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This study focuses on the design of permanent magnet synchronous motors (PMSMs) to enable efficient, high-
performance electric motor design. The Tasmanian Devil Optimisation (TDO) algorithm, a modern and effective 
method for solving optimisation problems, was used in the design process. This algorithm has attracted attention 
due to its successful results in solving multi-criteria and complex engineering problems. Key parameters affecting 
the motor's overall performance, such as efficiency, stator slot fill ratio and output power, were defined as 
objective functions, enabling simultaneous optimisation of different criteria. The variables selected for 
optimisation are gap, offset, stator slot skew, magnet thickness and stator slot bottom width. These directly 
influence the motor's structural and electrical properties, playing a significant role in performance improvement. 
The efficiency, stator slot fill ratio and output power criteria obtained from the application were compared with 
the initial design values. The analyses demonstrated that the TDO algorithm yielded superior results to the initial 
design in most performance metrics. This study shows that the TDO algorithm is a powerful optimisation tool for 
multi-variable and multi-objective engineering problems, such as PMSM design. The successful results of the 
algorithm highlight its applicability and potential in complex system designs. Further testing of the TDO algorithm 
with different motor types, expanded parameter sets or additional performance criteria would allow us to 
evaluate the method's scope and effectiveness in greater depth. This study shows that the TDO algorithm could 
be an innovative and effective solution for modern motor design processes. 
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PMSM Tasarım Probleminin Tazmanya Canavarı Optimizasyon 
Algoritması ile Çözümü 

Süreç 

Geliş: 28/12/2024 
Kabul: 04/01/2025 

ÖZ 
Bu çalışmada, elektrik motorlarının verimli ve yüksek performanslı bir şekilde tasarlanabilmesi amacıyla Kalıcı 
Mıknatıslı Senkron Motor (PMSM) tasarımı üzerine odaklanılmıştır. Tasarım sürecinde çözüm yöntemi olarak, 
optimizasyon probleminin çözümünde modern ve etkili bir yöntem olan Tazmanya Canavarı Optimizasyon 
algoritması (TDO) kullanılmıştır. Bu algoritma, çok kriterli ve karmaşık mühendislik problemlerinde sağladığı 
başarılı sonuçlarla dikkat çekmektedir. Motorun genel performansını etkileyen verimlilik, stator oluk doluluk 
oranı ve çıkış gücü gibi temel parametreler eş zamanlı olarak amaç fonksiyonları olarak belirlenmiş ve farklı 
kriterlerin birlikte optimize edilmesi sağlanmıştır. Optimizasyon için belirlenen değişkenler; kucaklama, ofset, 
stator oluk çarpıklığı, mıknatıs kalınlığı ve stator oluk alt genişliğidir. Bu değişkenler, motorun yapısal ve 
elektriksel özellikleri üzerinde doğrudan etkili olup performans artışında önemli rol oynamaktadır. 
Uygulama sonucunda elde edilen uygunluk değeri ile birlikte verimlilik, stator oluk doluluk oranı ve çıkış gücü 
ölçütleri, başlangıç tasarım değerleriyle karşılaştırılmıştır. Analizler, TDO algoritmasının çoğu performans 
göstergesinde başlangıç tasarıma göre daha iyi sonuçlar verdiğini göstermiştir. Bu çalışma, TDO algoritmasının 
PMSM tasarımı gibi çok değişkenli ve çok amaçlı mühendislik problemlerinde güçlü bir optimizasyon aracı 
olduğunu ortaya koymaktadır. Algoritmanın başarılı sonuçları, onun karmaşık sistem tasarımlarındaki 
uygulanabilirliğini ve potansiyelini vurgulamaktadır. Gelecekte TDO algoritmasının farklı motor tipleri, 
genişletilmiş parametre setleri veya ek performans kriterleriyle test edilmesi, yöntemin kapsamını ve etkinliğini 
daha derinlemesine değerlendirme imkânı sunacaktır. Bu çalışma, TDO algoritmasının modern motor tasarımı 
süreçlerinde yenilikçi ve etkili bir çözüm olabileceğini göstermektedir. 
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Giriş 

Günümüzde, elektrik üretimi ve tüketimi arasında bir 
güç dengesi kurulması en önemli konulardan bir tanesidir. 
Bu sebeple, üretim aşamasındaki verimliliğin artırılmasının 
yanı sıra tüketim kısmında oluşacak kayıpların en aza 
indirilmesi problem teşkil etmektedir. Üretimi sağlanan 
elektrik enerjisinin büyük kısmı elektrik motorları 
tarafından kullanılmaktadır. Tüketim kısmında enerji 
tasarrufu sağlayabilmek için elektrik motorlarının 
verimliliğinin artırılmasını sağlayacak tasarımların 
yapılması önem arz etmektedir. Elektrik motorlarından bir 
tanesi olan Kalıcı Mıknatıslı Senkron Motor (PMSM) için 
rotor manyetik alanı, bakır kaybı oluşmayan kalıcı 
mıknatıslar tarafından oluşturulur. Kalıcı mıknatıslar 
sayesinde de yüksek motor verimliliği elde edilir [1]. 
PMSM'ler, dişli kutusuna ihtiyaç duyulmadan düşük 
hızlarda doğrudan sürülebilen motorlardır. Araştırmacılar, 
minimum hacim ve minimum malzeme kullanımı ile en 
yüksek güç elde etmek amacıyla PMSM'lerin optimum 
motor tasarımları üzerinde çalışmaktadır [2]–[4]. 
Genellikle bu tasarımlar, PMSM'lerin verimliliği artırma, 
dişli torkunu ve tork dalgalanmasını azaltma, motor 
ağırlığını azaltma gibi amaç fonksiyonlarının 
çözümlenmesine odaklanmaktadır. Yapılan bu 
çalışmalarda PMSM'lerin doğrusal olmayan karmaşık 
yapıları nedeniyle tasarımda meta-sezgisel optimizasyon 
teknikleri tercih edilmektedir [5], [6]. 

Meta-sezgisel algoritmalar, araştırmacılar tarafından 
konveks olmayan ve karmaşık optimizasyon 
problemlerinin çözümü için sıklıkla kullanılmıştır [7], [8]. 
Belirli kısıtlamalar çerçevesinde oluşturulan amaç 
fonksiyonunun optimum çözümünü bulmak adına birçok 
meta-sezgisel optimizasyon algoritması kullanılmıştır. Bu 
algoritmalar arasında Balina Optimizasyon Algoritması 
(WOA) [9], Pelikan Optimizasyon Algoritması (POA) [10], 
Cüce Kuyruksüren Optimizasyon Algoritması (DMO) [11], 
Kum Kedisi Sürü Optimizasyonu (SCSO) [12], Yılan 
Optimizasyon Algoritması (SO) [13], Vektörlerin Ağırlıklı 
Ortalama Optimizasyon Algoritması (INFO) [14], Ateş 
Şahini Optimize edicisi (FHO) [15], Karahindiba 
optimizasyon algoritması (DO) [16], Ceylan Optimizasyon 
Algoritması (GOA) [17], Koati Optimizasyon Algoritması 
(COA) [18] ve Kepler Optimizasyon Algoritması (KOA) [19] 
yer almaktadır.  

2012 yılında, Mutluer ve Bilgin tarafından yapılan 
çalışmada, PMSM tasarımının optimizasyon işlemi için 
Genetik Algoritma (GA) ve Parçacık Sürü Optimizasyon 
(PSO) algoritmaları kullanılmış ve elde edilen sonuçlar 
birbirleri ile karşılaştırılmıştır [6]. Hong ve arkadaşları 
tarafından literatüre kazandırılan çalışmada, ABC 
algoritması kullanılarak elektrikli araçlardaki PMSM 
tasarımı için elektriksel ve mekaniksel zaman sabitlerini 
düşürerek yüksek performans elde edilmesi amaçlanmıştır 
[20]. 2020 yılında Yılmaz ve arkadaşları tarafından 
gerçekleştirilen çalışmada, PMSM tasarım 
parametrelerinin optimize edilmesi için literatürde yer 
alan ABC ve Simbiyotik Organizma Araması (SOS) 
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algoritmaları kullanılmıştır. Her iki algoritmanın da 
optimizasyon problemine etkisini görmek adına 
algoritmalar arasında karşılaştırmalar gerçekleştirilmiştir 
[5]. Zang ve arkadaşları tarafından 2024 yılında 
gerçekleştirilen çalışmada, geliştirilmiş Çok Amaçlı Yapay 
Sinekkuşu Algoritması (IMOAHA) kullanılarak PMSM 
tasarımı için optimizasyon işlemi gerçekleştirilmiştir. 
Yapılan analizler, PMSM içerisindeki tork dalgalanmasını 
ve zıt elektromotor kuvvetini minimum seviyeye çekerken 
motora ait ortalama torku da yükseltmeyi sağlamıştır [21]. 
Literatürde, farklı durum ve farklı koşullar için PMSM 
tasarım parametrelerinin optimize edilmesi işlemi meta-
sezgisel algoritmalarla gerçekleştirilmiş ve 
gerçekleştirilmeye devam etmektedir. 

Son yıllarda, yeni bir meta-sezgisel algoritma olarak 
Tazmanya Canavarı Optimizasyon (TDO) algoritması 
Dehghani ve arkadaşları tarafından literatüre 
sunulmuştur. Önerilen bu algoritma, doğadaki tazmanya 
canavarı hayvanının davranışlarından ilham alınarak 
geliştirilmiş bir algoritmadır. Canlı avlara saldırma ve ölü 
hayvanların kalıntıları ile beslenme olarak ifade edilen iki 
temel strateji, algoritmanın tasarımı ve matematiksel 
modellenmesi için ana ilham kaynağı olmuştur. 
Algoritmanın verimliliğini test etmek amacıyla literatürde 
yer alan 23 standart kıyaslama fonksiyonu üzerinde 
analizler gerçekleştirilmiş ve çeşitli istatistiksel çıkarımlar 
yapılmıştır. Ayrıca yapılan çalışmada elde edilen sonuçlar, 
iyi bilinen sekiz farklı meta-sezgisel arama algoritması ile 
karşılaştırılmış ve algoritmanın etkinliği ispatlanmıştır [22]. 

Bu çalışmada, literatüre yeni kazandırılan TDO 
algoritmasının gerçek hayat problemlerindeki 
performansını test etmek adına, PMSM tasarım 
probleminin optimizasyonu için TDO algoritması 
kullanılmıştır. PMSM’nin verimliliği, stator oluk doluluk 
oranı ve motor çıkış gücü gibi performansı doğrudan 
etkileyen faktörler ile bir amaç fonksiyonu oluşturulmuş 
ve bu amaç fonksiyonu doğrultusunda optimum PMSM 
tasarımı elde edilmeye çalışılmıştır. Bölüm 2’de amaç 
fonksiyonunun matematiksel modellenmesi ve 
tanımlanması, Bölüm 3’te optimizasyon işleminde 
kullanılacak olan TDO algoritmasının çalışma prensibi, 
Bölüm 4’te elde edilen sonuçlara ait benzetim çalışması ve 
son olarak Bölüm 5’te ise çalışmaya ait sonuç bölümü yer 
almaktadır. 

PMSM Tasarım Optimizasyonu 

Bu çalışmada, PMSM’nin tasarım probleminin 
matematiksel ifadesi aşağıdaki gibi tanımlanmıştır [23]. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹(𝑋𝑋)  𝑣𝑣𝑣𝑣       𝐾𝐾𝐾𝐾ş𝑢𝑢𝑢𝑢 {𝐺𝐺(𝑋𝑋) ≤ 0  (1) 

Burada, 𝐹𝐹(𝑋𝑋) amaç fonksiyonunu, X tasarım 
değişkenlerinin vektörünü ve 𝐺𝐺(𝑋𝑋) eşitsizlik limitlerini 
ifade etmektedir. PMSM'nin tasarım optimizasyonunda 
kullanılan amaç fonksiyonunun ceza uygulanmadığı 
durumdaki ifadesi Denklem (2)’de, tasarımdaki toplam 
ceza fonksiyonu Denklem (3)’te ve ceza eklendiği 
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durumdaki amaç fonksiyonu Denklem (4)’te verilmiştir 
[23]. 

𝐹𝐹1 = ((100 − 𝐸𝐸𝐸𝐸)/2) + ((𝑎𝑎𝑎𝑎𝑎𝑎(0.5 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆))/0.5) +
((�𝑎𝑎𝑎𝑎𝑎𝑎(15000 − 𝑃𝑃𝑜𝑜)�)/15000)   (2) 

Burada 𝐹𝐹1 cezasız amaç fonksiyonu; 𝐸𝐸𝐸𝐸 verimlilik; 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 stator oluk doluluk oranı ve 𝑃𝑃𝑜𝑜 çıkış gücüdür.  

𝑇𝑇𝐶𝐶 = 𝐸𝐸𝐸𝐸𝐶𝐶 + 𝑃𝑃𝑜𝑜𝑜𝑜 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶 + 𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶 + 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   (3) 

Burada 𝑇𝑇𝐶𝐶  toplam ceza; 𝐸𝐸𝐸𝐸𝐶𝐶 verimlilik cezası; 𝑃𝑃𝑜𝑜𝑜𝑜 çıkış 
gücü cezası; 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶  stator oluk doluluk oranı cezası; 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶 stator diş akı yoğunluğu cezası, 𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶 kalıcı 
mıknatıs ağırlık cezası ve 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  vuruntu torku cezasıdır 
[23]. 

𝐹𝐹(𝑋𝑋) = 𝐹𝐹1 + 𝑇𝑇𝐶𝐶  (4) 

Burada 𝐹𝐹 amaç fonksiyonunu ve 𝑇𝑇𝐶𝐶  toplam cezayı 
temsil etmektedir. 

PMSM'nin kararlı ve geçici durum özelliklerini 
etkileyen parametrelerden seçilen eşitsizlik kısıtları 
aşağıdaki denklemlerde verilmiştir. 

𝐺𝐺1 = 1.8 − 𝐵𝐵𝑡𝑡 ≤ 0
𝐺𝐺2 = 0.5 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ≤ 0

𝐺𝐺3 = 500 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 0   𝑎𝑎𝑎𝑎𝑎𝑎   𝐺𝐺3 = 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 − 200 ≤ 0
𝐺𝐺4 = 15000 − 𝑃𝑃𝑜𝑜 ≤ 0   𝑎𝑎𝑎𝑎𝑎𝑎   𝐺𝐺4 = 𝑃𝑃𝑜𝑜 − 15000 ≤ 0

𝐺𝐺5 = 𝐸𝐸𝐸𝐸 − 85 ≤ 0
𝐺𝐺6 = 2.5 − 𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 0

  (5) 

Burada, 𝐵𝐵𝑡𝑡 ifadesi diş akı yoğunluğudur. 
Tasarlanan bir PMSM'nin kullanım alanları değiştikçe, 

performansı da farklılık göstermektedir. Bu nedenle, 
PMSM'nin kullanılacağı yere uygun bir tasarım yapılması 
gerekmekte ve bu durum optimizasyonun önemini 
artırmaktadır. Optimizasyon sürecinde seçilen değişkenler 
ve kısıtlamalar, motorun performansını doğrudan 
etkilemektedir. Bu çalışmada, optimizasyon sürecinde 
stator diş akı yoğunluğu, stator slot doluluk oranı, vuruntu 
torku, çıkış gücü ve kalıcı mıknatıs ağırlığı gibi performansı 
etkileyen parametreler eşitsizlik kısıtlamaları olarak 
kullanılmıştır [23]. 

Motor çekirdeğinin doygunlukta çalışmasını engellemek 
için Stator diş akı yoğunluğu değeri eşitsizlik kısıtı olarak 
seçilmiştir. Motorun performansını etkileyen titreşim ve 
gürültünün belli bir seviyede kalmasını sağlamak için vuruntu 
torku eşitsizlik kısıtı olarak seçilmiştir. Mıknatıs yapısını, 
verimi, torku ve maliyeti etkilemesinden dolayı mıknatıs 
ağırlığı eşitsizlik kısıtı olarak seçilmiştir. Optimizasyon işlemi 
sırasında termal etkilerinden dolayı stator oluk doluluk oranı 
%50'ye yakın olacak şekilde eşitsizlik kısıtı olarak seçilmiştir 
[23]. 

Tazmanya Canavarı Optimizasyon (TDO) Algoritması 

Optimizasyon süreci, en uygun çözümü bulmaya yönelik 
bir arama sürecidir ve bu süreç, Tazmanya canavarlarının 
yiyecek kaynağını bulma davranışına benzerdir. 
Optimizasyonun temel taşlarını oluşturan iki temel ilke keşif 
ve sömürüdür. Tazmanya canavarının yiyecek kaynağını 
ararken yaptığı keşif, optimizasyon sürecindeki arama 
alanının incelenmesiyle ilişkilidir. Diğer taraftan, avını 
kovalamak ve ona ulaşmak için yaptığı yerel arama, optimal 
çözüme yaklaşma sürecini simüle eder. Bu şekilde, Tazmanya 
canavarının yiyecek bulma ve avlanma stratejilerinin 
matematiksel modellemesi, optimizasyon problemlerinin 
optimal çözümlerine ulaşmak için etkili bir tasarım sunar [22]. 

Başlatma 
Önerilen TDO algoritması, arama ajanları olarak 

Tazmanya canavarlarını kullanan popülasyona dayalı bir 
stokastik algoritmadır. Başlangıç popülasyonu, problemin 
kısıtlamalarına göre rastgele oluşturulur. Her popülasyon 
üyesi, çözüm uzayındaki konumlarına göre problem 
değişkenleri için aday değerler önerir ve matematiksel olarak, 
her üye bir vektör olarak modellenir. TDO üyelerinin kümesi, 
Denklem (6)’daki matrisle temsil edilebilir [22]. 

𝑋𝑋 =

⎣
⎢
⎢
⎢
⎡
𝑋𝑋1
⋮
𝑋𝑋𝑖𝑖
⋮
𝑋𝑋𝑁𝑁⎦
⎥
⎥
⎥
⎤

𝑁𝑁𝑁𝑁𝑁𝑁

=

⎣
⎢
⎢
⎢
⎡
𝑥𝑥11 ⋯ 𝑥𝑥1𝑗𝑗 ⋯ 𝑥𝑥1𝑚𝑚
⋮ ⋱ ⋮ ⋰ ⋮
𝑥𝑥𝑖𝑖1 ⋯ 𝑥𝑥𝑖𝑖𝑖𝑖 ⋯ 𝑥𝑥𝑖𝑖𝑖𝑖
⋮ ⋰ ⋮ ⋱ ⋮
𝑥𝑥𝑁𝑁1 ⋯ 𝑥𝑥𝑁𝑁𝑁𝑁 ⋯ 𝑥𝑥𝑁𝑁𝑁𝑁⎦

⎥
⎥
⎥
⎤

𝑁𝑁𝑁𝑁𝑁𝑁

 (6) 

Burada 𝑋𝑋, Tazmanya canavarlarının popülasyonunu, 𝑋𝑋𝑖𝑖 
ise 𝑖𝑖’inci aday çözümü ifade etmektedir. Ayrıca, 𝑥𝑥𝑖𝑖𝑖𝑖, 𝑖𝑖’inci 
çözümün 𝑗𝑗’inci değişkeni için aday değeri, 𝑁𝑁 arama yapan 
Tazmanya canavarı sayısını ve 𝑚𝑚 ise verilen problemin 
değişken sayısını ifade etmektedir. 

Problemin amaç fonksiyonu, aday çözümlerin değişken 
değerleri ile hesaplanır ve elde edilen sonuçlar, Denklem 
(7)’deki vektör kullanılarak modellenir [22]. 

𝐹𝐹 =

⎣
⎢
⎢
⎢
⎡
𝐹𝐹1
⋮
𝐹𝐹𝑖𝑖
⋮
𝐹𝐹𝑁𝑁⎦
⎥
⎥
⎥
⎤

𝑁𝑁𝑁𝑁1

=

⎣
⎢
⎢
⎢
⎡
𝐹𝐹(𝑋𝑋1)
⋮

𝐹𝐹(𝑋𝑋𝑖𝑖)
⋮

𝐹𝐹(𝑋𝑋𝑁𝑁)⎦
⎥
⎥
⎥
⎤

𝑁𝑁𝑁𝑁1

(7) 

Burada, 𝐹𝐹, amaç fonksiyonu değerlerinin vektörüdür ve 
𝐹𝐹𝑖𝑖 , 𝑖𝑖’inci aday çözüm tarafından elde edilen amaç fonksiyonu 
değeridir. 

Amaç fonksiyonu değerlerinin vektörünün analizi, aday 
çözümlerin kalitesini gösterir. En iyi değeri hesaplayan aday 
çözüm, popülasyonun en iyi üyesi olarak kabul edilir ve her 
iterasyonda güncellenir. Tazmanya canavarı Optimizasyonu 
(TDO) algoritmasında, popülasyon güncellenmesi, her 
Tazmanya canavarının ya ölü hayvan kalıntıları ile ya da 
avlanarak beslenmesi stratejilerine dayanır. TDO'nun her 
iterasyonunda, her bir Tazmanya canavarı bu iki stratejiden 
yalnızca birine göre güncellenir [22]. 

Ölü Hayvan Kalıntılarını Yiyerek Beslenme (Keşif)  
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Tazmanya canavarı, bazen avlanmak yerine ölü hayvan 
kalıntıları beslenmeyi tercih eder. Çevresinde yaşayan diğer 
yırtıcı hayvanlar büyük avları yakalayıp tamamını 
yiyemeyebilirler. Tazmanya canavarı bu arta kalan leşlerle 
beslenirler. Tazmanya canavarının ölü hayvan kalıntısı 
bulmak için habitatını tarama davranışı, TDO algoritmasının 
arama sürecine benzer. Bu strateji, TDO'nun optimum 
çözümü bulmak için arama alanını farklı bölgelerde tarama 
gücünü gösterir. Tazmanya canavarının bu ölü hayvan 
kalıntısı arama stratejisi, TDO'nun orijinal optimum alanı 
belirlemek için arama uzayının farklı alanlarını taramadaki 
gücünü göstermektedir [22]. 

Tazmanya canavarı ölü hayvan kalıntısı yeme stratejisi 
Denklem (8) ile Denklem (10) arasındaki denklemler 
kullanılarak matematiksel olarak modellenir. TDO 
tasarımında, her Tazmanya canavarı için diğer popülasyon 
üyelerinin arama uzayındaki konumları ölü hayvan kalıntısı 
konumları olarak kabul edilir. Bu konumlardan birinin 
rastgele seçimi Denklem (8)’de simüle edilirken, 𝑘𝑘'ıncı 
popülasyon üyesi, 𝑖𝑖'inci Tazmanya canavarı için hedef ölü 
hayvan kalıntısı olarak seçilir. Burada 𝑖𝑖’nin karşıtı olarak 𝑘𝑘 
sayısı 1 ile 𝑁𝑁 arasında rastgele seçilmektedir [22]. 

𝐶𝐶𝑖𝑖 = 𝑋𝑋𝑘𝑘 ,      𝑖𝑖 = 1,2, … ,𝑁𝑁,   𝑘𝑘 ∈ {1,2, … ,𝑁𝑁|𝑘𝑘 ≠ 𝑖𝑖}  (8) 

Burada, C𝑖𝑖 𝑖𝑖'inci Tazmanya canavarı tarafından seçilen ölü 
hayvan kalıntısını ifade etmektedir. 

Tazmanya canavarı için, seçilen ölü hayvan kalıntısına 
dayalı olarak arama uzayında yeni bir konum hesaplanır. Eğer 
bu ölü hayvan kalıntısının uygunluk değeri daha iyi ise 
canavar ölü hayvan kalıntısına doğru hareket eder; aksi 
takdirde kalıntıdan uzaklaşır. Tazmanya canavarının bu 
hareket stratejisi Denklem (9) ile simüle edilmektedir. Bu 
hareket iterasyon boyunca tekrarlanır ve iterasyon sonunda 
yeni konumda elde edilen amaç fonksiyon değeri daha iyi ise 
bu konum kabul edilir; aksi takdirde, canavar önceki 
konumuna geri döner. Bu güncelleme ise Denklem (10) ile 
modellenmiştir [22]. 

𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛1 = �
𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑟𝑟 ∙ �𝑐𝑐𝑖𝑖𝑖𝑖 − 𝐼𝐼 ∙ 𝑥𝑥𝑖𝑖𝑖𝑖� , 𝐹𝐹𝐶𝐶𝑖𝑖 < 𝐹𝐹𝑖𝑖
𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑟𝑟 ∙ �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖� , 𝑑𝑑𝑑𝑑ğ𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (9) 

𝑋𝑋𝑖𝑖 = �𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛1  , 𝐹𝐹𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛1 < 𝐹𝐹𝑖𝑖
𝑋𝑋𝑖𝑖   , 𝑑𝑑𝑑𝑑ğ𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (10) 

Burada, 𝑋𝑋𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛1, 𝑖𝑖'ninci Tazmanya canavarının birinci 
stratejiye dayalı yeni konumu, 𝑥𝑥𝑖𝑖𝑖𝑖, 𝑗𝑗'nci değişken için değeri, 
𝐹𝐹𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛1, amaç fonksiyon değeri, 𝐹𝐹𝐶𝐶𝑖𝑖, seçilen ölü hayvan 
kalıntısının amaç fonksiyon değeri, 𝑟𝑟, [0, 1] aralığında rastgele 
bir sayı ve 𝐼𝐼, 1 veya 2 olabilen rastgele bir sayıdır [22].  

Av Yiyerek Beslenme (Sömürü) 
Bu strateji, av avlamak ve yemek üzerinedir ve iki 

aşamadan oluşur: İlk aşamada Tazmanya canavarı çevreyi 
tarayarak avını seçer ve saldırır. Bu süreç ölü hayvan kalıntısı 

seçme işlemine benzediğinden aynı şekilde 
modellenmektedir. İkinci aşamada canavar, seçtiği avına 
yaklaşır, kovalar, durdurur ve yemeye başlar. Bu nedenle, av 
seçiminin ilk aşaması ve saldırı Denklem (11) ile Denklem (13) 
arasındaki denklemlerle modellenir. Av seçim süreci 
Denklem (11) ile simüle edilir. Bu süreçte diğer popülasyon 
üyelerinin konumları av olarak kabul edilir. Burada 𝑖𝑖’nin 
karşıtı olarak 𝑘𝑘 sayısı 1 ile 𝑁𝑁 arasında rastgele av olarak 
seçilmektedir [22]. 

𝑃𝑃𝑖𝑖 = 𝑋𝑋𝑘𝑘 ,      𝑖𝑖 = 1,2, … ,𝑁𝑁,   𝑘𝑘 ∈ {1,2, … ,𝑁𝑁|𝑘𝑘 ≠ 𝑖𝑖}  (11) 
Burada, P𝑖𝑖 𝑖𝑖'inci Tazmanya canavarı tarafından seçilen avı 

ifade etmektedir. 
Avın konumu belirlendikten sonra Tazmanya canavarı için 

yeni bir konum hesaplanırken, seçilen avın amaç fonksiyonu 
değeri daha iyi ise Tazmanya canavarı ona doğru hareket 
eder, aksi takdirde o konumdan uzaklaşır. Bu adım Denklem 
(12) ile modellenmektedir. Tazmanya canavarı için 
hesaplanan yeni konum, amaç fonksiyonun değerini 
iyileştiriyorsa önceki konumun yerini alır. Bu adım Denklem 
(13) ile modellenmektedir [22].

𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 = �
𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑟𝑟 ∙ �𝑝𝑝𝑖𝑖𝑖𝑖 − 𝐼𝐼 ∙ 𝑥𝑥𝑖𝑖𝑖𝑖� , 𝐹𝐹𝑃𝑃𝑖𝑖 < 𝐹𝐹𝑖𝑖
𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑟𝑟 ∙ �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑖𝑖� , 𝑑𝑑𝑑𝑑ğ𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (12) 

𝑋𝑋𝑖𝑖 = �𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2  , 𝐹𝐹𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 < 𝐹𝐹𝑖𝑖
𝑋𝑋𝑖𝑖   , 𝑑𝑑𝑑𝑑ğ𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   (13) 

Burada, xijnewS2 ise j’inci değişken için değeri, XinewS2 
𝑖𝑖’inci tazmanyanın ikinci stratejiye göre yeni konumunu, 
FinewS2, 𝑖𝑖’inci tazmanyanın yeni amaç fonksiyonu değerini, 
FPi ise seçilen avın amaç fonksiyonu değerini ifade 
etmektedir. 

Bu stratejiyle birincisi arasındaki fark, ikinci aşama ve av 
kovalama simülasyonudur. Tanzanyanın, avın çevrede 
kovalanması, yerel aramaya benzer ve TDO'nun daha iyi 
çözümlere yakınsama yeteneğini gösterir. Av kovalama, 
Denklem (14)’ten Denklem (16)’ya kadarki denklemlerle 
modellenir. Bu aşamada, Tazmanya’nın konumu, av 
kovalamaca çevresinin merkezi olarak kabul edilir. Çevrenin 
yarıçapı Denklem (14) ile hesaplanır. Yeni bir konum, 
Denklem (15) ile hesaplanır ve önceki konumdan daha iyi ise 
kabul edilir. Bu süreç Denklem (16) ile simüle edilir [22]. 

𝑅𝑅 = 0.01 ∙ �1 − 𝑡𝑡
𝑇𝑇
� (14) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥𝑖𝑖𝑖𝑖 + (2𝑟𝑟 − 1) ∙ 𝑅𝑅 ∙ 𝑥𝑥𝑖𝑖𝑖𝑖  (15) 

𝑋𝑋𝑖𝑖 = �𝑋𝑋𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛  , 𝐹𝐹𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 < 𝐹𝐹𝑖𝑖
𝑋𝑋𝑖𝑖   , 𝑑𝑑𝑑𝑑ğ𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (16) 

Burada 𝑅𝑅 saldırıya uğrayan konum noktasının 
komşuluk yarıçapı, 𝑡𝑡 iterasyon sayacı, 𝑇𝑇 maksimum 
iterasyon sayısı, 𝑥𝑥𝑖𝑖𝑖𝑖, 𝑗𝑗'inci değişken için değeri, 𝑋𝑋𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛, 𝑋𝑋𝑖𝑖 
komşuluğundaki 𝑖𝑖'inci Tazmanya canavarının yeni konumu 
ve 𝐹𝐹𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 amaç fonksiyonu değeridir [22]. 
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Tablo 1. TDO Algoritmasının Sözde Kodu [22]. 
Table 1. Pseudocode of the TDO Algorithm [22]. 

Başla 

Optimizasyon problem bilgisini gir. 
TDO algoritmasının popülasyon boyutunu (N) ve iterasyon sayısını (T) ayarla. 

Tazmanya canavarı konumunun rastgele başlat ve amaç fonksiyonunun değerlendir. 
for 𝑡𝑡 = 1 : T 

for i = 1 : N 
if Pr < 0.5 , Pr = rand 

Stratej1: Ölü hayvan kalıntısı ile beslenme (keşif aşaması) 
TDO’nun 𝑖𝑖’inci Tazmanya canavarı için leşi Denklem (8)’i kullanarak seç. 

TDO’nun 𝑖𝑖’inci Tazmanya canavarının yeni konumunu Denklem (9)’u kullanarak hesapla. 
TDO’nun 𝑖𝑖’inci Tazmanya canavarını Denklem (10)’u kullanarak güncelle. 

Aşama 2: Av yiyerek beslenme (sömürü aşaması) 
Aşama 1: Av seçimi ve saldırı 

TDO’nun 𝑖𝑖’inci Tazmanya canavarı için avı Denklem (11)’i kullanarak seç. 
TDO’nun 𝑖𝑖’inci Tazmanya canavarının yeni konumunu Denklem (12)’yi kullanarak hesapla. 

TDO’nun 𝑖𝑖’inci Tazmanya canavarını Denklem (13)’ü kullanarak güncelle. 
Aşama 2: Av peşinde koşma 

Komşuluk yarıçapını Denklem (14)’ü kullanarak güncelle. 
𝑖𝑖’inci Tazmanya canavarının 𝑋𝑋𝑖𝑖 komşuluğundaki yeni durumunu Denklem (15) kullanarak hesapla 

𝑖𝑖’inci Tazmanya canavarı’nı Denlem (16)’yı kullanarak güncelle. 
end 

end 
Şu ana kadar bulunan en iyi çözümü kaydet. 

end 
TDO ile elde edilen en iyi çözümü çıktı olarak ver. 

Bitiş TDO 

Benzetim Çalışması 

Bu kısımda, belirlenen amaç fonksiyonu doğrultusunda 
TDO algoritması ile gerçekleştirilen optimizasyon işlemine 
ait sonuçlar ve analizler yer almaktadır. TDO 
algoritmasının etkinliğini ölçmek amacıyla 
karşılaştırmalar, motora ait başlangıç (INITIAL) tasarım 
değerleri ile yapılmıştır. Optimizasyon işleminde beş farklı 
değişken değeri belirlenmiştir. Bunlar; stator oluk 
çarpıklığı, stator oluk alt genişliği, mıknatıs yapısına bağlı 
olarak mıknatıs kalınlığı, kucaklama ve ofset değerleridir. 
Belirlenen bu beş farklı değişken değeri için optimizasyon 
işlemi Denklem (4)’te yer alan amaç fonksiyonuna göre 
gerçekleştirilmiştir. Algoritma için popülasyon sayısı 30 ve 
maksimum iterasyon sayısı 50 olarak belirlenmiştir. 
Değişken değerleri için alt ve üst limit değerleri Tablo 2’de 
yer almaktadır. 

Tablo 2’de yer alan değerlere göre, 0,109251 değerine 
sahip TDO algoritması 0,192627 değerine sahip başlangıç 
tasarımından daha iyi uygunluk değerine sahiptir. Bunun 
yanı sıra TDO algoritmasının uygunluk değeri açısından 
başlangıç tasarımına göre %43,2836 daha iyi sonuç verdiği 
gözlemlenmiştir. Ayrıca, TDO algoritması ile elde edilen 

değişken değerleri optimizasyon işlemi sonucunda 
belirlenen kısıtlar arasında kalabilmiştir. 
Tablo 3’te yer alan PMSM tasarımına ait performans 
verilerine göre, TDO algoritması başlangıç tasarımına 
kıyasla önemli iyileştirmeler sağlamıştır. Verimlilik, 
%91,7788’den %92,7059’a yükselerek yaklaşık %1’lik bir 
artış göstermiş ve motorun enerji kayıplarını azaltmada 
başarılı olduğu gözlemlenmiştir. Vuruntu torku, 477,326 
mNm’den 472,528 mNm’ye düşerek motorun titreşim 
seviyesini ve mekanik stabilitesini iyileştirme potansiyeli 
sunmuştur. Kalıcı mıknatıs ağırlığı, optimizasyon sonucu 
%13,8 azalarak 2,14837 kg’dan 1,85142 kg’a gerilemiş, 
böylece malzeme kullanımında önemli bir tasarruf 
sağlanmıştır. Stator oluk doluluk oranı %48,3667’den 
%48,1845’e, stator dış akı yoğunluğu ise 1,68131 T’den 
1,64674 T’ye düşerek manyetik akının daha dengeli 
dağıtıldığı ve manyetik doygunluğun optimize edildiği 
belirlenmiştir. Buna karşılık, stator boyunduruk akı 
yoğunluğu 1,18247 T’den 1,30261 T’ye yükselmiş, bu da 
manyetik devrenin verimliliğini artırmıştır. Toplam net 
ağırlık, 53,2286 kg’dan 53,7132 kg’a hafif bir artış 
göstermiş; ancak bu artışın, stator ve rotor 
optimizasyonlarından kaynaklanan yapısal 
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iyileştirmelerden ileri geldiği değerlendirilmektedir. Çıkış 
gücü, başlangıç tasarımında 15004,7 W iken, optimize 
tasarımda 15000 W olarak ölçülmüş olup, bu küçük farkın 
optimizasyonun performansı üzerinde önemli bir olumsuz 

etki yaratmadığını göstermektedir. Genel olarak, TDO 
algoritması, verimlilik, mekanik stabilite ve malzeme 
kullanımı açısından başlangıç tasarımına göre daha etkili 
ve verimli sonuçlar verdiği açıkça söylenebilmektedir.  

Tablo 2. Başlangıç Tasarımı ve TDO Algoritmasına Ait Minimum Uygunluk Değeri, Değişken Değerleri ve Limitleri. 
Table 2. Initial Design and Minimum Suitability Value, Variable Values, and Limits for the TDO Algorithm. 

Algoritma min maks Başlangıç TDO 
Kucaklama 0.5 1 0,72000 0,78358 
Ofset 0 20 14,5000 7,20526 
Stator Oluk Çarpıklığı 0 1 0,00000 0,44932 
Mıknatıs Kalınlığı 6 9 8,72000 6,55013 
Stator Oluk Alt Genişliği 5 9 7,38000 7,41433 
Minimum Uygunluk Değeri 0,192627 0,109251 

Tablo 3. Tasarlanan Motora Ait Performans Değerleri. 
Table 3. Performance values of the designed motor. 

Algoritma Verimlilik (%) 
Vuruntu Torku 

(mNm) 
Stator Oluk Doluluk 

Oranı (%) 
Stator Diş Akı 
Yoğunluğu (T) 

Initial 91,7788 477,326 48,3667 1,68131 
TDO 92,7059 472,528 48,1845 1,64674 

Algoritma Kalıcı Mıknatıs 
Ağırlığı (kg) 

Stator Boyunduruk Akı 
Yoğunluğu (T) 

Toplam Net Ağırlık 
(kg) 

Çıkış Gücü 
(W) 

Initial 2,14837 1,18247 53,2286 15004,7 
TDO 1,85142 1,30261 53,7132 15000 

Resim 1. Başlangıç Tasarımı ve TDO Algoritması İle Elde Edilen Motor Modelleri İçin Akı Yoğunluğu Dağılımları. 
Figure 1. Current Density Distributions for Motor Models Obtained Using Initial Design and TDO Algorithm. 
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Resim 2. Rotor Konumuna Göre Vuruntu Tork Değişimi. 
Figure 2. Cogging Torque Change Based on Rotor Position. 

Resim 3. Başlangıç Tasarımı ve TDO Algoritmasına Ait Motor Yapıları. 
Figure 3. Motor Structures Belonging to the Initial Design and TDO Algorithm. 
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Resim 4. Başlangıç Tasarımı ve TDO Algoritmasına Ait Motor Akı Dağılımları ve PMSM Kafes Ağı Gösterimleri. 
Figure 4. Motor Current Distributions and PMSM Cage Network Displays for the Initial Design and TDO Algorithm. 

TDO algoritması ve başlangıç tasarımı için elde edilen 
tasarım parametrelerine uygun olarak oluşturulan motor 
modellerine Sonlu Elemanlar Analizi (FEA) uygulanmıştır. 
Resim 1, tasarlanan motorların analizinden elde edilen akı 
yoğunluğu dağılımlarını göstermektedir.  

Vuruntu torkunun rotor konumuna bağlı değişimi 
Resim 2'de verilmiştir. Vuruntu torkunun rotor konumuna 
bağlı değişimi Resim 2'de verilmiştir. TDO algoritmasının 
vuruntu torkunu azaltarak rotor dinamiğini daha kararlı 
hale getirdiği söylenebilir. Özellikle maksimum ve 
minimum tork değerlerindeki düşüş, sistemin mekanik 
yüklenmelerini azalttığına işaret etmektedir. Bu 
bağlamda, optimizasyon çalışmalarında TDO algoritması, 
vuruntu torkunu azaltma açısından avantajlı bir yöntem 
olarak değerlendirilebilir. Başlangıç tasarımı ve TDO 
algoritması ile elde edilen modellerdeki motor yapılarına 
ait stator oluk yapıları ve mıknatıs geometrisi kesitleri 
Resim 3’te ayrıntılı verilmiştir. Ayrıca, elde edilen 
modellere ait motor akı dağılımları ve PMSM kafes ağı 
gösterimleri Resim 4’te yer almaktadır. 

Sonuç 

Bu çalışmada, literatürde yer alan Tazmanya Canavarı 
Optimizasyon (TDO) algoritmasının gerçek hayat 
problemlerindeki etkinliğini ölçmek amacıyla Kalıcı 
Mıknatıslı Senkron Motor (PMSM) tasarım optimizasyonu 
işlemi TDO algoritması ile gerçekleştirilmiştir. Hem 
başlangıç tasarımı hem de TDO algoritması ile elde edilen 
sonuçlar, uygunluk değeri açısından karşılaştırılmış ve 
algoritmanın etkinliği ve verimliliği analiz edilmiştir. 
Ayrıca, amaç fonksiyonunu oluşturan verimlilik, stator 
oluk doluluk oranı ve çıkış gücü performans 
değerlerinin 
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yanı sıra vuruntu, stator diş akı yoğunluğu, kalıcı mıknatıs 
ağırlığı, stator boyunduruk akı yoğunluğu ve toplam net 
ağırlık gibi performans değerleri de elde edilerek 
karşılaştırma işlemi gerçekleştirilmiştir. Elde edilen 
sonuçlara göre TDO algoritmasının PMSM tasarım 
optimizasyonu probleminin çözümüne başlangıç 
tasarımından daha iyi sonuç verdiği görülmektedir. 
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