and “bir” (a) were removed from the dataset using the NLTK library.

*  Removal of URLs and username tags: The URLs and username tags present in the
tweets were extracted from the dataset.

* Cleaning of special characters: Emojis and special characters such as “#” and “$” found
in the tweet text were removed.

» Standardisation of uppercase and lowercase letters: All text was converted to lowercase
to ensure consistency in character usage.

» Elimination of repeated letters: Expressions with unnecessarily repeated letters were
corrected.

These preprocessing steps were performed to make the data more meaningful and
analysable. Once the preprocessing was completed, the tweets were tokenised by splitting
them into word sequences. During the tokenization step, each word was assigned a unique
integer value. For a detailed explanation of the data preprocessing and tokenization steps,
refer to Table 2.

Table 2. Tokenization Process
Step Result

Raw Text SITE 1 NO:20 HATAY MERKEZ MELISA YARDIM BEKLIYOR afaddeprem yardim
deprem afad

Convert to Lowercase | site 1 n0:20 hatay merkez melisa yardim bekliyor afaddeprem yardim deprem afad

Remove Punctuation | site 1 no20 hatay merkez melisa yardim bekliyor afaddeprem yardim deprem afad

Tokenize Words [*site’,”1°,’n020°,’hatay’,’merkez’,’melisa’,”yardim’, bekliyor’,”afaddeprem’,
‘yardim’,’deprem’,’afad’]

Assign Unique Index {‘site’:1,17:2,’n020’: 3, ‘hatay’: 4, ‘merkez’: 5, ‘melisa’: 6, ‘yardim’: 7,
‘bekliyor’: 8, ‘afaddeprem’: 9, ‘yardim’: 10, ‘deprem’: 11, ‘afad’: 12}

Convert Words to [1,2,3,4,5,6,7,8,9,10, 11, 12]
Indexes

Fixed-Length [1,2,3,4,5,6,7,8,9,10, 11, 12]
Sequence

In the deep learning approach, the dataset was divided into training and validation sets,
with the training set used for model learning and the validation set for evaluating model
performance. The models were trained using the binary crossentropy loss function and the
Adam optimisation algorithm. To prevent overfitting and enhance performance, the early
stopping method was applied.
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The model was trained for 30 epochs, with the data split into training, validation, and
test sets in a 67%-33% ratio. During training, early stopping was applied by monitoring the
val loss metric, ensuring that the best weights were retained to avoid performance degradation.
Additionally, data augmentation techniques such as word order shuffling and random word
dropping were used to increase the model’s generalisation capacity. The model was trained
using Word2Vec and random embedding matrices and structured with LSTM, Bidirectional
LSTM (BLSTM), and Attention-based BLSTM (BLSTMA) architectures. The models were
trained with class weights, continuously monitored with validation data, and the model with
the highest accuracy was selected.

During the training process, the classification models learned the context of the tweets,
enabling them to accurately classify new messages. The changes in accuracy based on the
number of epochs are illustrated in Figures 4, 5, and 6.

Model Accuracy Model Loss.

035 —— Taining Loss
Validation Loss

—— Training Accuracy 0.05
0.84 4 Validation Accuracy

T T T T T T T T T T T T T T
o 1 2 3 4 5 3 o 1 2 3 4 5 6
Epoch Epoch

Figure 4. LSTM Training Process

As seen in Figure 4, the graphs show the LSTM model’s training and validation performance
throughout the six epochs. It is clear that by the fourth epoch, the training accuracy has
increased consistently to about 98%, while the validation accuracy has stabilised at a somewhat
lower level, between 94% and 95%. Additionally, after the second epochs, the training loss
steadily dropped from 0.9 to about 0.05, while the validation loss reached a plateau at 0.25.
Nevertheless, the difference between these two forms of loss remains, indicating that the LSTM
model has trouble generalising, most likely because it is inadequate at capturing long-range
dependencies (Hochreiter & Schmidhuber, 1997).
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Figure 5. BLSTM Training Process

The BLSTM model has 99% training accuracy in the first two epochs, as shown in Figure
5. When compared to the LSTM model, the validation accuracy shows a little improvement,
consistently hitting a 95% level. After the second epoch, the validation loss converges at about
0.2. The initial training loss of the BLSTM model is 0.8, and it eventually drops to less than
0.05. In conclusion, the smaller gap between training and validation loss indicates that the
BLSTM model’s bidirectional nature is better than the unidirectional LSTM model in capturing
contextual information (Schuster & Paliwal, 1997).
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Figure 6. BLSTMA Training Process

As demonstrated in Figure 6, the performance of the BLSTM with Attention (BLSTMA)
model across eight epochs indicates its effective learning and generalisation capabilities. The
training accuracy (blue line) rapidly attains close to 99% by the second epoch and stabilises,
while the validation accuracy (orange line) progressively increases, reaching approximately
96%, with a negligible discrepancy between the two. The training loss (BLUE line) displays
a sharp decrease from 0.5 to around 0.02 by the eighth epoch, whereas the validation
loss (ORANGE line) stabilises at approximately 0.18 (Vaswani et al., 2017). The narrow
gap between the training and validation metrics reflects the BLSTMA model’s ability to
effectively generalise without overfitting. This ability is attributed to the inclusion of attention

Journal of Data Applications 75



Detection of Urgent Messages Shared on Twitter during an Earthquake using the Deep Learning Method

mechanisms, which enhance the model’s focus on significant input features, as discussed in
the following section. (Vaswani et al., 2017).

The confusion matrix of the BLSTMA model, which achieved the best results in the deep
learning models, is shown in Figure 7. This shows that the model correctly classified 2670
negative samples (true negatives) and 583 positive samples (true positives). There were 60
false positives (negative samples misclassified as positive) and 53 false negatives (positive
samples misclassified as negative). These results highlight the model’s strong ability to handle
imbalanced data with high precision and recall for both classes.

The differences in performance between the BLSTMA and other models likely stem from
the attention mechanism, which enables the model to focus on the most relevant features of
the input data. This targeted focus improves the model’s capacity to capture subtle patterns,
especially in complex datasets. Additionally, the use of FastText embeddings contributes to
better word representation, capturing semantic and syntactic nuances. In comparison, models
without attention mechanisms may struggle to distinguish between similar samples, leading
to slightly higher misclassification rates.
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Figure 7. Confusion Matrix of the BLSTMA Model

The performance metrics of the deep learning models obtained with the best-performing
parameters are presented in Table 3.
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Table 3. Performance comparison of the deep learning models

. . LSTM
l;/;([)’(lel g;:;eddmg ]SEil;lebeddmg Unit ﬁ;(t):mut Accuracy | Precision | Recall F1 Score
Count
LST™M Random 300 128 0.4 0.964646 | 0.889894 |0.927673 |0.908391
BLSTM | Random 300 256 0.4 0.965835 |0.895296 [0.927673 |0.911197
BLSTMA | Fasttext 300 256 0.2 0.966429 [0.906687 |0.916667 |0.911650

In this study, where approximately 162 different parameters were evaluated, the best results
are presented in Table 3. To better analyse the performance of the different models, the average
accuracy values were calculated based on four selected parameters and compared across the

models.
Average Accuracy by Embedding Type
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Figure 8. Average accuracy values for embedding types

In Figure 8, the BLSTMA model demonstrated the lowest average accuracy with the random
embedding type but outperformed the BLSTM model when using the FastText embedding
type. This indicates that BLSTMA, while struggling to learn meaningful representations from
randomly initialized embeddings, benefits significantly more from pre-trained embeddings
compared to BLSTM.

The LSTM model achieved the highest average accuracy of 96.22% with the random
embedding type, surpassing the other models. This result indicates that LSTM is more effective
at learning contextual relationships without relying on pre-trained embeddings. One possible
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reason is that LSTM’s simpler structure, compared to bidirectional architectures such as
BLSTM and BLSTMA, allows it to generalise better when embeddings are not pre-trained.

Average Accuracy by Embedding Size
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Figure 9. Average accuracy values for embedding dimensions

In Figure 9, the BLSTMA model exhibited lower accuracy rates compared to other models
with smaller embedding dimensions. However, when the embedding dimension was set to
300, it surpassed the average accuracy values of the LSTM and BLSTM models. This result
indicates that the BLSTMA model benefits more from larger embedding sizes due to its
bidirectional structure, which can leverage richer feature representations when more parameters
are available.

The LSTM model maintained a relatively stable performance as the embedding dimension
increased, indicating that it does not significantly benefit from higher-dimensional word
embeddings. Meanwhile, the BLSTM model showed an increasing trend, aligning with
findings in previous studies that suggest that bidirectional architectures perform better with
larger embedding sizes due to their ability to capture forward and backward dependencies
more effectively.

The results show that the embedding dimension significantly affects how well the BLSTM
and BLSTMA models provide accuracy. However, it is important to remember that overfitting
may result from an overabundance of the embedding dimension augmentation. To evaluate
their effect on model performance, the embedding dimensions of 100, 200, and 300 were
carefully chosen for this work based on experimental considerations.
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Average Accuracy by Dropout Rate
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Figure 10. Average accuracy values for dropout rates

For the dropout rate parameter, values of 0.2, 0.3, and 0.4 were used. While the LSTM
model exhibited a noticeable decline in accuracy beyond a dropout rate of 0.3, both the BLSTM
and BLSTMA models began to show reductions in accuracy starting from 0.2. This indicates
that the LSTM model experienced significant information loss after 0.3, whereas the BLSTM
and BLSTMA models began losing information at 0.3.

The optimal parameter values for these models correspond to the points immediately
before the decline in performance begins. As seen in Figure 10, the LSTM model fell below
the BLSTMA model in accuracy at a dropout rate of 0.4. Among all the parameters, the
BLSTM model consistently provided the best results. This demonstrates that the BLSTM
model achieves better generalisation and exhibits a more balanced performance compared to
the other models.
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Average Accuracy by Neuron Count
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Figure 11. Average accuracy values for the number of neurons

As demonstrated in Figure 11, there is a clear indication of how the neuron count affects
the performance of the LSTM, BLSTM and BLSTMA models. The BLSTM model’s consistent
enhancement in accuracy with rising neuron numbers can be ascribed to its capacity to
effectively capture the bidirectional context. As the number of neurons escalates, the model
evidently gains from the augmented capacity to depict intricate patterns, culminating in
superior performance compared to the LSTM and BLSTMA models This indicates that the
bidirectional structure in the BLSTM scales effectively with more computational resources. In
contrast, the BLSTMA model demonstrates less dependency on the neuron count, achieving
competitive accuracy with fewer neurons but failing to leverage additional neurons to the
same extent as BLSTM. This could indicate that the attention mechanism primarily enhances
local feature learning rather than relying heavily on the increased model capacity. The findings
further indicate that the LSTM model demonstrates a decline in accuracy beyond 128 neurons,
which may suggest that it experiences overfitting or diminishing returns when scaled due to
its lack of bidirectional or attention-enhanced mechanisms to effectively utilise the additional
neurons.

The observed differences between these algorithms underscore the merits of the bidirectional
context in BLSTM in leveraging higher neuron counts, while the BLSTMA model’s attention
mechanism underscores efficiency with fewer resources. These observations underscore the
necessity for selecting a model architecture that considers not only the characteristics of the
data set but also the available computational resources.
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Table 4. Machine Learning Models Results

Model Type Vectorisation Method | Accuracy Precision Recall F1 Score
Logistic Regression | TF-IDF 0.9465 0.9454 0.9465 0.9453
Naive Bayes TF-IDF 0.9435 0.9438 0.9435 0.9436
SVM TF-IDF 0.9530 0.9528 0.9530 0.9529
Random Forest TF-IDF 0.9533 0.9529 0.9533 0.9531
XGBoost TF-IDF 0.9566 0.9563 0.9566 0.9564
Logistic Regression | Bag Of Words 0.9527 0.9523 0.9527 0.9525
Naive Bayes Bag Of Words 0.9319 0.9457 0.9319 0.9351
SVM Bag Of Words 0.9581 0.9578 0.9581 0.9579
Random Forest Bag Of Words 0.9569 0.9566 0.9569 0.9567
XGBoost Bag Of Words 0.9584 0.9585 0.9584 0.9584
Logistic Regression | Word2Vec 0.9212 0.9194 0.9212 0.9200
SVM Word2Vec 0.9292 0.9311 0.9292 0.9300
Random Forest Word2Vec 0.9367 0.9369 0.9367 0.9368
XGBoost Word2Vec 0.9393 0.9397 0.9393 0.9395

These results offer a useful opportunity to investigate how well various algorithms
perform when classifying tweets of emergencies. Strong accuracy is demonstrated by machine
learning models like XGBoost and SVM, which achieve above 95% accuracy when the Bag
of Words (BoW) and TF-IDF approaches are used. This implies that word frequency-based
techniques are useful for identifying emergency messages, most likely due to the fact that
urgent tweets frequently follow particular patterns. Word2 Vec-based models’ comparatively
worse performance of the Word2 Vec-based models raises the possibility that pre-trained word
embeddings could not adequately convey the context or urgency of these signals. Although
SVM and XGBoost perform well, they may have trouble understanding more complex or
context-dependent emergency tweets because of their emphasis on basic frequency patterns.

On the other hand, the deep learning models—BLSTMA with FastText embeddings,
in particular—performed better, achieving 96.64% accuracy. This implies that FastText
embeddings help the model understand context, allowing it to identify crises even in various
language usages. Deep learning models also have stronger recall, which lowers the likelihood
of overlooking important signals. Deep learning models exhibit a remarkable ability to navigate
the intricate and informal nature of Twitter discourse, which improves their dependability for
real-world emergency detection, even though machine learning models are more efficient in
terms of processing speed and efficiency.
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Conclusion

The results showed that while the BLSTMA model had the best accuracy (96.64%) and F1
score (0.9116), conventional machine learning techniques like XGBoost and SVM. Using Bag
of Words vectorisation, SVM obtained 95.81% accuracy and an F1 score of 0.9579, whereas
XGBoost earned 95.84% accuracy and an F1 score of 0.9584. By demonstrating the usefulness
of the BLSTMA model in real-time disaster response and the complementary advantages of
conventional approaches in the analysis of complex disaster data, these findings highlight the
significance of customising machine learning and deep learning approaches to particular tasks.

Even though deep learning models demonstrated excellent generalisation skills, the need
for further improvement is highlighted by their comparatively poorer accuracy and recall
compared to conventional techniques. Additionally, the study’s conclusions are not as broadly
applicable to other languages or catastrophe situations due to its dependence on a dataset
of Turkish tweets. To improve these models’ worldwide applicability, future studies should
examine how well they can adapt to multilingual datasets and various settings.

Furthermore, there are difficulties in processing large data streams (e.g., the vast number
of messages shared on social media during disaster events), noisy data (e.g., misleading,
incomplete, or irrelevant information within the shared messages), and the requirement
for quick categorisation (e.g., the need to analyse and classify data in real time to support
immediate decision-making) when implementing these models in real-time disaster response
systems. Overcoming these obstacles requires combining real-time processing capabilities
(e.g., enabling models to process and classify incoming data as it is collected) and increasing
computing efficiency (e.g., optimising the speed and resource usage of models for faster
performance). By addressing these issues, it will be possible to create frameworks for
evaluating social media data connected to disasters that are more reliable and scalable, greatly
improving emergency response and disaster management initiatives throughout the globe.
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