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Abstract: In this work, we investigate the estimation for algebraic polynomials in the bounded and unbounded 

regions with piecewise Dini smooth curve having interior and exterior zero angles. 

Keywords: Algebraic polynomials 

İç ve Dış Sıfır Açılı Bölgelerde Polinom için Düzgün ve Noktasal 

Değerlendirmeler 

Özet: Bu çalışmada, içte ve dışta sıfır açı olan parçalı Dini düzgün eğri ile sınırlı sonlu ve sonsuz bölgelerdeki 

cebirsel polinomlar için düzgün ve noktasal değerlendirmeler inceledik. 

Anahtar Kelimeler: Cebirsel polinomlar 

 

1. INTRODUCTION and MAIN RESULTS 

Let ℂ be a complex plane and ℂ̅ ≔ ℂ ∪ {∞}; 𝐺 ⊂ ℂ  be the bounded Jordan region, with 0 G  and 

the boundary :L G   be a closed Jordan curve, Ω ≔ ℂ̅\�̅� = 𝑒𝑥𝑡𝐿.  : : 1w w   (with respect to ℂ̅).

Let function ( )w z  be the univalent conformal mapping of   onto the   normalized by  

( )
( ) , lim 0

z

z z



     and 
1: . 

 

For 1R   let us set  : :  ( ) ,RL z z R   : int ,R RG L :R RextL  . For 𝑧 ∈ ℂ and 𝑀 ⊂ ℂ  we 

set:  ( , ) ( , ) : inf :d z M dist z M z M     . 

Let  
1

m

j j
z L


 be a fixed system of distinct points. Consider a so-called generalized Jacobi weight 

function   h z being defined as follows: 
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0 0

1

( ) : , , 1, (1.1)
j

m

j R

j

h z z z z G R




   
 

where 1j    for every 1,2,..., .j m   

Denote by 
n the class of all complex algebraic polynomials ( )nP z of degree at most 𝑛 ∈ ℕ. 

For any 0p  we introduce:  

1/

( , )

(1, )

: : ( ) ( ) , 0 ;

: : max ( ) , .

p

p

p

n n np h L

L

n n nL z G

P P h z P z dz p

P P P z p




  

 
     

 

   


 

To evaluate ( )nP z  on the whole complex plane we proceed as follows: taking ℂ = �̅� ∪ Ω, we divide 

the problem into following two problems: find estimates 

) ( ) . ( , , ) , , 0; (1.2)n n n p
a P z c L h p P z G p  

  
1

) ( ) . ( , , ( , ), ) ( ) ,  ,  0, (1.3)
n

n n n p
b P z c L h d z L p P z z p


     

where ( , ) 0c c L p  is a constant independent from , , ,nn z P  and ( , , )n L h p  ,  ( , , ( , ), )n L h d z L p 

(in general!) as  ,n depending on the geometrical properties of curve  L  , weight function h  and 

parameter .p  

We note that, the first results of type (1.2),in case ( ) 1h z   for   : 1L z z  and  0 p   

was found by Jackson [14]. The another results, similar to (1.2), for the sufficiently smooth curve, was 

obtained in [28] ( ( ) 1h z  ), and in [25, Part 4] ( ( ) 1h z  ). The estimation of (1.2)-type for  0 p    and  

( ) 1h z    when  L  is a rectifiable Jordan curve was investigated in [25-27], [16, 17], [19. pp.122-133], [21] 

obtained identical inequalities for more general curves and for another weighed function. There are more 

references regarding the inequality of (1.2)-type, we can find in Milovanovic et al. [18, Sect.5.3]. 

Further, analogous estimates of (1.2) for some regions and the weight function ( )h z were obtained: 

in [2] ( 1)p  and in [20]  ( 0,p  0 )h h   for regions bounded by rectifiable quasiconformal curve having 

some general properties; in [3] ( 1p  ) for piecewise Dini-smooth curve with interior and exterior cusps; in 

[4] 𝑝 > 1 for regions bounded by piecewise smooth curve with exterior cusps but without interior cusps; in 

[5] 𝑝 > 0 for regions bounded by piecewise rectifiable quasiconformal curve with cusps; in [6] 𝑝 > 0for 

regions bounded by piecewise quasismooth (by Lavrentiev) curve with cusps. 

The results of the (1.3) type starts from the work of Bernstein [29]. Analogous results of (1.3)-type 

for some norms and for different unbounded regions were obtained by Lebedev, Tamrazov, Dzjadyk (see, 

for example, [12, pp.418-428.]), Stylianopoulos [24] and others. Corresponding results (1.3) for some 

regions and the weight function ( )h z  defined as in (1.1) with 1j   were also obtained: in [3] for  𝑝 > 1 

and for regions bounded by piecewise Dini-smooth boundary with interior and exterior zero angles; in [6] 

for  0p    and for regions bounded by piecewise quasiconformal boundary with interior and exterior zero 
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angles; in [4] for 1p  and for regions bounded by piecewise smooth boundary with exterior zero angles 

(without interior zero angles); in [6] for 𝑝 > 0 and for regions bounded by piecewise quasismooth boundary 

with interior and exterior zero angles and in others. 

In this work, we investigate similar problem [3] for 0 < 𝑝 ≤ 1 in bounded G  and unbounded region 

  with piecewise Dini-smooth curve having interior and exterior angles (also cusps) for weight function  

h  defined in (1.1) . Finally, combining obtained estimates for  ( )nP z   on  G   and  , we get the evaluation 

for ( )nP z   in whole complex plane, depending on the geometrical properties of the region G , weight 

function  ( )h z and p.  

 

2. MAIN RESULTS 

 

Let us give some definitions and notations that will be used later in the text. In what follows, we 

always assume that  0p  and the constants  
0 1 2, , , ,...c c c c   are positive and constants  

0 1 2, , ,...    are 

sufficiently small positive (generally, are different in different relations), which depends on G  in general 

and, on parameters inessential for the argument, otherwise, the dependence will be explicitly stated. Also 

note that, for any  0k   and ,m k notation ,j k m  denotes , 1,..., .j k k m  Let us give some 

definitions and notations that will be used later in the text. 

Let S be a rectifiable Jordan curve or arc and ( ), 0, , : ,z z s s S S mes S       denote the natural 

representation of  S  . 

  Definition 2.1.[22, p.48](see also [11, p.32]) We say that a Jordan curve or arc S called Dini-

smooth, if it has a parametrization  𝑧 = 𝑧(𝑠), 0 ≤ 𝑠 ≤ |𝑆|, such that  𝑧′(𝑠) ≠ 0, 0 ≤ 𝑠 ≤ |𝑆| and  

2 1 2 1( ) ( ) ( ),z s z s g s s
 

   1 2 ,s s  where g  is an increasing function for which 

1

0

( )
.

g x
dx

x
   

Now, we will define a new class of regions with piecewise Dini-smooth boundary, which have at 

the boundary points corners, interior and exterior cusps simultaneously. Let 
2[0,1]C  denote the class of all 

functions 𝑓 ∶ [0, 𝜀0] → ℝ which are twice differentiable such that (0) 0f  and 
( ) ( ) 0kf x   for all  

00 x   , 0,1,2k  . 

Definition 2.2. We say that a Jordan region
1 11 1( ,..., ; ,..., )m m mG PDS f f   , 0 2i 

1
1, ,i m

2[0,1]jf C , 
1 1,j m m  , if L G  consists a union of finite number of Dini-smooth arcs

0{ }m

j jL 
 , joining 

at the points 
0{ }m

j jz L   such that L is locally Dini-smooth at 
0z  and the following properties hold: 

1) for all
11,i m  the arcs 1iL  and 

iL meet at the point iz with the exterior (respect to G ) angle ,i

0 2;i   
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2) for all
1 1, ,j m m  the arcs

1jL 
and

jL meet at the point
jz  with 

jf -type exterior zero angle, that is there 

exists an
j  -neighborhood of 

jz  such that in a local coordinate system, with the origin at
jz , we have  

1, 2,{ : | | , ( ) ( ), [0, ]}j j j j j jz x iy z c f x y c f x x         

and  

0{ : | | , | | , [0, ]}j jz x iy z y x x G         

for some constants  
1, 2,j jc c  and 

0 , .j   

Throughout this work, we will assume that the points 
1

m

j j
z L


  defined in (1.1) and Definition 2.2. 

are the same. Without loss of generality, we assume that these points on the curve L G  are located in the 

positive direction such that, G has , 0 2,j j    11, ,j m exterior angles (when 2j     interior zero 

angles (interior cusps)) at the points   1

1

m

j j
z


, 

1 ,m m and has exterior zero angles (exterior cusps) on the 

points  
1 1

m

j j m
z

 
and : ( )j jw z  

For the simplicity of exposition and in order to avoid cumbersome calculations, without loss of 

generality, we consider, a Jacobi weight function h  defined by (1.1) and the region 
1 2( ; )G PDS f   with 

1 1m  , 2m  ,
10 2  and the function 21

2 ( )f x x


 , 
2 0  , as the function 

2f  in the Definition 2.2. We 

will use the notation 
1 2( ; )G PDS f for this construction. Therefore, 

1 2( ; )G PDS f   denote that the 

region G may have exterior 
1 , 10 2,  (also interior zero) angle at the point 

1z and exterior zero angle 

at the point
2z of 21

2 ( )f x x


  touching. Correspondingly, we will use the notation  
1 2( , ),G PDS   if  

1 2m m   , i.e., the region  G   may have only exterior  ,i 0 2,i   (also interior zero) angles at the 

point ,iz 1,2,i   without exterior zero angles, and notation  
1 2( , ),G PDS f f if 

1 0, 2m m  , i.e., the 

region  G   may have only exterior zero angles of  
1

( ) j

jf x x


   touching at the point  ,jz 1,2,j   without 

exterior (also interior zero) angles at the point 
jz . When  

1 0m m  , this definition yields a Jordan region 

whose boundary is a Dini-smooth curve. 

Now, we can state our new results. We introduce some notation, which we use in what follows:  

𝜆∗ {
  max{𝜆𝑖 , 1}      𝑖𝑓 0 < 𝜆𝑖 < 2,
         2              𝑖𝑓 𝜆𝑖 = 2,

 

𝛾𝑖
∗ ≔ max{𝛾𝑖 , 0} , 𝜆𝑖,𝛼𝑖

∗∗  ∶= max{𝛾𝑖;  −𝛼𝑖},  𝑖 = 1,2; 

                                    𝜆∗ = max{𝜆1
∗ , 𝜆2

∗ } , 𝛾∗ = max{𝛾1
∗, 𝛾2

∗} , 𝛾𝛼
∗ ∶= max {𝛾2,𝛼𝑖

∗ , 𝛾2,𝛼2
∗ }                         (2.1) 

𝛼∗ ≔ max{𝛼1, 𝛼2} , 𝛼∗ ≔ min {𝛼1, 𝛼2} 
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Theorem 2.1. Let 
1 2( ; )G PDS f  for some

10 2  and 21

2 2( ) , 0;f x cx
 

  ( )h z  be defined as in 

(1.1). Then, for any  𝑃𝑛 ∈  ℘𝑛 , 𝑛 ∈ ℕ and 1,j   1,2,j   we have:  

       
1 , (2.2)n n n p

P c A P

  

where
1 1 1 2( , , , , ) 0jc c G p    is the constant, independent from z  and ;n  

                𝐴𝑛 ≔

{
  
 

  
 𝑛

𝛾1
∗+1

𝑝
𝜆1
∗

, 𝛾1 > −1, −1 < 𝛾2 < −𝛼2,

𝑛
𝛾2 +1+2𝛼2
𝑝(1+𝛼2) , −1 < 𝛾1 <

𝛾2+1+2𝛼2

𝜆1
− 1, 𝛾2 ≥ −𝛼2,

𝑛
𝛾1 +1

𝑝
𝜆1
∗

, 𝛾1 ≥
𝛾2+1+2𝛼2

𝜆1 (1+𝛼2)
− 1, 𝛾2 ≥ −𝛼2,

                             (2.3) 

and 11,   are defined as in (2.1). 

Now, let's take that the curve L  in the both points 
1 2,z z L  have exterior non zero angles. In this 

case we obtain: 

 

Theorem 2.2. Let
1 2( , )G PDS   for some

1 20 , 2;   ( )h z be defined as in (1.1). Then, for any  

, N, 1,n n iP n     1,2,i  we have:  

‖𝑃𝑛‖∞ ≤ 𝑐2 𝑛
𝛾∗+1

𝑝
𝜆∗
‖𝑃𝑛‖𝑝,                                                               (2.4) 

 

where
2 2 ( , , , ) 0i ic c G p   is the constant, independent from z  and ,n and 𝛾∗, 𝜆∗are defined as in (2.1). 

Analogously, when the curve L  in the both points 
1 2,z z L have only exterior zero angles, we have: 

 

Theorem 2.3. Let 
1 2( , )G PDS f f for some 

1
( ) , 0, 1,2;j

j jf x cx j





   ( )h z be defined as in (1.1). 

Then, for any 𝑃𝑛 ∈  ℘𝑛 , 𝑛 ∈ ℕ, 1,j   1,2,j  we have: 

‖𝑃𝑛‖∞ ≤ 𝑐3 𝑛
𝛾∗𝛼+1

𝑝+1+𝛼∗
+

2𝛼∗

𝑝(1+𝛼∗)‖𝑃𝑛‖𝑝, 

   
 

where 
3 3( , , , ) 0j jc c G p   is the constant, independent from z  and ,n  and 𝛾𝛼

∗, 𝛼∗, 𝛼∗  are defined as in 

(2.1). 

Now, we will estimate of ( )nP z at the critical points , 1,2.jz L j   

Theorem 2.4. Let 
1 2( ; )G PDS f  for some  

10 2  and 21

2 2( ) , 0;f x cx
 

  ( )h z  be defined as in 

(1.1). Then, for any  , N, 1,n n jP n     1,2,j   we have: 
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4( ) , (2.6)n j n n p
P z c B P  

where 
4 4 1 2( , , , , ) 0jc c G p    is the constant, independent from z and ;n  

𝐵𝑛 ≔ {
𝑛
𝛾1 +1

𝑝
𝜆1
∗

,            𝑓𝑜𝑟 𝑗 = 1,

𝑛
𝛾2, 𝛼2
∗ +1+2𝛼2

𝑝(1+𝛼2)
, 
𝑓  𝑜𝑟 𝑗 = 2.

 

Remark 2.1. The similar results from [2] (for 1p  ); [5] (for 0p  ); [6] (for 0p  ) were obtained for 

regions of a more general geometric configuration, but without exterior non-zero angles in the usual sense.  

Therefore, the estimates were obtained in Theorems 2.1-2.4 can be compared with correspondingly results 

from [4]. The results obtained in Theorems 2.1-2.4 extend the results obtained in [4] in case 0    1p  : 

In Theorems 2.1-2.4 we also shown that by slightly increasing the smoothness of the boundary, one can 

achieve improvement in growth by n  for arbitrary small 0  : 

 

Remark 2.2. Let us give a geometric interpretation of Theorem 2.4. Obviously, 
1 2 22; ;( (  ) )PDS f PDS f   

for 
1 20   2    , and for the same fixed 21

2 2 ;   0f cx
 

  . Therefore, if 
1 2  , then the region 

1 21 )( ) ;  (G PDS f   also have a 
1 22 )( ) ;  (G PDS f  . If 

1 2  , then the region 
1( )G   has a more 

obtuse angle at the point 
1z  than the region 

2( )G  . Hence, the sharper from the inside angle at the point 
1z

, the worse the degree of n  and the obtuse from the inside the angle at the point z , the better the degree of 

n . 

The same can be said for another point 
2z . In this case, we see that 

1 222;  ( ;( ) )gPDS f PDS   

for 21

2  f cx


  ; 21

2  g cx


 , 2 20    , and for the same fixed 1 1, 0   2   . Hence, the sharper the 

exterior angle at the point 
2z , the worse the degree of n  and the obtuse the exterior angle at the point 

2z , 

the better the degree of n  for some 
2 1  . 

Now, we will give pointwise estimations for ( )nP z  in regions 
1 2( ; )G PDS f , at the .z  

Theorem 2.5. Let 
1 2( ; )G PDS f  for some 

10 2    and 21

2 2( ) , 0;f x cx
 

  ( )h z  be defined as in 

(1.1). Then, for any , N,n nP n   and  1,j   1,2,j    we have: 

1

5 /2
( ) ( ) , , (2.7)

( , )

nn
n np p

D
P z c P z z

d z L


    

where  
5 5 1 2( , , , , ) 0jc c G p     is the constant, independent from z and ;n  

 

* 1( 1) 21 1
(1 )2

1

1 2

1 2

1 2

, , 1,

: ln , 1, (2.8)

1, 1 , 1.

pp

p

n

n n

D n
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Combining Theorems 2.5 and 2.1, we can obtain the following estimate for ( )nP z in the whole complex 

plane. 

Corollary 2.1. Under the assumptions of the Theorem 2.5, we have:  

1

2

( )6

( , )

, ,

( )
, ,

n

p

n

zn n p
n

d z L

A z G

P z c P
D z




 


 




 

where  
6 6 1 2( , , , , ) 0jc c G p     is the constant, independent from  z   and  ;n   and   

nA   and  
nD   are 

defines as in (2.3) and (2.8) correspondingly .  

 

2.1. Sharpness of estimates 

 

The sharpness of the estimations (2.2)-(2.7) for some special cases can be discussed by comparing them 

with the following results: 

Remark 2.1. For any 𝑛 ∈ ℕ and 1,2,3i  there exist polynomials
, ,i n nP  regions 𝐺𝑖 ⊂  ℂ and constants  

1

7 7 ( ) 0,c c G  1

8 8 ( ) 0,c c G   and 
2

9 9 ( ) 0c c G  such that:  

1

1 1

1

1 11

1, 7 1,( ) ( )

( 1)/

2, 8 2, 1 1( ) (| 1| , )

, (2.9)

, 0, 1,

p

p

p

n nC G G

p

n nC G z G

P c n P

P c n P p


  

 



  



   
 

and 

2
2

3, 9 3, ( )
( ) ( ) , , (2.10)

n

n n G
P z c z P z F

 
     

where F is a closed subset in 2\ .G  

 

3. SOME AUXILIARY RESULTS 

 

For the nonnegative functions 0a  and 0b  , we shall use the notations  a b   (order inequality), 

if  a cb  and a b are equivalent to 
1 2c a b c a   for some constants 

1 2, , (c c c independent of a and )b   

respectively.  

We can find a well known definition of a  K  -quasiconformal curve in [7], [15, p.97], [22,p.286] 

and [23] as follows: 

 

Definition 3.1.[15, p.97], [23]The Jordan curve (or arc) L is called  K   quasiconformal ( 1K   ), if there 

is a K  quasiconformal mapping  f of the region  D L   such that  ( )f L   is a circle (or line segment). 
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Let  ( )F L   denote the set of all sense preserving plane homeomorphisms  f  of the region  D L   such 

that  ( )f L   is a line segment (or circle) and let  

 : inf ( ) : ( ) ,LK K f f F L   

where  ( )K f  is the maximal dilatation of a such mapping  .f   Then  L   is a quasiconformal curve, if  

,LK    and  L   is a  K   quasiconformal curve, if  .LK K  

We well know that there exist quasiconformal curves which are not rectifiable [15, p.104]. 

According to the "three-point" criterion [6], every piecewise Dini-smooth curve (without any cusps) is 

quasiconformal. 

 

Lemma 3.1. [1] Let Lbe a K  quasiconformal curve, 
1 ,z L

02 3 1 1, { : ? ( , )};rz z z z z d z L 

( ), 1,2,3.j jw z j    Then 

a)The statements  
1 2 1 3z z z z    and  

1 2 1 3w w w w    are equivalent. 

So statements  
1 2 1 3z z z z     and  

1 2 1 3w w w w     also equivalent ;  

b) If 
1 2 1 3z z z z  ,  then  

2 2

1 3 1 3 1 3

1 2 1 2 1 2

,

K K

w w z z w w

w w z z w w



  

  
 

 

where  
00 1,r   is constant, depending on  .G  

Recall that for  1
0 4

0 : min : , 1,2,..., ,j i jz z i j m i j       , we put 

 ( , ) : : ;j j j jz z z z    
1

: min j
j m

 
 

  ,  
1

( ) : ( , ),
m

j
j

z 


   : \ ( ).    Additionally, let 

: ( ( , )),j jz   
1

( ) : ( ( , )),
m

j
j

z 


    ( ) : \ ( ).      

The following lemma is a consequence of the results given in [22, pp.41-58], [11, pp.32-36], and 

estimation for the   (see, for example, [10, Th.2.8]): 

 ( , )
( ) .

1

d L





 


 

Lemma 3.2. Let a Jordan region  1( ;0), 0 2, 1,j jG PDS j m     . Then, 

i) for any w ,j
1

( ) ( ) , ( ) ;
j j

j j jw w w w w w w
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ii) for any 𝑤 ∈ ∆̅\∆𝑗 ( ) ( ) , ( ) 1.j jw w w w w       

Let  
1

m

j j
z


be a fixed system of the points on L and the weight function  h z   defined as (1.1). 

Lemma 3.3. [3] Let L  be a rectifiable Jordan curve ; ( )h z as defined in (1.1). Then, for arbitrary  

( ) ,n nP z  any 1R    and 𝑛 ∈ ℕ we have 

**1

( , ) ( , )
, 0, (3.1)p

p R p

n

n nh L h L
P R P p




 
   

where  ** max : , .k k k m    
 

 

4. PROOF OF THEOREMS 

 

Before giving proofs of the main theorems, let us give the geometric notations used in the proofs to 

prevent the flow of presentation of the proof. 

Without loss of generality, we assume that  
1 1z    ,

2 1z  and ( 1,1) G  . We will use the 

notations given in the following:  

: { : Im 0}L z L z    and  : { : Im 0}L z L z     , so that  L L L   ; ( ) : ji

j jw z e


   ,

0 2j    , 1,2j   ; :
i

w e
  and :w w    , where  1 2| |

1 2

 
 



    ;  : ( )z w   ; : ( , )j j il l z z   is 

the subarc with endpoints z
and  

jz  , 1,2,j   .  𝐿1 ≔ 𝐿1 (𝑧+, 𝑧1, 𝑧
−) denote the arc connecting the points 

z
 and z

passing through the point 
1z  ;  2 2

2: ( , , )L L z z z  denote the arc, connecting the points  z
  and  

z
  passing through the point  z2  . 

Similar notations for  
RL  are in the following:  : { : Im 0}R RL z L z   

 and 

: { : Im 0}R RL z L z    , so that 
R R RL L L   ;  : Re

i

Rw
    and  :R Rw w    ;  : ( )R Rz w    . Let  

,j R Rz L   such that  
,( , ) | |j R j j Rd z L z z   ,  1,2j   ;  L     such that  2, 2,( , ) | |R Rd z L z    .  

j

jz L L     such that  ( , ) | |j j R j jc d z L z z  ,  1,2j   ;  
,j R Rz L    such that  

,( , ) | |j j R j j Rc d z L z z   ,  

1,2j   .   

Finally, let us give the following notations: Let  ,

1, : { : | | ( , )}i

R R i i i RE L z c d z L       , and let  

,

2,

i

RE    be the sub-arc of  LR


  with endpoints  
,j Rz   and  Rz

 ,  1,2j   ;  

,

1 : { : | | ( , )}i i

i i i RE L z c d z L      , and let  ,

2

iE    be the sub-arc of  L
  with endpoints  iz

  and  z
 ,  

1,2i   . Let  , ,

, ,: ( )i i

j R j RF E    ,  1,2i   ,  1,2j   . Let  
0z L   be a point far from the points  z1   and  z2 . 

Without loss of generality, we assume that  0z z (or 0z z  ) to ensure simplicity in calculations. 
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4.1. Proof of Theorem 2.1. 

 

Proof. Let  
1 2( ; )G PDS f   for some  

10 2    and  21

2 2( ) , 0f x cx
 

    and  11
n

R    ,  𝑛 ∈ ℕ. Let  

( )Rw z denote the univalent conformal mapping of 
RG onto the unit disk  { : | | 1}B z z   normalized 

by (0) 0R  , (0) 0R
   , and let j , 1 ,j m n    the zeros of ( ),nP z  lying on

RG (if such zeros exist). 

Lets define a Blaschke function with respect to the zeros 
1

m

j j



 as follows:   

,

1

( ) ( )
( ) ,

1 ( ) ( )

m
R R j

m R

j R j R

z
q z

z

  

  





  

 and for any 0p   we put:  

 
 

/2

,

,

: , . (4.1)
( )

p

n

n p R

m R

P z
Q z z G

q z

 
  
  

 

The function  
,n pQ   is analytic in  

RG , continuous on RG  and does not have zeros in 
RG . We take an 

arbitrary continuous branch of  
,n pQ   and we maintain the same designation for this branch. Its Cauchy 

integral representation for the region  
RG   is the following:  

   , ,

1
, . (4.2)

2
R

n p n p R

L

d
Q z Q z G

i z




 
 

  

From (4.1) and (4.2), we have:  

 
 

 
2

2 22

,

,

| ( ) | ,
( )

p

p pp

R R

n

n m R n

m RL L

d dP
P z q z P

q z z

 


  
 

    

for all  
Rz G  , since  

, ( ) 1m Rq     for all  
RL    and  

, ( ) 1m Rq z    for all  
Rz G . Multiplying the 

numerator and the denominator of the last integrand by  1/2 ( )h   , and then applying the Cauchy-Schwarz 

Inequality, we get:  

   2

1/21/2

2
( ) | | .

( )

p

R R

p

n n

L L

d
P z h P d

h z


  

 

  
   

      
   

 

According to the Lemma 3.3, we have:  

 

1/

1/

2
: , (4.3)

( )
R

p

p

n n n np p

L

d
P z P P J

h z



 

 
  
  
  

for all  Rz G  , where  
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2
: ( ) : . (4.4)

( )
R

n n R

L

d
J J L

h z



 
 


  

 

Now, we will estimate the integral  
nJ  . For this purpose, we will use the notations and definitions given 

in the beginning of this section. Under this notations, we can write 
nJ  in the following form:  

,
,

2 2
,

,2
, 1 , 1

: ( ). (4.5)
| | i

i
j R

i

n j R

i j i jE i

d
J J E

z z




 



 

 
 

   

Now, we estimate the integrals  ,

,( )i

j RJ E    in (4.5). First, let us fix a point  z L  , such that  

( )
| ( ) |n n C G
P z P   . So that  

1z L   or  
2z L  . We will examine both cases. Let  

, : ( , )i R i Rd d z L  ,  

1,2i  . 

Case 1. Let  
1z L  . If  

1 0   , we have:  

1 1,

1 11
1, 1,

1,1, 1,

1, 1,

1, 1, 2 12

1, 1,1

1 1
( ) ( ) , (4.6)

| |

R

RR R

c d

R R

R RdE E

d ds
J E J E

d s dz z
 



  

 





 
 

  

if  
11 0   , then we have:  

1 1,

1 1

1,

1, 1,

1, 1, 2 1

1, 1,

1 1
( ) ( ) . (4.7)

R

R

c d

R R

R Rd

J E J E ds
d d

 

 

 
   

If  1,

1z E  , then we get:  

1 1
1, 1,
2, 2,

1, 1,

2, 2, 2 1

1 1,

1
( ) ( ) , (4.8)

(min{| |,| |})
R R

R R

RE E

d
J E J E

z z d
 



  

 

 




   

for  𝛾1 ≥ 0 , and taking into account the inequality  (𝑥 + 𝑦)𝑟 ≤ 2𝑟(𝑥𝑟 + 𝑥𝑟),  , , , 0x y r   , we have:                 

1

1, 1,
2 , 2 ,

1 1

1

1
1, 1, 1, 1,
2 , 2 , 2 , 2 ,

1
1, 1,
2 , 2 ,

11, 1,

2, 2, 2

1
1 1,22

12

1,

| |
( ) ( ) (4.9)

| | | | | |
| | ( )

| | | |

| | 1
.

| |

R R

R R R R

R R

R R

E E

R

E E E E

RE E

z d
J E J E

z

z z z d
d c d

z z

d

z d



 






 



 


 





 

   

 



 



 




 






 



   


  





 



 

for  
11 0   .  If  1,

2z E  , then we get:  
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11
1, 1,
2, 2,

1, 1,

2, 2, 2 1

1,1

1
( ) ( ) , (4.10)

| |
R R

R R

RE E

d
J E J E

dz z




  

 





 
 

  

for  
1 0   , and we have:  

1

1, 1,
2, 2,

11, 1,

2, 2, 2

1,

| | 1
( ) ( ) , (4.11)

R R

R R

RE E

z d
J E J E

dz

 

 



 




 


  

for 
11 0.    From the inequalities (4.6)-(4.11), we conclude that  

*
1

2
1, 1,

, , 1
1 1,

1
( ( ) ( ) , (4.12)j R j R

j R

J E J E
d



 




  

where  
1 1: max{ ,0}  . By the relation (25) and Lemma 2.2 in [4], we write the inequality (4.12) in the 

following form:  

* *
1 1

2
(1 )1, 1,

, ,

1

( ( ) ( ) , (4.13)j R j R

j

J E J E n
  



  

where  

1 1

1

1

max{ ,1}, if 0 2,
ˆ

2, 2.if

 




 
 


 

Case 2. Let  
2z L  and ( )w z   .By changing the variable ( )   in the integral (4.5), we have:  

,
,

2 2
,

,2
, 1 , 1

| ( ) |
: ( ). (4.14)

| ( ) ( ) | ( ) ( )i
i
j R

i

n j R

i j i jF i

d
J J F

w w


 

 



 


 

   
   

 

Now, we estimate the integrals  ,

,( )i

j RJ F    in (4.14). First, we assume that  2,

1z E   . Then, by the relation 

(25) and Lemma 2.2 in [4], we have:  

2
2, 2,

1, 1,

2
2, 2,

1, 1,

2
2, 2,

1, 1,

2, 2,

1, 1, 2

2

2

2

21

2,

| ( ) |
( ) ( )

| ( ) ( ) | ( ) ( )

( ( ), )

| ( ) ( ) | ( ) ( ) (| | 1)

.
( ) ( ) (| | 1)

R R

R R

R R

R R

F F

F F

F F R

d
J F J F

w w

d L d

w w

d

d w







 

 

 

  



 

 

 

 

 










 

   




    


  







 

We estimate only the integral over  2,

1, RF   , since the other estimate is similar. By using the inequality  

2 21 1

2, 2, 2, 2,( ) ( ) min{ , ( ( ), )} min{ , } ,R R R Rw d d L d d d
         

we have  
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2 22
2, 2,

1, 1,

12
1 2

1 12 2
1 12 22, 2,

1, 1,

2 1 2(1 )1
2,2,

2

2 3

2, 2

(| | 1)( ) ( ) (| | 1)

.

| | (| | 1) (| | 1)

R R

R R

RF FR

F FR

d d

dd w

d d
n

z z





 

 

 

 

 

 

 

 





 

  

  



  

  

  

 

   

So that, we get:   

12
1 2

22, 2,

1, 1,( ) ( ) . (4.15)R RJ F J F n







   

The same conclusion in (4.15) can be drawn for the case  2,

2z E   , by similar arguments. 

Now, assume that  2,

1z E  . If  
2 0   , then  

2
2, 2,

2, 2,

22
1 22, 2,

2, 2,

2
1 2

2
1 22,

2,

2, 2,

2, 2, 2

2

2
2

2,
2, 2

1

2

| ( ) |
( ) ( )

| ( ) ( ) | ( ) ( )

( ( ), ) | | (| | 1)

,

(| | 1)

R R

R R

R

R R

F F

RF F R

F

d
J F J F

w w

d d

d d L z z

d
n

















 

 

 

 





 

 





 










 

   

  





 



 

and if  
21 0    , then we get:  

2, 2,
2, 2,

2, 2,

2, 2, 2 2
( ) ( ) .

( ( ), ) (| | 1)
R R

R R

F F

d d
J F J F n

d L

 

  

  
    

In the case  2,

2z E  , if  
2 0   , then we get:  

2 2
2, 2 ,

2 , 2 ,

22 2
1 12 22, 2 ,

2 , 2 ,

22 2
1 12 22, 2 ,

2 , 2 ,

22 2
1 12

2, 2,

2, 2, 22

2, 2,

2

2, 2 2, 2

2

1

( ) ( )
(| | 1)

| | (| | 1) | |

(| | 1) (| | 1)

R R

R R

R R

R R

R RF F

F FR R

F F

d d
J F J F

d d

d d

z z z z

d d

n n

 

 

 

 

 

 

 

 



 



 

 

 



  



  



 

 



 





 




  



 



 

 

 

2
1
,



 

and if 21 0    , then we have:  

2
1 2

2
1 22, 2, 2,

2, 2, 2,

12, 2,

2, 2, 2 2

2,

( ) ( ) .
(| | 1) (| | 1)

R R R

R R

RF F F

d d d
J F J F n n n

d
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Consequently, if  𝑧′ = 𝐿2, we obtain:  

*
2

1 2
12, 2,

2, 2,( ) ( ) , (4.16)R RJ F J F n



   

where  𝛾2
∗ = max{𝛾2, 0} . If we put the obtained results (4.15) and (4.16) in (4.14), we get the following 

inequality for the case  
2z L  :  

* 12, 2
1 2

2
, (4.17)nJ n

 








 

Where 𝛾2,𝛼2
∗ = max{𝛾2, −𝛼2}. 

For the general case, that is  𝑧′ = 𝐿  , from (4.13) and (4.17), we have:  

* 12, 2* *
11 2

2(1 )
. (4.18)nJ n n

 

 





  

Finally, if we put the estimation (4.18) in (4.3), we obtain the desired result. 

 

4.2. Proof of Theorem 2.5 

Proof. Suppose that  
1 2( ; )PDS f  for some 

10 2    and  21
( ) ,f x cx




2 0;  ( )h z be defined as in 

(1.1).Throughout this work, we will take  11
n

R    . Let  , 1 ,j j m n    be the zeros (if any) of  

( )nP z lying on  . Lets define the function Blaschke with respect to the zeros  j of the polynomial  

( ) :nP z  

1

( ) ( )
( ) :  ,  . (4.19)

1 ( ) ( )

m
j

m

j j

z
B z z

z





 
 

 
  

It is easy that the ( ) 0m jB   , ( ) 1mB z   at z L and ( ) 1mB z  at .z  

For any 0p  and z let us set:  

 
 

/2

, 1
: . (4.20)

( ) ( )

p

n

n p n

m

P z
T z

B z z

 
  

 
 

The function  ,n pT z is analytic in , continuous on  ,  , 0n pT   and does not have zeros in . . We 

take an arbitrary continuous branch of the  ,n pT z and for this branch, we maintain the same designation. 

Cauchy integral representation for the unbounded region   gives:  

   
1

, . (4.21)
2

n n

L

d
T z T z

i z




 
  

  

Since  ( ) 1,  for ,L  from (4.19) we have: 
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( 1) ( 1)

2 2
/2 /2 /2( ) ( )

. (4.22)
2 2 ( , )

p n p n

p p p

n n n

L L

z d z
P z P P d

z d z L


  

  

 

 
 

   

Denote by: 

   
2

/2 /2

1

: . (4.23)
i

p p

n n n

iL L

A P d P d   


    

Multiplying the numerator and denominator of the integrand by 1/2

0 ( )h 
2 /2

1

,
j

j
j

z





   after applying the 

Holder inequality, from  (4.23) we obtain: 

 

1/2

1/2
2

2
1

1

1/2

1/2/2 /2 1 2

( ) ( ) (4.24)

: ,

ii i

i
i

p

n n

i L L
i

i

p p

n n n np p

L i

d
A h P d

z

d
P P J J

z






  











 
   

     
    

 

 
    
  

  



 

since the points 
1z  and 

2z  are distinct and where 

: ,  1,2. (4.25)
j

i

i

n

L j

d
J i

z





 


  

Taking into consideration notations where we had given in beginning section, estimation (4.24) can be 

written as following: 

 
2

1/21/2/2 /21 2 , ,

,1 ,2

1

: ,
p p i i

n n n n n n np p
i

A P J J P I I 



       

where 

,

, , ,

, ,: ( ) : , , 1,2. (4.26)
i

i
k

i i i

n k n k k

E i

d
I I E i k

z






    


  

According to (4.22) and (4.23), it is sufficient to estimate the integrals  ,

,

i

n kI   for each  1,2i    and  

1,2.k   

Given the possible values of  ( 1 0, 0, 1,2)i i i i        , we will consider the estimates for the ,

,

i

n kI    

separately. 

Let  
1 0   and  

2 0.    In this case for the integral  
1

,2nJ  , we get: 

1
1,
1

1,

,1

1

(4.27)n

E

d
I

z
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1 1, 1

1

1

1

1,1 1
1,

1 1,2

1

1, 1

10

1

1, 1

1, 1
,2 1

1

1

, 1,

1, 1 1;

, 1,

: ln , 1,

1, 1 1.

R

R

R

c d

R

l R

n d

c dE

dds

s

d
d ds

I
sz







 























 


  

 


 
 

  



 

 

Similar estimate for the integral  Jn
2

 : 

2 2, 2

2 2
2,
1

1

2, 2, 2

,1

202

, 1,
(4.28)

1, 1 1;

Rc d

R

n

E

d dds
I

sz



 

 






 

 
   

   

 

2

2

2,2 2
2,

2 2,2

1

2, 2

2, 1
,2 2

2

2

, 1,

ln , 1,

1, 1 1.

R

R

l R

n d

c dE

d
d ds

I
sz



 

















 


 
 

  

   

Let  
1 0   and  

2 0.   Then, analogously to the (4.27) and (4.28), we get:  

1 1

1,
1

1 1

1,
2

( ) ( )1, 1

,1 1 1, 1

( ) 11,

,2 1 1

1, (4.29)

1;

n n

E

n

E

I z d d mesE

I z d l

 

 

 

 





 

  

 

 




 

 

2 2

2,
1

2 2

2,
2

( ) ( )2, 2,

,1 2 2, 1

( ) 12,

,2 2 2

1, (4.30)

1.

n R

E

n

E

I z d d mesE

I z d l

 

 

 

 





  

  








 

Therefore, in this case, from (4.26) - (4.30), we obtain:  

1 11 2
2 2

1
2

1, 2 ,

1, 2, 1 2

/2
1 1

1 2

1 2

, , 1,

(4.31)ln ln , 1,

1, 1 , 1.

R R

R R

p

n n p d d

d d

A P

 

 

 

 

 

  



     
 



  

 

Comparing (4.22), (4.23) and (4.31), we have: 

 
 

1/
0

,1 1

/2
( ) , (4.32)

( , )

p

n n

n np p

A
P z c P z

d z L
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where  ( , , ) 0,ic c G p     is the constant  independent from  n  and ,z and   

1 2

1, 2,

1 1

1, 2, 1 2

0 1 1
1 2,1

1 2

, , 1,

ln ln , 1,: (4.33)

1, 1 , 1.

R R

R R

d dn

d d

A

   

 

 

   




   


   

 

According to [8, Lemma 1.1] and Lemma 3.2,, for the point 
1z we get 

*
1

1, . (4.34)Rd n
  

For the estimate  
2, ,Rd  let's set: 

2,R Rz L  such that  2, 2 2, ;R Rd z z L      such that  

2

2, 2,( , ) : ( , );R Rd z L L d z L   2z 2

2 2 2,: : RL z c d      . Under these notations, from Lemma 3.1, we 

obtain: 

2 1

2, 2, 2 2,: ( , ) . (4.35)R R R Rd d z L L z z d          

Hence,   
1

1

2, .R Rd d
   On the other hand, according to Lemma 3.2 and [8, Lemma 1.1], we get:  1 .R n

d    

Therefore,  

1
1

2, . (4.36)Rd n 

  

Comparing (4.32)-(4.36), we get: 

 
1,1

/2
( ) , ,

( , )

nn

n np p

A
P z P z z

d z L


   

where   

 

*( 1) 11 2
(1 )

1

1 2

,1
1 2

1 2

, , 1,

: (4.37)
ln , 1,

1, 1 , 1,

p p

pn

n n

A
n

  

  

 

 

 




 



   




  

 

and we complete the proof .  

The proof of Theorems 2.2, 2.3 and 2.4  it is not difficult to obtain from the scheme of the proof of 

Theorem 2.1. 
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