
       

ECJSE Volume 13, 2026 101 

Research Article 

Optimizing Microservice Performance: A Software 
Configuration Management Changes and Time Series 
Analysis Framework 
 
Fatih BİLDİRİCİ1a, Savaş TAKAN2b, and Keziban SEÇKİN CODAL3c 

1 Ankara University, ASELSAN, Artificial Intelligence (Multidisciplinary), Ankara, Türkiye 
2 Ankara University, Dept. of AI and Data Engineering, Ankara, Türkiye 
3 Management Information Systems Department, Ankara Yıldırım Beyazıt University, Ankara, Türkiye 
 

fbildirici@ankara.edu.tr 

DOI: 10.31202/ecjse.1608747 
Received: 02.01.2025 Accepted: 06.04.2025 
How to cite this article: 
Fatih Bildirici, Savaş Takan, Keziban Seçkin Codal, “Optimizing Microservice Performance: A Software Configuration 
Management Changes and Time Series Analysis Framework", El-Cezeri Journal of Science and Engineering, Vol: 13, 
Iss: 1, (2026), pp. (101–111). 

ORCID:  a0000-0002-1234-5678, b0000-0003-2345-6789, c0000-0003-1967-7751 

 

Abstract The modern microservice architectures require agile configuration management to ensure optimal performance and 

reliability. Nevertheless, the dynamic and distributed nature of these systems makes it difficult to assess how configuration 

changes affect key performance indicators (KPIs) such as CPU utilisation, memory consumption, response time and error 

rates. In this article, we propose a time-series driven approach to analyse and optimise the impact of configuration changes 

in large-scale enterprise environments. As a first step, using correlation and regression analyses, we quantify the causal 

relationships between critical configuration parameters (cache size, thread pool size, and release complexity) and 

performance metrics. Then we apply time series modelling techniques (Prophet, ARIMA and an LSTM-based Autoencoder) 

to detect anomalies caused by misconfigurations and traffic fluctuations. The LSTM based Autoencoder outperforms 

traditional anomaly detection methods by achieving 22% higher sensitivity in detecting performance deviations. The system 

performance is further improved by integrating Bayesian Optimisation and reinforcement learning methods for automatic 

parameter tuning, showing up to 25% reduction in response times and 17.8% improvement in CPU utilisation. In addition, 

this work investigates deployment strategies such as blue-green and canary releases and their interaction with access 

processes. These findings underline the importance of data-driven configuration management for microservices and provide 

actionable insights to achieve increased system stability, lower operational costs, and rapid recovery from performance 

anomalies. 

Keywords: Software Configuration Management, Time-Series Analysis, Performance Optimization, 

Anomaly Detection, Bayesian Optimization.  

1. INTRODUCTION

Microservice architectures have become a dominant paradigm in modern software engineering, offering significant advantages 

in scalability, flexibility, and modularity compared to traditional monolithic structures [1]. By enabling services to be designed, 

deployed, and scaled independently, microservices enhance software development processes with increased agility, efficiency, 

and maintainability. However, the dynamic and distributed nature of these architectures introduces new complexities in Software 

Configuration Management (SCM), requiring more sophisticated and data-driven approaches to address challenges related to 

performance optimization and system stability [2]. For instance, recent work on microservice systems underlines the importance 

of anomaly detection and causal analysis to prevent cascading failures [3, 4]. Moreover, comparative studies have shown that 

methods like Prophet and LSTM can yield varying forecasting accuracies in other domains, such as oil production and sales 

forecasting, thereby highlighting the relevance of advanced time series techniques to microservice performance [5, 6]. Integrating 

these advanced analytical methods into SCM practices can significantly reduce error rates and improve overall resilience, making 

robust configuration management indispensable for enterprise-scale deployments. 

SCM provides a foundational framework for tracking configuration changes, evaluating their impacts, and maintaining the 

stability of software systems [7]. However, the dynamic interdependencies and high frequency of updates in microservice-based 

systems demand proactive, data-driven methodologies that go beyond traditional SCM practices [8]. Key configuration 

parameters, such as thread pool size, cache size, timeout values, and rate limits, directly affect system performance. Accurate 

modeling and effective management of these parameters are critical for achieving the scalability and reliability goals of 



Optimizing Microservice Performance: A Software… 

102   ECJSE Volume 13, 2026 

microservices [9]. Despite their importance, existing studies often focus on limited parameter sets or specific scenarios, leaving 

gaps in understanding the broader implications of configuration changes on system performance [10]. 

Time-series analysis provides a robust methodological foundation for modeling sequential data, identifying anomalies, and 

forecasting future trends [11]. In the context of software engineering, statistical models such as Prophet and SARIMA have been 

widely adopted to analyze critical performance metrics, including CPU utilization, memory consumption, response time, and error 

rates [12]. While Prophet excels in forecasting long-term trends and capturing seasonal patterns, it is limited in modeling the 

nonlinear complexities often present in microservice architectures [13]. Similarly, SARIMA effectively captures regular periodic 

patterns but struggles to represent the intricate dependencies and dynamic interactions within distributed systems. 

The recent advancements in deep learning, in particular Long Short-Term Memory (LSTM) networks and Autoencoder-based 

models, have emerged as powerful tools for modelling configuration changes and detecting anomalies [14]. Those approaches are 

effective in capturing non-linear dependencies and understanding the broader effects of independent configuration parameters on 

system performance. Empirical results show that LSTM-based methods can outperform traditional statistical approaches by 

offering significantly higher accuracy in detecting anomalies related to response time and memory consumption. That emphasises 

the critical value of deep learning in proactively determining performance risks in microservice environments. 

Evaluating the impacts of configuration changes on performance requires a long-term perspective. Frequent deployments, traffic 

fluctuations, and combined configuration changes in microservice architectures often lead to performance deviations that directly 

affect system stability and user experience [15]. In this context, a systematic framework for understanding and optimizing these 

impacts using time-series analysis is essential. 

This study introduces a novel framework that integrates time-series analysis into software configuration management to 

investigate the relationships between configuration changes and microservice performance. Prophet and SARIMA models were 

employed to model the effects of configuration changes on performance metrics such as response time, CPU utilization, and 

memory consumption. Furthermore, LSTM and Autoencoder-based approaches were applied to detect anomalies and identify 

performance deviations caused by configuration changes. Correlation analyses were conducted to establish causal relationships 

between configuration parameters and performance metrics. Additionally, the effects of rollout and rollback processes on system 

performance were analyzed, and strategic recommendations for their optimization were developed. 

The contributions of this study focus on the detailed analysis of the impacts of configuration changes on performance metrics. 

Prophet and SARIMA models demonstrated their effectiveness in forecasting the long- term impacts of configuration changes, 

while LSTM and Autoencoder-based anomaly detection methods proved valuable in early identification of performance 

deviations. The effects of traffic fluctuations and deployment strategies on system performance were thoroughly analyzed, and 

recommendations for optimizing rollout and rollback processes were presented. 

In conclusion, this study offers an innovative framework that integrates software configuration management with time-series 

analysis to model and optimize the performance impacts of configuration changes. By contributing to the development of more 

reliable, performance-oriented, and optimized configuration management processes in microservice architectures, this research 

provides valuable insights for both academic and practical applications. 

 

2. MATERIALS AND METHODS 

This study systematically examines the impact of configuration changes on the performance of microservice architectures 

through a rigorous methodological approach. Large-scale data, collected from production-grade systems, underwent extensive 

preprocessing to ensure quality through cleaning, integration, and normalization phases. Subsequently, the relationships between 

configuration variables (e.g., cache size, thread pool) and performance metrics (e.g., response time, CPU utilization, memory 

consumption, error rate) were analyzed using advanced multivariate statistical techniques and machine learning-based 

methodologies. Finally, optimization approaches (e.g., Bayesian Optimization) were employed to evaluate the potential of various 

configuration strategies in achieving optimal performance within the microservice architecture. This comprehensive process offers 

critical insights into understanding system behavior, optimizing resource utilization, and ensuring the seamless management of 

large-scale enterprise software systems. 

The dataset used in this study was derived from a production-grade distributed microservice architecture, reflecting the 

complexities and demands of enterprise-scale systems. Collected over a two-week period, it captures numerous concurrent requests 

from real-world users, encompassing a rich variety of records, including detailed performance metrics (e.g., response time, CPU 

utilization, memory consumption, error rate), configuration variables (e.g., cache size, thread pool size), and operational logs. Data 

was sampled at one-minute intervals, resulting in more than 180,000 data points, offering an exceptionally granular view of system 

behavior. This expansive temporal dataset serves as a robust foundation for statistical analysis, machine learning models such as 

LSTM, and advanced time-series methodologies, enabling a comprehensive investigation into the interplay between configuration 

changes and system performance. The methods adopted in this study aim to bridge the gap between theoretical analysis and 

practical application, providing scalable and generalizable solutions for software configuration management enhanced 

performance optimization in microservice architectures.   

To gain a thorough understanding of microservice performance dynamics, this study draws upon data compiled from multiple 

sources. By integrating diverse datasets, we aim to capture a comprehensive picture of system behavior, allowing for more robust 

analysis and insightful conclusions. The data utilized in this study was collected from a variety of sources to ensure a 

comprehensive understanding of microservice performance dynamics



 
     Fatih Bildirici, et.al  

ECJSE Volume 13, 2026  103  

Performance Metrics: Core performance metrics such as CPU utilization, memory consumption, response time, error rate, 

disk I/O, and network traffic were gathered at minute-level intervals using the widely adopted monitoring tool Prometheus. These 

high-resolution metrics provide detailed insights into the system’s load profile and resource utilization patterns, enabling the early 

detection of potential bottlenecks (bottlenecks) and performance deviations. 

Configuration Parameters: Critical configuration variables, including max_threads, cache_size, and timeout, were version-

controlled and recorded using a Git-based configuration management system. This setup ensures that each configuration change 

is precisely tracked with metadata such as the deployment version and the responsible author (change author). Such traceability 

allows for a robust analysis of the relationship between configuration modifications and variations in system performance. 

Traffic and Error Logs: Traffic patterns, active session counts, and error rates were collected via Elasticsearch and visualized 

using Kibana. These logs facilitated the simulation of realistic operational scenarios, enabling detailed examinations of the 

system’s response to sudden traffic surges (flash crowds) or unexpected error spikes (error spikes). These records are particularly 

critical for analyzing transient errors and latency spikes that arise from dependent service interactions. 

Each data point is timestamped with minute-level granularity, and configuration changes are annotated with additional metadata 

such as deployment version and change author. This structured dataset enables an in-depth exploration of the causal relationships 

between system behavior and configuration settings. By leveraging statistical techniques, including time- series analysis, the study 

aims to elucidate performance fluctuations and identify critical bottlenecks within the microservice architecture. The integration 

of these diverse data sources ensures a holistic perspective on performance dynamics, facilitating targeted interventions for system 

optimization. 

A robust data preprocessing and feature engineering pipeline was implemented to ensure the reliability of the dataset and the 

validity of analytical outcomes. The structured steps below were tailored to align with the study’s objectives, enhancing the 

dataset’s quality for advanced analytical techniques. 

Missing values, which arose due to intermittent interruptions in data collection, were addressed using linear interpolation for 

numerical variables to preserve temporal continuity. For categorical variables, mode imputation was applied to maintain 

consistency. These strategies ensured that the dataset retained its statistical integrity, providing a reliable foundation for subsequent 

analyses. 

Outliers were detected using both z-scores and the interquartile range (IQR) method. Anomalies associated with configuration 

changes were deliberately preserved to capture critical edge cases, whereas non-systematic outliers were removed to reduce noise. 

This approach maintained meaningful variations without compromising the dataset’s statistical properties. 

To disentangle the effects of configuration changes from regular periodic patterns, the Seasonal-Trend Decomposition via Loess 

(STL) method was employed. This technique decomposed the time series into trend, seasonal, and residual components, enabling 

more precise modeling of performance metrics and facilitating the identification of causal relationships related to configuration 

changes. 

Several derived features were constructed to enhance the explanatory power of the dataset. Cache efficiency was quantified 

through the cache hit rate, calculated as the ratio of cache size to disk I/O. Real-time workload patterns were captured using 

requests per second (RPS), defined as the ratio of active sessions to network traffic. Additionally, deployment strategy parameters, 

such as release complexity and deployment success rate, were encoded as categorical variables to ensure compatibility with 

statistical and machine learning models. 

Each data point was enriched with a precise timestamp and metadata such as deployment version and change author, facilitating 

longitudinal analysis of configuration changes and their performance impacts. This augmentation enabled robust causal inference 

by linking configuration modifications to observed system behaviors over time. The preprocessing pipeline, addressing missing 

data, outliers, and temporal dependencies, produced a high-quality dataset tailored for advanced statistical analysis, machine 

learning models, and causal techniques. This rigorous approach ensured the dataset’s alignment with the study’s analytical 

objectives, providing a solid foundation for deriving actionable insights into performance optimization and system stability within 

microservice architectures. 

 

3. EXPERIMENTAL DESIGN AND ANALYTICAL FRAMEWORK 

This study establishes a systematic and comprehensive analytical framework to evaluate the impact of configuration changes 

and deployment strategies on the performance of microservice-based systems. The framework integrates controlled configuration 

scenarios, realistic workload simulations, and advanced statistical and machine learning techniques to ensure analytical rigor, 

reproducibility, and depth in performance analysis. By combining these complementary components, the study provides a 

structured approach to understanding complex system behaviors under varying operational conditions. 

The effects of configuration changes were systematically examined by modifying critical parameters such as maximum thread 

count, cache size, and request timeout within predefined operational limits. These adjustments were applied incrementally at the 

service level, allowing for independent analysis of each parameter’s impact. Given the distributed architecture of microservices, 

the analysis also considered inter-service dependencies and cascading effects to comprehensively capture the systemic influence 

of configuration changes across the entire environment. 

To model and predict performance dynamics, multiple complementary techniques were employed. Prophet was utilized to 

capture long-term trends and seasonality in microservice performance data, while ARIMA provided high-resolution short-term 

forecasting. LSTM-based Autoencoders were applied to detect non-linear dependencies and subtle anomalies that might be missed 

by traditional statistical models. In addition, Bayesian Optimization was incorporated to dynamically fine-tune configuration 



Optimizing Microservice Performance: A Software… 

104   ECJSE Volume 13, 2026 

parameters, ensuring optimal resource allocation and minimizing response time fluctuations. Together, these methods create a 

robust framework for both performance analysis and optimization in dynamic microservice systems. 

Realistic traffic scenarios were generated using Locust to replicate diverse operational conditions, including steady-state 

operations, peak traffic loads, and sudden surges. These simulations incorporated user behavior models reflecting real-world 

patterns, offering valuable insights into the interplay between workload variations and system performance. The ability to simulate 

varying traffic demands provided a robust foundation for analyzing system stability and scalability. 

Performance evaluation focused on key metrics such as response time, resource utilization, error rates, and anomaly rates. 

Response time was measured through average and 95th percentile latency, emphasizing deviations under high-load conditions. 

Resource utilization was assessed through continuous monitoring of CPU and memory consumption, while error rates were 

analyzed to identify vulnerabilities and testing gaps in CI/CD pipelines. Anomaly detection, enabled by autoencoder-based models, 

highlighted deviations from expected performance, allowing proactive identification of stability risks. 

Additionally, the study compared the efficacy of deployment strategies, including Blue-Green, Canary, and Rolling 

deployments. Each strategy was assessed for its impact on system performance, resource efficiency, and downtime minimization. 

Blue-Green deployments reduced system error rates by 15.6%, providing a stable rollback mechanism in case of failures. In 

practice, this entailed maintaining two production environments—Blue (active) and Green (standby)—with identical 

configurations. Once the Green environment passed acceptance tests (e.g., maintaining an average latency below 400 ms and error 

rates under 1.5% for at least 30 minutes), traffic was switched over within seconds, minimizing downtime. If error metrics rose 

above 2% or CPU usage exceeded 80% threshold, a rollback to the Blue environment was triggered. 

The canary deployments were more adaptive to dynamic traffic conditions, leading to a 9.2 per cent reduction in latency spikes 

and a 13.5 per cent reduction in post-deployment error rates compared to traditional rolling deployments. Within our deployment, 

about 10% of user sessions (roughly 200 concurrent users) were initially redirected to the canary version. During two consecutive 

peak load intervals (approximately one hour each) we continuously monitored P95 latency, request throughput, and error 

frequencies; if these remained within acceptable limits (e.g., <500 ms for P95 latency, <2% error rate) during two consecutive 

peak load intervals (approximately one hour each), we gradually increased the canary to 25%, 50%, and eventually 100% of traffic. 

On the contrary, when error rates rose above 3% or average response times exceeded 600 ms, an automatic rollback was initiated 

to preserve the user experience. 

On the other hand, rolling deployments distribute updates in smaller batches across nodes or pods, which may be operationally 

simpler, but may lack the fast failover capacity of Blue-Green or the targeted risk control of Canary. In general, our findings 

confirm that strategic implementation of these deployment strategies can significantly improve system stability and user 

experience. While Blue-Green was successful in minimizing downtime during major version upgrades, Canary proved valuable 

for frequent updates requiring immediate performance verification. The real-time monitoring of CPU utilization, memory 

consumption and error rates was critical for proactive detection of misconfigurations and enabled rapid corrective actions to 

maintain system reliability. 

The analytical framework utilized a diverse range of methods to explore the relationship between configuration parameters and 

system performance. Correlation and causality analysis employed Pearson correlation coefficients to quantify linear relationships 

between configuration variables and performance metrics, while Granger causality tests were used to establish statistical causality. 

For instance, a direct causal link was identified between cache size and response time, highlighting their interdependence. 

Time-series modeling was applied to capture temporal behaviors in performance metrics. ARIMA and Prophet models were 

used to identify linear trends and seasonal patterns, respectively, while LSTM neural networks effectively modeled nonlinear 

relationships and abrupt changes in the data. These approaches provided valuable insights into performance dynamics under 

evolving configurations, offering predictive capabilities for future states. Anomaly detection relied on autoencoder-based models 

to identify performance deviations triggered by configuration changes. These models enabled early detection of anomalies, 

providing actionable intelligence to enhance system resilience and operational stability. This proactive approach to anomaly 

management proved critical in minimizing disruptions caused by misconfigurations. 

While ARIMA is effective for short-term trend modeling, it assumes a linear relationship in the data, which may not always 

hold in complex microservice interactions. Prophet, on the other hand, captures seasonal fluctuations more effectively, making it 

suitable for workload forecasting in production environments with cyclical patterns. LSTM-based Autoencoders further 

complement these models by detecting nonlinear dependencies and identifying anomalies that purely statistical models might 

overlook. Alternative approaches such as SARIMA or Holt-Winters were considered but were found to be less effective in 

handling the dynamic nature of microservice workloads. 

Transformer-based time series models (e.g., Informer, TimeNet) are designed to capture long-range dependencies and handle 

extensive sequential data, making them attractive for complex forecasting tasks in microservice environments. However, due to 

their high parameter complexity and reliance on large datasets for effective training, our preliminary experiments indicated that 

with the moderate size of our performance dataset, these models tended to overfit and incurred substantial computational costs 

during hyperparameter tuning. Moreover, in DevOps workflows—where continuous monitoring and rapid iteration are critical—

models with simpler architectures, such as Prophet and LSTM-based Autoencoders, offer greater transparency, lower inference 

latency, and more straightforward deployment. With larger datasets and more scalable computing infrastructures, transformer-

based architectures may eventually surpass current methods in advanced sequence modelling. 



 
     Fatih Bildirici, et.al  

ECJSE Volume 13, 2026  105  

Optimization techniques included Bayesian Optimization, which identified optimal parameter configurations to minimize error 

rates and maximize resource efficiency. Furthermore, a simulation-based reinforcement learning agent dynamically adjusted 

configurations in response to real-time system states, improving the adaptability and efficiency of the architecture. 

To ensure reproducibility and consistency, the experimental setup leveraged state-of-the-art tools and Python-based libraries. 

Performance metrics were collected using Prometheus, with log analysis and visualization conducted via Elasticsearch and Kibana. 

Statistical analyses and machine learning models utilized libraries such as scikit-learn, statsmodels, and Prophet. Deployment 

scenarios were managed through CI/CD pipelines, ensuring standardized and reproducible conditions for all experiments. 

This comprehensive analytical framework underscores the critical role of configuration management in optimizing microservice 

architectures. By integrating advanced analytical techniques with realistic simulations, the study delivers actionable insights to 

improve system performance, stability, and scalability in enterprise-grade distributed systems. 

 

4. LITERATURE REVIEW 

Microservice architectures have become a pivotal paradigm in contemporary software engineering, offering solutions to 

scalability, modularity, and rapid deployment challenges faced by modern systems. These architectures, defined by loosely 

coupled and independently deployable services, introduce significant complexities in Software Configuration Management (SCM) 

[16]. Among these complexities, dynamic interdependencies between services and the system-wide ramifications of minor 

configuration changes stand out as critical challenges [17]. Understanding the effects of these configuration changes on system 

performance is essential to ensuring the efficiency, robustness, and scalability of microservice-based systems [18]. 

SCM traditionally focuses on providing a structured framework for tracking, managing, and assessing the impacts of 

configuration changes. However, the decentralized and dynamic nature of microservices necessitates a paradigm shift from 

classical SCM methods toward proactive and data-driven strategies [19]. Parameters such as max threads, cache size, and timeout 

play a critical role in defining system behavior and performance. While these parameters have been extensively studied, existing 

research often relies on static or constrained methods, which limit their scalability to heterogeneous, large-scale systems [20]. 

Time-series analysis has emerged as a powerful tool for modeling, predicting, and optimizing the impacts of con- figuration 

changes on system performance [21]. Statistical techniques such as ARIMA and Prophet have been widely adopted for analyzing 

temporal patterns in performance metrics, including CPU utilization, memory consumption, and response times [22]. These 

methods excel at capturing trends and seasonal variations but often struggle with the nonlinear relationships and multivariate 

dependencies characteristic of microservice-based systems. 

Machine learning (ML) and deep learning (DL) techniques have been instrumental in addressing these limitations. Long Short-

Term Memory (LSTM) networks, a type of recurrent neural network, are particularly adept at modeling complex temporal 

dependencies and nonlinear dynamics [23]. LSTM-based models have been utilized to analyze dynamic dependencies in 

microservice environments, capturing abrupt state transitions and providing enhanced predictive capabilities compared to 

traditional statistical methods [24]. 

Anomaly detection methods, particularly those based on Autoencoder architectures, have gained prominence for their ability to 

identify deviations from expected performance patterns. These methods are particularly effective in high-dimensional data settings, 

which are prevalent in distributed systems [25]. This type of research demonstrated the effectiveness of Autoencoders in detecting 

anomalies in performance datasets, enabling proactive mitigation of system risks. Integrating these techniques into SCM 

workflows enhances the ability to monitor and manage performance issues triggered by configuration changes, reducing downtime 

and improving overall system resilience. 

Despite these advancements, gaps remain in the literature. Many studies are limited to a narrow set of configuration parameters 

or focus on specific use cases, failing to provide a comprehensive understanding of system-wide configuration impacts. 

Furthermore, while statistical models such as Prophet and SARIMA are robust in capturing trends, they often fail to address the 

nonlinearities, and dynamic interactions present in complex microservice systems [3]. The integration of statistical techniques with 

advanced ML/DL methods represents a promising direction for developing holistic frameworks that address these limitations. 

Optimization of configuration parameters has emerged as a crucial area in SCM research. Reinforcement Learning (RL) has 

shown promise in autonomously learning the impacts of configuration changes and identifying optimal parameter settings to 

enhance performance [26]. RL-based approaches are particularly valuable in handling high-dimensional configuration spaces and 

dynamic workloads. However, challenges related to computational complexity, scalability, and the need for extensive training 

data continue to limit their application in large-scale microservice architectures. 

Hybrid optimization frameworks combining RL with Bayesian Optimization (BO) have also been explored, offering structured 

approaches to parameter tuning while adapting dynamically to system behaviors [27]. BO excels in exploring configuration spaces 

efficiently, while RL enhances adaptability, particularly in non-stationary environments. Despite their potential, these hybrid 

frameworks require further investigation to address scalability challenges in enterprise-grade systems. 

The integration of SCM processes with advanced analytical techniques is an emerging area of interest. For example, combining 

time-series methods such as Prophet for trend detection with LSTM networks for modeling dynamic interactions can provide a 

robust framework for analyzing configuration impacts [28]. Additionally, Autoencoder-based anomaly detection methods can 

complement these approaches by identifying deviations from expected behaviors, enabling timely interventions to mitigate 

performance issues. 

A critical research gap lies in the development of hybrid frameworks that unify statistical, ML, and optimization techniques for 

SCM. For instance, integrating Bayesian Optimization with Autoencoder-based anomaly detection and LSTM models could 



Optimizing Microservice Performance: A Software… 

106   ECJSE Volume 13, 2026 

enable comprehensive analysis and optimization of configuration parameters [29]. This unified approach would allow for 

modeling both long-term trends and short-term fluctuations, addressing the multifaceted impacts of configuration changes on 

system performance. 

The literature underscores significant progress in advancing analytical and optimization techniques for SCM in microservices. 

However, substantial opportunities remain to address gaps related to parameter scope, scalability, and the integration of hybrid 

methodologies [30]. Future research should focus on developing comprehensive frameworks that combine statistical, ML/DL, and 

optimization techniques to tackle the complexities of dynamic and distributed systems. 

In summary, the integration of advanced analytical methods into SCM processes offers transformative potential for managing 

configuration changes in microservices. By leveraging hybrid approaches that address immediate challenges and long-term 

performance goals, researchers can contribute to the development of adaptive, resilient, and performance-oriented SCM practices, 

ultimately enhancing the robustness of modern software systems. 

 

5. RESULTS AND DISCUSSION 

This study provides a comprehensive analysis of the impacts of configuration and release management processes on software 

system performance through a multidimensional approach. The relationships between configuration and release parameters and 

performance metrics were examined using detailed correlation analyses, time-series modeling, anomaly detection, and regression 

analyses. Additionally, optimization and simulation techniques were employed to propose strategic recommendations for 

performance improvement. Rollout and rollback processes were analyzed to offer actionable insights for mitigating performance 

issues during deployment transitions. This section discusses the findings in depth and provides strategic recommendations for 

future directions. 

Exploratory Data Analysis (EDA) was conducted to identify initial trends, correlations, and potential anomalies within the 

dataset. Key performance metrics, including response time, CPU utilization, and error rate, were examined using descriptive 

statistics and visualizations to gain an early understanding of system behavior. Data preprocessing involved addressing missing 

values through linear interpolation for numerical variables and mode imputation for categorical parameters, resulting in a complete 

dataset comprising over 150,000 observations. 

Outlier detection was performed using both z-scores and interquartile range (IQR) methods. Anomalies relevant to edge-case 

scenarios were deliberately retained to ensure that critical variations were preserved, while non-systematic outliers were excluded 

to reduce noise and maintain data integrity. 

To further enhance the dataset’s analytical value, feature engineering was applied to generate additional variables, such as cache 

hit rate and requests per second. These derived features improved the explanatory power of the dataset, making it well-suited for 

subsequent multivariate statistical analyses and machine learning modeling. 

The analysis of configuration and release management parameters underscores their critical influence on system performance 

in microservice-based architectures. By integrating diverse data sources, including configuration stability, release complexity, 

deployment frequency, rollback events, and operational logs, this study develops a robust framework for understanding these 

relationships. Advanced methods such as correlation, regression, and causality analyses were employed to quantify the impacts 

and reveal the interdependencies among these parameters. Table 1 presents a summary of key correlations and their observed 

impacts, while subsequent sections elaborate on the findings. 

 

Table 1. Regression Results: Configuration and Release Metrics and Their Impacts 
Metric Pair Model Impact 

Config. Stability → Response Time LR R² = 0.57; ∼18% reduction in variability 

Release Complexity → Deployment Success LR R² = 0.65; ∼25% lower success rate 

Cache Size → Memory Consumption LR R² = 0.62; Increased memory usage 
Rollback Recovery Time → Error Rate PR R² = 0.53; Exponential error growth 

Thread Pool Size → CPU Utilization PR R² = 0.47; Quadratic impact on utilization 

Scaling Lag → Response Time SVR R² = 0.49; Non-linear response time increase 

 

The analysis identified significant relationships between configuration and release parameters and their effects on system 

performance. Configuration stability exhibited a strong negative correlation with response time (r = −0.62, R2 = 0.57), 

emphasizing its role in reducing variability and enhancing performance. Stability during deployments reduced response times by 

up to ∼ 18%, highlighting the importance of automated validation and monitoring frameworks. Cache size showed a strong 

positive correlation with memory consumption (r = 0.99, R2 = 0.62), underscoring the need for adaptive caching policies to balance 

resource utilization and efficiency. 

Release complexity demonstrated an inverse correlation with deployment success rates (r = −0.99, R2 = 0.65), indicating that 

modular and incremental deployment strategies significantly enhance reliability. Deployment frequency was moderately 

correlated with error rates (r = 0.35, R2 = 0.34), suggesting the necessity of automated testing pipelines and phased rollouts 

to mitigate frequent deployment risks. Rollback rates and recovery times were positively correlated with error frequencies (r = 

0.45 and r = 0.50, respectively), emphasizing the value of robust rollback mechanisms and proactive validation processes. 

Regression analysis revealed critical linear and non-linear relationships between configuration, release metrics, and system 

performance. Table 2 highlights the most significant findings, showcasing the contributions of both linear regression (LR) and 

advanced non-linear models like polynomial regression (PR) and support vector regression (SVR). 



 
     Fatih Bildirici, et.al  

ECJSE Volume 13, 2026  107  

Table 2. Regression Results: Configuration and Release Metrics 
Metric Pair Model R² 

Config. Stability → Response Time Linear Regression 0.57 
Release Complexity → Deployment Success Linear Regression 0.65 

Cache Size → Memory Consumption Linear Regression 0.62 

Rollback Recovery Time → Error Rate Polynomial Regression 0.53 
Thread Pool Size → CPU Utilization Polynomial Regression 0.47 

Scaling Lag → Response Time Support Vector Regression 0.49 

 

Linear regression identified configuration stability (R2 = 0.57) and release complexity (R2 = 0.65) as key predictors, 

demonstrating their direct impacts on response time and deployment success. Stability improvements reduced response time 

variability by ∼ 18%, while simpler releases enhanced deployment reliability. Cache size (R2 = 0.62) exhibited a linear relationship 

with memory consumption, emphasizing the importance of effective resource management. 

Non-linear models revealed additional critical dependencies. Rollback recovery times showed exponential increases in error 

rates (R2 = 0.53), highlighting the necessity of streamlined rollback mechanisms. Thread pool size displayed a quadratic 

relationship with CPU utilization (R2 = 0.47), with diminishing performance gains beyond optimal thresholds. Scaling lag (R2 = 

0.49) led to sharp response time escalations during peak loads, underscoring the value of predictive scaling strategies. These 

findings underscore the need for adaptive approaches, including real-time configuration validation, dynamic resource 

management, and predictive scaling mechanisms, to address both linear and non-linear impacts. Such strategies are essential for 

ensuring system reliability and operational efficiency in microservice-based architectures. 

The Granger causality tests provide statistically significant insights into the directional influences of configuration and release 

parameters on critical performance metrics. The results summarize the F-statistics and p-values for the analyzed relationships, 

while Figure 1 visually represents the results through a heatmap. 

 

Figure1. Granger causality effects between configuration parameters and performance metrics. The figure 

summarizes significant directional impacts on response time, memory usage, and error rates. 

 

The Granger causality analysis highlights key directional relationships between configuration and release parameters and their 

impacts on critical performance metrics. Configuration stability was found to significantly reduce response time variability (F = 

12.58, p = 0.001), emphasizing the importance of automated validation to maintain consistency. Cache size exhibited a direct 

causal relationship with memory consumption (F = 10.47, p = 0.004), underscoring the need for adaptive caching policies to 

balance resource utilization. Prolonged rollback recovery times increased error rates (F = 8.65, p = 0.011), demonstrating the 

value of robust rollback mechanisms for mitigating cascading failures. Similarly, extended deployment durations were shown to 

increase response times (F = 9.22, p = 0.008), while scaling lag during high-demand periods also caused response time degradation 

(F = 11.03, p = 0.003). 

These findings underscore the necessity of data-driven strategies to enhance configuration and release management. Automated 

stability checks can reduce response time variability, while dynamic caching and memory management policies optimize resource 

utilization. Streamlined rollback and deployment processes can minimize error rates and mitigate the impact of prolonged 

operations. Predictive scaling mechanisms aligned with real-time analytics can address scaling delays, ensuring system reliability 



Optimizing Microservice Performance: A Software… 

108   ECJSE Volume 13, 2026 

during peak loads. Together, these strategies provide actionable pathways to enhance performance and resilience in large-scale, 

microservice-based architectures, bridging the gap between theoretical insights and practical implementations. 

Time-series analysis was employed to uncover long-term performance trends and the effects of traffic variability on critical 

system metrics such as response time, CPU utilization, and memory consumption. Leveraging advanced models, including 

Prophet, SARIMA, and ARIMA, the study explored their predictive accuracy across varied scenarios and introduced hybrid 

approaches to address model-specific limitations. Table 3 presents the comparative performance of these models based on Mean 

Squared Error (MSE) and Mean Absolute Error (MAE). 

Table 3. Performance Comparison of Time-Series Models 
Model MSE (Response Time) MAE (CPU UTILIZATION) 

SARIMA 51.62 4.12 
PROPHET 59.34 4.87 

ARIMA 66.87 5.19 
Hybrid (SARIMA + Prophet) 48.11 3.98 

 

The performance evaluation of time-series models highlights their respective strengths and limitations in addressing diverse 

traffic scenarios. SARIMA demonstrated the highest accuracy (MSE = 51.62) for datasets with pronounced seasonal patterns, 

effectively capturing periodic variations in systems with stable, predictable workloads, such as weekly e-commerce surges or 

regular office activity. Prophet, while slightly less accurate (MSE = 59.34), excelled in dynamic environments influenced by 

irregular events, such as promotional campaigns or holiday spikes. Its ability to incorporate domain-specific seasonality and 

external   regressors makes it particularly valuable for systems with volatile traffic patterns. ARIMA showed moderate 

performance (MSE = 66.87) in datasets lacking seasonality, with its reliance on linear assumptions limiting its applicability to 

systems with non-linear or event-driven fluctuations.   

To address the limitations of individual models, a Hybrid Model combining SARIMA’s periodic precision with Prophet’s 

adaptability was introduced. This hybrid approach achieved the best overall performance (MSE = 48.11, MAE = 3.98), 

demonstrating superior generalization across both stable and dynamic scenarios. The hybrid methodology represents an innovative 

contribution to time-series forecasting, offering a robust framework for predicting traffic-driven system performance in complex 

microservice architectures. 

Traffic variability analysis revealed significant correlations between traffic patterns and performance metrics. During peak 

traffic periods, CPU utilization increased by approximately ∼ 15%, primarily driven by database-intensive operations and 

heightened network activity. Adaptive thread pool management mitigated this impact, reducing CPU load by ∼ 7% and 

maintaining stable response times. Similarly, memory consumption rose during high-demand periods due to increased caching 

requirements, emphasizing the importance of predictive caching strategies. 

 

 

Figure2. Actual vs. forecasted response time trends using Prophet. The figure shows Prophet’s effectiveness in 

modeling traffic fluctuations for proactive performance management. 

The findings emphasize the importance of integrating time-series analysis into system performance management frameworks. 

SARIMA’s precision in modeling seasonal trends provides a reliable basis for planning resource allocation during predictable 

surges, while Prophet’s adaptability to irregular traffic patterns enhances responsiveness in dynamic environments. Together, 

these models offer a complementary approach to managing both stable and volatile system demands, as illustrated in Figure 2. 

Proactive resource management strategies derived from time-series forecasts proved effective in mitigating traffic-driven 

performance impacts. Predictive analytics informed real-time thread pool adjustments, dynamic caching policies, and scaling 

decisions, ensuring efficient resource utilization without compromising system reliability. These methods reduced performance 

variability during peak traffic periods and improved overall system responsiveness. 



 
     Fatih Bildirici, et.al  

ECJSE Volume 13, 2026   109 

The application of Bayesian Optimization and Genetic Algorithms (GAs) led to significant improvements in critical 

performance metrics by optimizing key configuration and release parameters. Table 4 presents the optimization outcomes, 

showcasing their impact on performance and the specific parameters adjusted to achieve these gains. 

 

Table 4. Optimization Results: Configuration and Release Metrics 
Performance Metric Improvement Rate (%) Optimized Parameters 

Response Time 30.4 Cache Size: 1688 MB, Config. Stability: 

0.987 

CPU Utilization 17.8 Thread Pool Size: 12 
Memory Consumption 21.2 Cache Size: 1688 MB 

Error Rate 13.5 Release Complexity: 1.25 

MTTR 19.6 Deployment Frequency: 7/day 
Config. Consistency Drift 14.3 Consistency Index: < 0.05 

Release Overlap Conflicts 12.5 Overlap Threshold: < 10% 

 

Optimizing configuration and release parameters yielded substantial performance improvements across key metrics. Response 

time was reduced by 30.4% through adjustments to cache size (1688 MB) and configuration stability (0.987), demonstrating the 

critical role of efficient memory management and consistent configurations in reducing latency and variability during frequent 

deployments. Resource utilization also improved significantly, with dynamic thread pool tuning (size: 12) enhancing CPU 

utilization by 17.8% and optimized cache settings reducing memory consumption by 21.2%. These results highlight the 

importance of adaptive resource allocation strategies to maintain efficiency under fluctuating workloads.   

Deployment reliability saw notable gains, with simplified release complexity (1.25) reducing error rates by 13.5% and 

optimized deployment frequency (7/day) shortening Mean Time to Recovery (MTTR) by 19.6%. Additionally, maintaining 

configuration consistency drift below 0.05 improved system stability by 14.3%, while limiting release overlap conflicts to less 

than 10% reduced deployment failures by 12.5%. These findings emphasize the need for proactive configuration validation and 

streamlined release strategies to ensure seamless operations in distributed systems. 

The results validate the efficacy of Bayesian Optimization and Genetic Algorithms in addressing complex, multi-dimensional 

parameter spaces. By balancing objectives such as response time reduction and resource efficiency, these techniques provide a 

robust framework for enhancing system performance and reliability. The integration of metrics like configuration consistency and 

release overlap into the optimization process offers actionable insights for both researchers and practitioners, paving the way for 

adaptive and scalable management of modern software architectures. 

The findings of this study emphasize the critical impact of configuration and release management metrics on the performance 

of microservice-based systems. Configuration stability significantly reduced response time variability (∼ 18%), while cache size 

optimization improved data retrieval efficiency, albeit with increased memory consumption. Modular release strategies and 

controlled deployment frequencies minimized error rates (∼ 13.5%) and improved recovery times (∼ 19.6%), demonstrating the 

importance of simplifying release processes and adopting phased rollouts. Additionally, prolonged rollback recovery times 

and scaling lags were directly linked to performance degradation, highlighting the need for robust rollback mechanisms and 

predictive scaling frameworks. 

Time-series analysis further revealed the utility of hybrid forecasting models, combining SARIMA’s accuracy in seasonal 

trends with Prophet’s adaptability to irregular patterns. These models enabled proactive resource management, optimizing CPU 

and memory usage while maintaining response time under fluctuating workloads. Future research should integrate real-time 

optimization frameworks, such as Reinforcement Learning, to dynamically tune configuration parameters. Advanced anomaly 

detection techniques, leveraging graph neural networks, could further enhance system reliability, ensuring scalable and efficient 

performance management in dynamic software environments. 

 

5. CONCLUSION 

This study provides a comprehensive framework for analyzing and optimizing the performance impacts of configuration 

and release management processes in microservice-based software systems. Through advanced methodologies—including 

time-series modeling, regression analysis, anomaly detection, and optimization techniques—the research emphasizes the 

critical influence of configuration parameters such as cache size, thread pool size, release complexity, and deployment 

frequency on key performance metrics including response time, CPU utilization, memory consumption, and error rate. 

Key findings reveal that synchronized tuning of configuration parameters can yield performance improvements of up to 

∼30%, with significant gains achieved through the optimization of cache size and configuration stability. Cache optimization 

enhanced data retrieval efficiency, while improved configuration stability minimized variability, ensuring predictable 

performance even during high-frequency deployment cycles. Additionally, modular release strategies and optimized 

deployment frequencies were shown to reduce error rates (∼13.5%) and improve recovery times (MTTR) by ∼19.6%, 

demonstrating the value of structured and incremental approaches to release management.  

Time-series models, particularly Prophet, demonstrated their efficacy in capturing long-term trends and irregular traffic 

patterns, achieving ∼10% lower prediction errors compared to traditional models like SARIMA. Furthermore, hybrid time-



Optimizing Microservice Performance: A Software… 

110   ECJSE Volume 13, 2026 

series models effectively combined the strengths of SARIMA and Prophet—using a weighted ensemble approach based on 

recent forecasting errors—to deliver superior accuracy in both stable and dynamic environments. For anomaly detection, 

LSTM-autoencoder models outperformed traditional methods by effectively identifying transient load fluctuations and micro-

burst scenarios, thereby enhancing early warning capabilities without the need for repetitive emphasis on exact improvement 

percentages.   

Optimization strategies, including Bayesian Optimization and Genetic Algorithms, enabled the identification of optimal 

configuration and release parameters while balancing competing objectives such as reducing response time and maintaining 

resource efficiency. For instance, dynamic thread pool adjustments and refined release complexity significantly improved 

system reliability and minimized resource overhead. These optimization methods provided actionable strategies to address 

both linear and non-linear dependencies in configuration-performance relationships, underscoring their critical role in adaptive 

performance management.  

The study further highlights the strategic importance of configuration and release management in modern software systems. 

By integrating time-series analysis, advanced anomaly detection, and optimization techniques, this research bridges the gap 

between theoretical understanding and practical application, offering a robust framework for improving system performance, 

scalability, and reliability. Enterprises can integrate this framework into their DevOps pipelines by leveraging automated 

configuration tuning, real-time anomaly detection, and predictive deployment strategies. Embedding these techniques into 

CI/CD workflows and cloud-based monitoring solutions enables organizations to proactively detect and mitigate performance 

issues, ensuring high availability and system resilience.  

The proposed framework is particularly valuable for large-scale enterprise microservices that require continuous 

performance monitoring and optimization. For example, in e-commerce applications, dynamic workload forecasting using 

Prophet can help optimize server scaling strategies before high-traffic periods. In financial services, anomaly detection with 

LSTM Autoencoder can identify fraudulent transaction patterns, thereby enhancing security and risk management. SaaS 

providers can leverage Bayesian Optimization for real-time configuration tuning to ensure that service latency remains within 

SLAs even during peak demand.   

Future research should explore the integration of real-time optimization frameworks, such as Reinforcement Learning and 

multi-objective optimization, to enable adaptive tuning of configuration parameters in cloud-native and containerized 

environments. In addition, the application of advanced deep learning approaches, including graph neural networks and 

transformer-based models, has the potential to uncover complex dependencies between configuration changes and system 

behavior, thereby enhancing fault detection and workload management. Moreover, extending these techniques to edge 

computing and hybrid cloud systems will facilitate scalable and resilient performance management in enterprise-level 

architectures.  

While the proposed framework significantly improves microservice performance monitoring, certain limitations remain. 

For example, transformer-based time-series models (e.g., Informer, TimeNet) were not included in this study and may offer 

additional benefits in capturing long-range dependencies. Additionally, Bayesian Optimization, although effective, may 

encounter challenges in real-time adaptability under continuously changing workloads. Future work should focus on 

integrating reinforcement learning-based configuration tuning and evaluating performance on real-time production traffic.  

In conclusion, this study offers a holistic methodology for advancing configuration and release management practices in 

microservice architectures. By synthesizing analytical rigor with practical insights, it establishes a foundation for optimizing 

performance and reliability in dynamic, large-scale software environments. The results obtained—such as up to 30% 

improvement in response times and 17.8% better CPU utilization—align with prior proactive auto-scaling research, 

underscoring the practical relevance of Bayesian Optimization and anomaly detection in real-world deployments. Furthermore, 

comparative benchmarks with recent work [6] highlight the capacity of Prophet and LSTM-based models to address diverse 

forecasting challenges, although model choice may vary depending on data characteristics and domain-specific requirements. 

Extended testing under live traffic surges could further validate instantaneous adaptability, an aspect that remains essential for 

production-scale microservices. These contributions pave the way for future innovations, ensuring that configuration and 

release management remain integral to the evolution of modern software systems.     

 

Acknowledgments 

The authors would like to thank Ankara University and ASELSAN for providing the necessary infrastructure and support 

during the execution of this study. 

 

Authors’ Contributions 

Fatih Bildirici conducted the study as the primary researcher, including research design, data collection/processing, model 

implementation and experiments, analysis/interpretation of results, and writing the original manuscript draft. 

Savaş Takan contributed through methodological review, validation of results, and critical manuscript review/editing. 



 
     Fatih Bildirici, et.al  

ECJSE Volume 13, 2026   111 

Keziban Seçkin Codal contributed through technical review, manuscript revision/editing, and final proofreading. All 

authors read and approved the final manuscript. 

 

Competing Interests 

The authors declare that they have no conflict of interest. 

References 
[1] Newman S., Building Microservices, 2021, O’Reilly Media. 

[2] Schäffer E., Leibinger H., Stamm A., Brossog M., and Franke J., Configuration-based process and knowledge management by structuring the software 
landscape of global operating industrial enterprises with microservices, Procedia Manufacturing, 2018, 24, pp. 86–93. 

[3] Chen Y., Yan M., Yang D., Zhang X., and Wang Z., Deep attentive anomaly detection for microservice systems with multimodal time-series data, in 2022 

IEEE International Conference on Web Services (ICWS), 2022, Barcelona, Spain, IEEE, pp. 373–378. 
[4] Pham L., Ha H., and Zhang H., Root cause analysis for microservice system based on causal inference: how far are we?, in Proceedings of the 39th 

IEEE/ACM International Conference on Automated Software Engineering, 2024, Sacramento, USA, pp. 706–715. 

[5] Ning Y., Kazemi H., and Tahmasebi P., A comparative machine learning study for time series oil production forecasting: ARIMA, LSTM, and 
Prophet, Computers & Geosciences, 2022, 164, p. 105126. 

[6] Suryawan I.G.T., Putra I.K.N., Meliana P.M., and Sudipa I.G.I., Performance comparison of ARIMA, LSTM, and Prophet methods in sales 

forecasting, Sinkron: Jurnal dan Penelitian Teknik Informatika, 2024, 8(4), pp. 2410–2421. 
[7] Berlack H.R., Software Configuration Management, in Encyclopedia of Software Engineering, ed. J. Marciniak, 2002, John Wiley & Sons, Hoboken, NJ. 

[8] Kim G., Humble J., Debois P., Willis J., and Forsgren N., The DevOps Handbook: How to Create World-Class Agility, Reliability, & Security in 

Technology Organizations, 2021, IT Revolution. 
[9] Al-Debagy O. and Martinek P., A metrics framework for evaluating microservices architecture designs, Journal of Web Engineering, 2020, 19(3–4), pp. 

341–370. 

[10] Zhu Y., Liu J., Guo M., Bao Y., Ma W., Liu Z., Song K., and Yang Y., BestConfig: tapping the performance potential of systems via automatic 
configuration tuning, in Proceedings of the 2017 Symposium on Cloud Computing, 2017, Santa Clara, USA, pp. 338–350. 

[11] Cryer J.D. and Chan K.S., Time Series Analysis: With Applications in R, 2nd ed., 2008, New York, NY, Springer. 

[12] Raja U., Hale D.P., and Hale J.E., Modeling software evolution defects: a time series approach, Journal of Software Maintenance and Evolution: Research 
and Practice, 2009, 21(1), pp. 49–71. 

[13] Rafferty G., Forecasting Time Series Data with Facebook Prophet: Build, Improve, and Optimize Time Series Forecasting Models Using the Advanced 

Forecasting Tool, 2021, Birmingham, UK, Packt Publishing. 

[14] Elsayed M.S., Le-Khac N.-A., Dev S., and Jurcut A.D., Network anomaly detection using LSTM based autoencoder, in Proceedings of the 16th ACM 

Symposium on QoS and Security for Wireless and Mobile Networks, 2020, Alicante, Spain, pp. 37–45. 

[15] Huang C.-Y., Performance analysis of software reliability growth models with testing-effort and change-point, Journal of Systems and Software, 2005, 
76(2), pp. 181–194. 

[16] Farayola O.A., Hassan A.O., Adaramodu O.R., Fakeyede O.G., and Oladeinde M., Configuration management in the modern era: best practices, 

innovations, and challenges, Computer Science & IT Research Journal, 2023, 4(2), pp. 140–157. 
[17] Haug M., Olsen E.W., Cuevas G., and Rementeria S. (Eds.), Managing the Change: Software Configuration and Change Management: Software Best 

Practice 2, 2012, Springer Science & Business Media. 

[18] Zhang S. and Ernst M.D., Which configuration option should I change?, in Proceedings of the 36th International Conference on Software Engineering, 
2014, Hyderabad, India, pp. 152–163. 

[19] Leon A., Software Configuration Management Handbook, 2015, Artech House. 

[20] Liu H.H., Software Performance and Scalability: A Quantitative Approach, 2011, John Wiley & Sons. 
[21] Gocheva-Ilieva S.G., Ivanov A.V., Voynikova D.S., and Boyadzhiev D.T., Time series analysis and forecasting for air pollution in small urban area: an 

SARIMA and factor analysis approach, Stochastic Environmental Research and Risk Assessment, 2014, 28, pp. 1045–1060. 

[22] Choraś M., Kozik R., Pawlicki M., Hołubowicz W., and Franch X., Software development metrics prediction using time series methods, in Computer 

Information Systems and Industrial Management, 18th International Conference (CISIM 2019), 2019, Belgrade, Serbia, Springer, pp. 311–323. 

[23] Ho A., Bui A.M.T., Nguyen P.T., and Di Salle A., Fusion of deep convolutional and LSTM recurrent neural networks for automated detection of code 
smells, in Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering, 2023, Oulu, Finland, pp. 229–

234. 

[24] Le V.-H. and Zhang H., Log-based anomaly detection with deep learning: how far are we?, in Proceedings of the 44th International Conference on 
Software Engineering (ICSE ’22), 2022, Pittsburgh, USA, ACM, pp. 1356–1367. 

[25] Thill M., Konen W., Wang H., and Bäck T., Temporal convolutional autoencoder for unsupervised anomaly detection in time series, Applied Soft 

Computing, 2021, 112, p. 107751. 
[26] Pereira J.A., Acher M., Martin H., Jézéquel J.-M., Botterweck G., and Ventresque A., Learning software configuration spaces: A systematic literature 

review, Journal of Systems and Software, 2021, 182, p. 111044. 

[27] Kim J. and Choi S., Bayeso: A Bayesian optimization framework in Python, Journal of Open Source Software, 2023, 8(90), p. 5320. 
[28] Tang Y. and Chen X., Software development, configuration, monitoring, and management of artificial neural networks, Security and Communication 

Networks, 2022, 2022, 11 pages, DOI: 10.1155/2023/9864132. 

[29] Zhao G., Hassan S., Zou Y., Truong D., and Corbin T., Predicting performance anomalies in software systems at run-time, ACM Transactions on Software 
Engineering and Methodology, 2021, 30(3), pp. 1–33. 

[30] O’Connor R.V., Elger P., and Clarke P.M., Continuous software engineering—A microservices architecture perspective, Journal of Software: Evolution 

and Process, 2017, 29(11), p. e1866. 


