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Abstract 
 
This study presents two methods for rapidly and effectively determining the photovoltaic 
(PV) potential of building roofs in urban areas using aerial photographs and point cloud 
data. In the first method, the Segment Anything Model (SAM) and Contrastive Language 
Image Pre-Training (CLIP) models are used to detect roof surfaces and obstacles from aerial 
photographs. In the second method, the Random Sample Consensus (RANSAC) and 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithms are 
employed to identify roof surfaces from Light Detection and Ranging (LiDAR) point clouds. 
Through the first proposed method, the performance of current deep learning approaches 
in 2.5D PV potential analysis is investigated, while the second approach examines the 
performance of 3D PV potential analysis compared to the 2D approach. In PV potential 
analysis, the Photovoltaic Geographical Information System (PVGIS) Application 
Programming Interface (API) was utilized. The analysis is conducted based on roof 
parameters obtained through both proposed methods. In building detection, the first 
approach achieved an Intersection over Union (IoU) score of 94.29%, whereas the second 
approach attained an IoU score of 91.23%. 
 
Keywords: Deep learning, Photovoltaic potential, Point cloud, Roof segments, Semantic 
segmentation 
 

Özet 
 
Bu çalışma, kentsel alanlarda bina çatılarının fotovoltaik (FV) potansiyelinin hava 
fotoğrafları ve nokta bulutu verileri üzerinden hızlı ve etkin bir şekilde belirlenmesi için iki 
yöntem sunulmaktadır. İlk yöntemde, hava fotoğraflarından çatı yüzeyleri ve engellerin 
tespiti için Segment Anything Model (SAM) ve Contrastive Language Image Pre-Training 
(CLIP) modelleri kullanılmaktadır. İkinci yöntemde ise Light Detection and Ranging (LiDAR) 
nokta bulutlarından çatı yüzeylerinin tespitinde Random Sample Consensus (RANSAC) ve 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algoritmaları 
kullanılmaktadır. Çalışmada önerilen ilk yöntem sayesinde güncel derin öğrenme 
yaklaşımlarının 2.5B FV potansiyel analizindeki başarımı araştırılırken, önerilen ikinci 
yaklaşım ile 3B FV potansiyel analizinin 2B yaklaşıma göre başarımı ele alınmaktadır. FV 
potansiyel analizinde, PhotoVoltaic Geographical Information System (PVGIS) Application 
Programming Interface (API)’si kullanılmıştır. Önerilen her iki yöntemle elde edilen çatı 
parametreleri üzerinden analiz edilmektedir. Bina tespitinde, ilk yaklaşım %94.29 IoU skoru 
elde ederken ikinci yaklaşım ile elde edilen IoU skoru %91.23 olmuştur. 
 
Anahtar kelimeler: Çatı yüzeyi, Derin öğrenme, Fotovoltaik potansiyel, Nokta bulutu, 
Semantik segmentasyon
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1. Introduction 
 
Cities, now home to over 55% of the global population, are central to addressing the challenges posed by energy 
consumption and carbon dioxide (CO2) emissions, which they contribute to at an alarming rate—approximately two-
thirds of the global total. The rapid increase in these emissions is largely driven by population growth, urbanization, and 
increased economic activities within these densely populated areas (Ranalder et al., 2021). In response to these 
challenges, numerous cities and local governments have set ambitious goals to develop net zero-carbon emission 
buildings, aiming for greater energy self-sufficiency (Li & Han, 2022). The increasing feasibility of photovoltaic (PV) 
systems is supported by the widespread availability of unused urban rooftops, combined with declining costs and 
simplified installation processes, making solar energy a key solution to urban energy demands (Minelli et al., 2023, 
Huang et al., 2022). Due to the significant potential of rooftop solar PV systems, accurately estimating the total installed 
solar PV capacity and power generation is essential for guiding policymakers and stakeholders (Mao et al., 2023). 

Satellite and aerial imagery play a crucial role in various geospatial applications, including the identification of land 
cover types (Kavzoglu et al., 2024; Sahak et al., 2023; Topaloğlu et al., 2022; Yagmur et al., 2022), road mapping (Ozturk 
et al., 2022) and building extraction (Comert & Kaplan, 2018; Tonbul & Kavzoglu, 2020). The introduction of LiDAR 
technology opened new frontiers in the remote sensing community, enabling more precise and efficient road mapping 
(Ma et al., 2022; Ozturk et al., 2023; Zhao et al., 2019), forestry (Özdemir et al., 2021), land cover (Akumu & Dennis, 
2023; Hansch & Hellwich, 2021) mapping applications. In recent years, the growing demand for PV energy production 
has made PV potential analysis a critical area of research where advancements in the remote sensing technology made 
it a very viable tool for renewable energy applications (Huang et al., 2022; Lan et al., 2021; Stack & Narine, 2022; Zhong 
et al., 2021). PV potential studies can be broadly classified into 2D, 2.5D, and 3D.based on the data type used (Özdemir 
et al., 2023).  2D approaches utilize remotely sensed imagery acquired from aerial or satellite platforms to detect and 
segment roof surfaces using image processing or machine learning techniques. This approach assumes all building roofs 
as flat and uninterrupted surfaces, which leads to an overestimation of PV potential and makes it unsuitable for accurate 
applications. In contrast, 2.5D approaches aim to mitigate the inaccuracies of 2D methods by employing Digital Surface 
Models (DSMs) derived from point clouds or 3D city models. Similar to 2D approaches, building roofs are extracted using 
image processing or machine learning techniques. The extracted roof boundaries are then matched with the DSM to 
acquire tilt and azimuth values, which are subsequently used for PV potential estimation. While 2.5D techniques offer 
a more accurate PV potential estimation compared to 2D approaches, converting 3D data to 2.5D results in information 
loss, along with increased processing time. 3D approaches, on the other hand, employ 3D city models or point clouds 
directly without any data conversion, resulting in more accurate and effective PV potential estimates. However, 
acquiring and processing LiDAR data is a complex task due to the irregular nature of point clouds, and not all city-scale 
3D models are readily available. 

This study presents two approaches for analyzing rooftop PV potential, one utilizing 2.5D deep learning techniques 
and the other employing 3D point clouds. The proposed methods were tested on the ISPRS Vaihingen dataset. In the 
first approach, zero-shot segmentation of the aerial imagery of the study area was carried out with Segment Anything 
Model (SAM), which is a state of the art Visual Foundation Model (VFM).  Subsequently, the Contrastive Language-Image 
Pre-Training (CLIP) model was employed to zero-shot labelling of the extracted image segments. SAM was then re-
applied to each building segment to detect rooftop surfaces and any obstacles on them. The second approach involved 
using LiDAR point clouds of the study area, where roof surfaces were identified through the RANSAC and DBSCAN 
algorithms employing an open source QGIS plugin called Solar Potential Analyzer (SPAN) developed by (Özdemir et al., 
2023). In determining roof surface parameters, the first method calculates slope, aspect, and area of individual rooftops 
using the DSM, while the second method directly derives these parameters from the point cloud data. For the PV 
potential analysis of roof surfaces, the PVGIS database (https://re.jrc.ec.europa.eu/pvg_tools/en/) was utilized. Queries 
generated based on the calculated rooftop parameters and geographic locations were sent through an API to the PVGIS 
database to retrieve the daily, monthly, and annual PV production data for each rooftop surface. In the roof 
segmentation stage, the first approach using on SAM and CLIP achieved an IoU score of 97.94% on the first study area 
and 94.29% IoU score in the second study area. For the second approach, IoU scores of 76.04% were achieved on the 
first study area, followed by scores of 91.23% on the second study area. Both approaches yielded successful results in 
PV potential analysis and demonstrated scalability, making them suitable for applications ranging from individual 
buildings to city-wide scales. 
 

2. Material and methods 
 
This section provides a detailed description of the methods and datasets used in the segmentation of rooftop surfaces 
and the analysis of PV potential from aerial imagery and point clouds. Initially, the study areas and datasets employed 
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for PV potential analysis are introduced. Following this, the algorithms and deep learning models utilized for rooftop 
surface segmentation from aerial imagery and point clouds are presented, along with a step-by-step explanation of the 
segmentation process. The accuracy metrics used for evaluating the segmentation results are also introduced. Finally, 
the methodology employed for conducting the PV potential analysis of the identified rooftop surfaces is described. 
 

2.1. Dataset and Study Area 
 
The ISPRS Vaihingen dataset was collected during flights conducted in 2008 in the Vaihingen region of Germany by the 
German Association of Photogrammetry and Remote Sensing (DGPF) to test digital aerial cameras (Cramer, 2010). The 
dataset consists of BGNIR (Blue, Green, and Near-Infrared) orthophotos with a spatial resolution of 8 cm, a LiDAR point 
cloud with a density of approximately 6.7 points/m², and a DSM with a spatial resolution of 25 cm derived from the 
point cloud. For this study, two sub-areas from the Vaihingen dataset, referred to as Area 1 and Area 2, were selected 
(Figure 1). Area 1, measuring 76 × 70 meters, contains six buildings with similar roof types but varying sizes and few 
rooftop details. In contrast, Area 2, measuring 86 × 64 meters, contains four buildings with more complex rooftop 
surfaces and numerous rooftop details compared to Area 1. 
 

 
 

Figure 1. Selected study areas from the ISPRS Vaihingen dataset 
 

2.2. Roof Surface Segmentation Pipeline 
 
Two distinct methods have been proposed for the detection of roof surfaces. The first method involves using Vision 
Foundation Models (VFM) on aerial photographs to identify roof surfaces, employing the Segment Anything model and 
CLIP VFM during this phase. The second method detects roof surfaces from aerial LiDAR point clouds using rule-based 
approaches with RANSAC and DBSCAN algorithms. The PV potential of the identified roof surfaces has been calculated 
using the PVGIS database. The proposed methods are detailed in the following sections with a comprehensive analysis 
of each approach's methodology and outcomes. 
 
2.2.1. Roof Surface Segmentation from Aerial Imagery 

 
Orthophoto images have been segmented individually for each roof surface using the "Segment Anything Model" and 
"Contrastive Language-Image Pre-Training (CLIP)" models. The "Segment Anything Model" has been developed by META 
AI as a foundational model for image segmentation, trained on the SA-1B dataset (Kirillov et al., 2023).  
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The SAM model, incorporating a Vision Transformer (ViT), is capable of generating segmentation masks for any type of 
object within an image. The operation of the SAM model for image segmentation involves either placing points on the 
object to be segmented or drawing a bounding box around it. Additionally, for fully automated segmentation, the model 
can also perform this process by placing points on the image at predetermined intervals. Fundamentally, the SAM model 
comprises three main components: an Image Encoder, a Prompt Encoder, and a Mask Decoder (Figure 2). 
 

 
 

Figure 2. Segment anything model architecture (Kirillov et al., 2023) 
 

CLIP (Contrastive Language–Image Pretraining), developed by OpenAI, is a deep learning model capable of learning 
relationships between language and image data (Radford et al., 2021). The CLIP model is designed to establish 
meaningful connections between text and images and to apply this knowledge across broad applications. One of the 
key features of the CLIP model is zero-shot learning, allowing it to adapt to new tasks that it has not encountered during 
training. The CLIP model can perform image-text matching using instructions given in natural language. The architecture 
of CLIP utilizes two separate networks to process language and image data: a Vision Transformer (ViT) model and a 
language model (a Transformer-based text encoder) (Figure 3). CLIP enhances the learning of semantic congruence 
between images and associated text by bringing the image and its related text closer together. The training of the CLIP 
model employs a contrastive loss function that aims to maximize the difference between positive and negative 
examples. A positive example represents a match between an image and a correctly describing text, while a negative 
example denotes a match between an image and a randomly selected misleading text. 
 

 
 

Figure 3. CLIP model architecture (Radford et al., 2021) 
 

The aerial photographs of the study area were conditioned to segment all objects within the photographs using the 
SAM model. Subsequently, all the generated segments were classified into two categories—building and non-building—
based on the query “Is this a building?” sent to the CLIP model. Segments labeled as buildings were further segmented 
from the aerial photographs and then re-submitted to the SAM model to ensure segmentation of all objects again. 
Segments smaller than 100×100 pixels were discarded, leaving only roof surfaces. After the segmentation process of 
buildings and roof surfaces from the images was completed, azimuth, slope (through DSM), and area information for 
each roof surface were calculated. Using the Global Horizontal Irradiance (GHI) data obtained via the PVGIS API, a PV 
potential estimate was performed with a module developed in a Python environment. The workflow of the applied 
approach is depicted in Figure 4. 
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Figure 4. Detection of roof surfaces from aerial photographs and calculation of PV potential 
 
2.2.2. Roof Surface Segmentation from Point Clouds 
 
In the segmentation of roof surfaces from point clouds, we employed SPAN (Özdemir et al., 2023) which has a simple 
yet highly effective two-step methodology using the well-known and widely used algorithms: Random Sample 
Consensus (RANSAC) (Fischler & Bolles, 1981) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 
(Ester et al., 1996) (Figure 5). 
 

 
 

Figure 5. Detection of roof surfaces from point clouds and calculation of PV potential (Özdemir et al., 2023) 
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In the first step of the SPAN plugin, the input LiDAR point cloud is segmented on a building-by-building basis with the 
help of the DBSCAN clustering algorithm. This process enables the effective and efficient identification and 
differentiation of each building at an urban scale. After the building segments are created, the roof surfaces of each 
building are detected using the RANSAC algorithm. During the phase of separating roof surfaces with the RANSAC 
algorithm, planes fitting different surfaces of the roof segments are created. However, occasionally, one of the planes 
generated by RANSAC may overlap with multiple roof segments. In such cases, the DBSCAN clustering algorithm 
intervenes to determine the largest segment among the overlapping ones. Subsequently, the remaining points are 
returned to the original point cloud and reprocessed in the next iteration. It's worth noting that the SPAN plugin can 
only process point clouds containing roof points, which requires prior segmentation of the point clouds. 
 

2.3. PV Potential Analysis 
 
There are various databases, software, and web services available for PV potential analysis, such as PVGIS, Solar Monkey 
(SM), and Global Solar Atlas. In this study, the PVGIS database developed by the European Commission was utilized, 
which has been proven to produce results very close to on-site observations (Moudrý et al., 2019; Psiloglou et al., 2020; 
Suri et al., 2008). PVGIS is a comprehensive and up-to-date database for estimating PV potential, taking into account 
factors such as surface slope, azimuth, solar panel technology, system loss, and the peak power of the PV panel. The 
PVGIS database also has the capability to respond to queries containing information such as geographic location, slope, 
and orientation sent over its Application Programming Interface (API), providing data on Global Horizontal Irradiance 
(GHI) and PV production. 

In this study, the PV potential analysis of roof surfaces detected from aerial photographs and point clouds was 
conducted using the PVGIS database. For both detection methods, a query file was created by adding solar radiation 
database information, PV technology, installed peak power, system loss, and economic parameters to the tilt, azimuth, 
and geographic location information of the detected roof surfaces, and sent to the database. PVGIS servers respond to 
the query by creating a JSON file that provides comprehensive PV information for each roof surface. The PV potential 
of each roof surface is calculated using the PV information and the roof surface area obtained from the JSON file. 
 

2.4. Accuracy Assessment 
 
The evaluation of the proposed approaches was conducted by comparing automatically extracted roofs from both aerial 
imagery and point clouds with reference data, utilizing overall accuracy, precision, recall, F1-score and IoU metrics as 
shown in Equations (1), (2), (3), (4) and (5). 
 

 
𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 (1) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 (2) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 (3) 

 
𝐹1𝑆𝑐𝑜𝑟𝑒 =

2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (4) 

 
𝐼𝑜𝑈 =

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 (5) 

 
In Equations (1), (2), and (3), an element identified as an object that matches an object in the reference data is 

classified as a true positive. An element that matches an object in the reference but is mistakenly classified as 
background is deemed a false negative. Conversely, an element incorrectly identified as an object when it does not 
match any object in the reference is considered a false positive. Lastly, a true negative is defined as an element that is 
correctly identified as background in both the classified and reference data. The Intersection over Union (IoU) metric, 
also known as the Jaccard Index, quantifies how much the predicted object overlaps with the ground truth object (5). 
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3. Results 
 
In this section, we thoroughly examine the segmentation results obtained from both developed approaches. 
Additionally, we evaluate the PV potential analysis outcomes, offering insights into the effectiveness and precision of 
the methodologies used. 
 

3.1. Roof Surface Segmentation from Aerial Imagery with VFMs 
 
Although the SAM model is trained solely on the RGB (Red, Green, Blue) color space, the segmentation carried out on 
aerial photographs in the NIR-RGB (Near-Infrared, Green, Blue) color space from the ISPRS Vaihingen dataset has 
successfully identified many segments according to the model's internal performance metrics, IoU and stability score. 
The internally calculated segmentation accuracies of the SAM model are approximately 99% IoU and ~98% Stability 
Score for Study Area 1 and 2. These results demonstrate that the SAM model can effectively detect object segmentation 
boundaries even in different color spaces. 
 

 
 

Figure 6. Roof segmentation results: (a) SAM segmentation results, (b) Extracted segments labelled with CLIP,  
(c) Final roof surfaces extracted with SAM 

 
However, since the SAM model does not possess semantic information about the segments it produces, the 

identified segments need to be semantically interpreted. At this stage of semantically labeling the SAM segments, the 
CLIP model was utilized. With CLIP, it was verified whether a segment produced by the SAM model belonged to the roof 
class or not. Like the SAM model, the CLIP model is also trained only on RGB color space images. However, as shown in 
Figure 6, CLIP has successfully labeled building segments with approximately 99% Text Probability Score. Moreover, at 
this stage, it is more clearly visible that the SAM model can almost perfectly detect the actual building boundaries. 
 

Table 1. Roof segmentation accuracy of the SAM and CLIP models 
 

 Study Area 1 Study Area 2 

Precision 98.71% 95.00% 

Recall 99.21% 99.21% 

F1 Score 98.96 % 97.06% 

IoU 97.94% 94.29% 

Overall Accuracy 99.48% 98.65% 
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In the last step of the analysis, segments identified as buildings by the CLIP model were reintroduced into the SAM 
model to carry out the detection of individual roof surfaces and any obstacles present on them. The detected obstacles 
on the roof surfaces were subsequently removed from the PV potential analysis to improve the accuracy of the 
estimation. The input images were exclusively composed of building roofs, and the SAM model was specifically 
conditioned to segment every detail within these images. Under these conditions, the SAM model demonstrated 
remarkable segmentation capabilities, achieving an overall accuracy exceeding 92.5%, an IoU of 91.2%, and an F1 score 
of 97.6%.  

 
Table 2. Roof surface segmentation accuracy of the SAM model 

 

 Study Area 1 Study Area 2 

Precision 100% 100% 

Recall 96.08% 95.36% 

F1 Score 97.99% 97.61% 

IoU 96.08% 91.23% 

Overall Accuracy 92.54% 95.36% 

 

3.2. Roof Surface Segmentation from Point Cloud using Rule Based Approaches 
 
The proposed two-step approach for extracting roof surfaces from point clouds has achieved successful results in 
identifying roof surfaces within the study areas (Figure 7). This method demonstrated significant effectiveness, 
achieving an overall accuracy of over 92.5% and an F1 score of more than 90.7%. Additionally, with an accuracy of over 
76.0% in the IoU metric, this approach has proven to be highly effective for roof surface segmentation from point clouds 
(Table 3). 
 

 
 

Figure 7. Point cloud roof surface segmentation results 
 

Table 3. Accuracy assessment of roof surface extraction from point cloud 
 

 Study Area 1 Study Area 2 

Precision 84.52% 100% 

Recall 84.52% 95.36% 

F1 Score 90.76% 97.61% 

IoU 76.04% 91.23% 

Overall Accuracy 92.54% 95.36% 
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3.3. Photovoltaic Potential Analysis 
 
The PV potential analysis was conducted using the PVGIS database through the PVGIS API. The tilt and azimuth 
information for each roof surface was calculated from the roof surfaces extracted using the two proposed approaches. 
For roof surfaces detected from aerial photographs, the tilt and azimuth data were calculated using the DSM, whereas 
for roof surfaces identified from point clouds, these measurements were directly computed from the point cloud data 
itself. In the queries sent to the PVGIS database, the PVGIS-SARAH 2 was selected as the solar radiation database. 
Crystalline Silicon panels, commonly used in current PV panel technology (Ballif et al., 2022; Kettle et al., 2022), were 
chosen as the installed PV panel. The system loss parameter was set at the default value of 14%. In the queries sent to 
the PVGIS database, geographic location data for each roof surface was also included. Additionally, the effect of the 
horizon was considered in calculating the annual PV potential. 

In the final stage of the analysis using the SAM model, the roof surfaces obtained were overlaid with the DSM 
corresponding to the study areas to extract elevation data for each roof surface from the DSM. Subsequently, this 
elevation data was utilized to separately calculate the slope and azimuth for each of the roof surfaces. The derived slope 
and azimuth data were then employed to estimate the annual irradiation received by the roof surfaces and the potential 
PV production values, utilizing the PVGIS database via the PVGIS API (Table 4).  
To avoid presenting multiple results of the same roof surface in Table 4 due to the fragmented segmentation of the 
LiDAR point cloud in Study Area 2 second roof surface of Building 1 we opted to merge the PV estimation results to 
provide a clearer presentation of the PV potential estimation. 
 

Table 4. Yearly PV output (kWh) of extracted roof surfaces with the SPAN and SAM+CLIP approach 
 

 Study Area 1   Study Area 2  
  SAM+CLIP SPAN Difference (%)   SAM+CLIP SPAN Difference (%) 

 B
u

ild
in

g 
1

 Surface 1 47608,47 46748,48 1,84 

B
u

ild
in

g 
1

 

Surface 1 77220,97 83968,96 -8,04 
Surface 2 9414,16 6329,61 48,73 Surface 2 64663,95 47604,74 35,84 
Surface 3 43545,17 47245,33 -7,83 Total 141884,92 131573,70 7,84 
Surface 4 9857,67 8317,07 18,52     
Total 110425,47 108640,49 1,64      

     

B
u

ild
in

g 
2

 

Surface 1 36731,13 40929,42 -10,26 

B
u

ild
in

g 
2

 

Surface 1 47608,47 48581,24 -2,00 Surface 2 42866,74 36607,20 17,10 
Surface 2 9414,16 6726,08 39,96 Total 79597,87 77536,62 2,66 
Surface 3 43545,17 46039,98 -5,42     
Surface 4 9857,67 7967,23 23,73      

 Total 110425,47 109314,53 1,02 

B
u

ild
in

g 
3

 

Surface 1 36518,81 35596,52 2,59 
     Surface 2 43365,19 45332,24 -4,34 

B
u

ild
in

g 
3

 

Surface 1 9521,69 6617,57 43,89 Total 79884,00 80928,76 -1,29 
Surface 2 17180,84 19324,83 -11,09     
Surface 3 8709,03 5180,83 68,10      
Surface 4 17990,26 18521,33 -2,87 

B
u

ild
in

g 
4

 

Surface 1 55807,46 28638,36 94,87 
 Total 53401,82 49644,57 7,57 Surface 2 - 30269,61  
     Total 55807,46 58907,97 -5,26 

B
u

ild
in

g 
4

 

Surface 1 9527,27 5681,14 67,70     
Surface 2 17249,18 18942,32 -8,94      
Surface 3 8756,91 8934,96 -1,99      
Surface 4 18016,21 14327,13 25,75      

 Total 53549,57 47885,55 11,83      
          

B
u

ild
in

g 
5

 

Surface 1 9521,69 5536,21 71,99      
Surface 2 17180,84 16605,51 3,46      
Surface 3 8709,03 7416,15 17,43      
Surface 4 17990,26 18855,86 -4,59      

 Total 53401,82 48413,72 10,30      
          

B
u

ild
in

g 
6

 

Surface 1 13238,77 2713,95 387,81      
Surface 2 - 8968,40 -      
Surface 3 13099,01 2894,75 352,51      
Surface 4 - 6880,43 -      

 Total 26337,78 21457,53 22,74      
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For both study areas, the two approaches yielded similar results in PV potential estimation regarding overall building 
PV production. However, inspection of individual roof surfaces revealed greater differences in estimated PV production 
for some roofs. These discrepancies arise from the characteristics of the data and the methods applied. Point cloud data 
can more accurately determine the height of objects in the scene, enabling precise determination of azimuth and tilt 
values. Conversely, accurately identifying object boundaries with linear formations, such as buildings, from point clouds 
is challenging due to point sampling deficiency. Additionally, fitting a plane to a roof surface using the RANSAC algorithm 
sometimes results in surfaces that do not exactly match the actual roof. In image-based roof surface extraction, 
limitations such as occlusions and shadows affect accuracy. Occlusions lead to inevitable loss of surface boundaries, 
while shadowed roof segments were relatively successfully handled by the SAM. Despite these setbacks, both 
approaches estimated PV potential values within a 20% discrepancy, with most buildings exhibiting even lower 
differences. 
 

4. Discussion 
 
The integration of the SAM and CLIP models has enabled for accurate detection of building rooftops, their individual 
surfaces, and obstacles such as chimneys and windows, thereby providing a more precise basis for PV potential analysis. 
The SAM, trained on terrestrial RGB imagery, was successfully applied to aerial imagery in BGNIR format and achieved 
notable accuracy metrics for two different study areas. Specifically, for Study Area 1 and Study Area 2, roof and obstacle 
segmentation were completed with 92.54% and 95.36% overall accuracy, 96.08% and 91.23% IoU, and 97.99% and 
97.61% F1 scores, respectively. However, obstacles like chimneys sometimes included shadowed areas, slightly reducing 
the accuracy of surface area calculations. Optimal parameterization of the SAM model and the resolution of the input 
images, as well as careful prompt selection for the CLIP model, were found to be critical for achieving these performance 
levels. In terms of runtime, SAM required approximately one minute per image to complete segmentation using a T4 
GPU (including module and image loading), while Open CLIP completed segmentation in about two seconds per image 
segment on an A100 GPU and seven seconds on a T4 GPU. 

The RANSAC algorithm within the SPAN plugin was similarly effective for point cloud segmentation. It achieved 
comparable accuracy and quality metrics—with 92.54% and 95.36% overall accuracy, 76.04% and 91.23% IoU, and 
90.76% and 97.61% F1 scores for Study Area 1 and Study Area 2, respectively—demonstrating that it is both a reliable 
and computationally efficient method. However, factors like low point density and outliers on certain building roofs can 
negatively impact its accuracy. Results may be improved by employing higher-density point clouds or pre-processing 
steps to remove outliers. Unlike many existing methods that treat an entire building as a single roof surface and thus 
rely on a uniform tilt angle and azimuth, our approach evaluates each roof surface separately. This refinement enhances 
the accuracy of PV potential analyses and highlights the ability of the SPAN plugin for more accurate and detailed rooftop 
segmentation. 
 

5. Conclusion 
 
The proposed methods demonstrated a high level of effectiveness in PV potential analysis derived from both aerial 
imagery and LiDAR point clouds. The approach utilizing the SAM and CLIP successfully delineated rooftop surfaces and 
identified obstacles, enabling a more accurate estimation of PV potential. This outcome highlights the capacity of VFMs 
to support complex tasks, such as obstacle detection on rooftop surfaces. Similarly, the point cloud-based method 
efficiently extracted roof surfaces, reinforcing its potential as a reliable and robust alternative. 

Future research will focus on refining VFM-based rooftop extraction and minimizing reliance on auxiliary data for 
determining surface azimuth and tilt. This objective will be pursued by integrating VFM-based depth estimation 
methods. In parallel, considering the increasing accessibility and precision of LiDAR data, particularly its capacity to 
penetrate canopy cover, we plan to enhance the generalizability of the proposed workflow through the incorporation 
of deep learning strategies. Such improvements are expected to further advance the accuracy, scalability, and 
adaptability of PV potential assessments in diverse urban environments. 
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