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Abstract: Various metaheuristic algorithms inspired by nature are used to solve optimization
problems. With the increasing number of metaheuristics, their performance on problems is
gradually improving. In this paper, the performance analysis of the newly proposed
metaheuristics Artificial Rabbit Optimization Algorithm (ARO), African Vulture Optimization
Algorithm (AVOA), Prairie Dog Optimization Algorithm (PDO) and the well-known Genetic
Algorithm (GA) were performed for the first time. ARO is modeled after rabbits’ behavioral
patterns, such as detour foraging and random hiding. AVOA is developed based on the
navigation and competitive behaviors of African vultures. The newly proposed final
metaheuristic PDO is inspired by the survival struggle of prairie dogs. As for the popular GA,
it is based on survival of the fittest. Unimodal and multimodal test functions were used during
the analysis. According to the simulation results, AVOA performed better and generated more
successful results compared to the others 22 times in the mean and best values. AVOA was
followed by PDO and ARO, proving that the newly proposed metaheuristics will be successful
on different problems.

Dort Metasezgisel Algoritmanin Kiyaslama Fonksiyonlar1 Uzerindeki Performans Analizi

Anahtar
Kelimeler
Metasezgiseller,
Yapay tavsan
optimizasyon
algoritmast,
Afrika akbabasi
optimizasyon
algoritmast,
Cayir  kopegi
optimizasyon
algoritmasi,
Genetik
algoritma

Oz: Dogadan ilham alan gesitli metasezgisel algoritmalar, optimizasyon problemlerini ¢dzmek
icin kullanilmaktadir. Metasezgisel algoritmalarin sayisindaki artigla birlikte, bu algoritmalarin
problemlerdeki performanslart da giderek iyilesmektedir. Bu makalede, yeni Onerilen
metasezgisel algoritmalar olan Yapay Tavsan Optimizasyon Algoritmasi (ARO), Afrika
Akbaba Optimizasyon Algoritmasi (AVOA), Cayir Képegi Optimizasyon Algoritmasi (PDO)
ve iyi bilinen Genetik Algoritma'nin (GA) performans analizleri ilk kez gergeklestirilmistir.
ARO, tavsanlarin dolambagli beslenme ve rastgele saklanma gibi davranis kaliplarini model
alarak gelistirilmistir. AVOA, Afrika akbabalarinin navigasyon ve rekabetgi davraniglarina
dayanmaktadir. Yeni 6nerilen son metasezgisel algoritma PDO ise ¢ayir kdpeklerinin hayatta
kalma miicadelesinden esinlenilerek gelistirilmigtir. Popiiler GA ise en uygun olanmn hayatta
kalmasi prensibine dayanir. Analiz sirasinda tek modlu (unimodal) ve cok modlu (multimodal)
test fonksiyonlar1 kullanilmistir. Simiilasyon sonuglarina gore, AVOA digerlerine kiyasla 22
kez ortalama ve en iyi degerlerde daha iyi performans gostermis ve daha basarili sonuglar
dretmistir. AVOA’y1 PDO ve ARO takip ederek, yeni onerilen metasezgisel algoritmalarin
farkli problemlerde basarili olacagini kanitlamistir.

73



https://orcid.org/0000-0003-3626-553X
https://orcid.org/0009-0007-0486-0525

Tr. J. Nature Sci. Volume 14, Issue 3, Page 73-89, 2025

1. INTRODUCTION

Nowadays, the number of metaheuristic algorithms
developed inspired by nature is increasing. This increase
is due to the fact that metaheuristics are less costly and
more effective than traditional approaches. For this
reason, they are used in many different fields, especially
engineering [1,2]. Metaheuristics used in these areas
contribute to the analysis of large data sets, efficient use
of resources, improvement of decision-making processes
and the solution of many other complex problems. Many
popular metaheuristics that contribute to the solution of
these complex problems such as Particle Swarm
Optimization Algorithm [3], Genetic Algorithm (GA) [4],
Artificial Bee Colony Algorithm [5] and Ant Colony
Optimization Algorithm [6] are among them. However,
newly developed metaheuristics perform better in less
time compared to these popular ones [7]. With the
increase in performances, determining the best
metaheuristic provides important contributions to
optimization problems.

The aim of this paper is to compare the performances of
the newly proposed metaheuristics, namely Artificial
Rabbit Optimization Algorithm (ARO), African Vultures
Optimization  Algorithm (AVOA), Prairie Dog
Optimization Algorithm (PDO), along with the popular
metaheuristic GA, using various performance criteria.
The motivation for selecting ARO, AVOA, and PDO lies
in their novelty and increasing presence in recent
metaheuristic research. These algorithms, developed
between 2021 and 2023, are inspired by diverse biological
systems—rabbits, vultures, and prairie dogs—which offer
a wide behavioral spectrum for optimization modeling.
Despite promising initial findings in their original
proposals, no comprehensive and independent
comparison has been conducted under identical test
environments. This study aims to address that gap and to
evaluate their performance against a well-known
algorithm, GA. Other contributions of the paper are as
follows:

e To the best of our knowledge, although ARO,
AVOA, and PDO have been individually tested
in their original studies, this is the first
independent work to analyze all three under
identical experimental conditions and compare
them directly with a common reference
algorithm (GA). This provides a more objective
assessment of their relative performance.

e  The performances of metaheuristics are analyzed
with different test functions.

e According to the information obtained from the
experiments, AVOA produces the best
performance.

In the remainder of the paper is as follows. Section 2
explains information about metaheuristics and their
pseudocodes. Section 3 presents the test functions used to
analyze the performance of metaheuristics. Additionally,
in this section, the parameters of the metaheuristics are

given. Section 4 provides simulation results, convergence
curves, and t-test results. Finally, Section 5 gives
information about the conclusion and future work.

2. MATERIAL AND METHOD

In this section, detailed information about metaheuristic
algorithms is given. In order to present the algorithms in
a more comprehensive and diverse manner, this study
includes pseudocode representations for ARO and
AVOA, and flowcharts for GA and PDO. This mixed
presentation aims to enhance understanding by offering
both algorithmic logic and visual summaries.

2.1. Artificial Rabbit Optimization Algorithm (ARO)

ARO is a metaheuristic based on behavioral models of
rabbits [8]. In ARO, the two behaviors that rabbits have
are determined according to the energy of the rabbits, and
the transition between the behavior is made depending on
energy shrink. Initially, the energy levels of the rabbits are
high and in order to expand the search space, the rabbits
exhibit detour foraging behavior. They do this by
selecting grasses in remote areas to prevent predators
from finding their nests. Energy shrink occurs when
foraging becomes repetitive. When there is enough energy
shrink, they switch to random hiding behavior. In order to
update their recent position, they build many nests in their
territory and aim to hide from predators. They randomly
select one of the burrows and complete the random hiding.
Energy shrink between detour foraging and random
hiding then these two behavioral strategies are described
in detail below.

Energy shrink

In the early phases of the iterations, rabbits consistently
exhibit detour foraging behavior [8]. However, in the later
phases of the iterations they perform random hiding. This
intermediate transition is caused by energy shrink and its
mathematical model is presented in Equation 1.

A() =4<1—%)ln% )

where r represents a randomly generated number within
the range of 0 to 1. t is the recent number of iterations,
while T depicts the total number of iterations.

Detour foraging

Rabbits have a wide field of vision. For this reason, they
do not eat food in their habitat to avoid predators detecting
their nests [9]. They randomly feed on grasses in remote
areas. This behavior is termed detour foraging
(exploration). In detour foraging, the ARO helps to avoid
local extremes and search globally, as described in
Equation 2.
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where ¥; (t+1) represents the ith rabbit’s likely position at
time t+1. X; (t) is the ith rabbit’s position at time t. n is the
rabbit population size. round is rounding to the nearest
integer. n,; depends on the standard normal distribution
and is shown in Equation 3. r; is a random number from
0 to 1. R is the running operator and is expressed as in
Equation 4.

ny ~ N(0,1) 3)
R=L-c )

Equation 5 defines the run length, denoted as L, which
signifies the movement speed during detour foraging. c is
a mapping vector that can randomly assist the algorithm
and is mathematically modeled as in Equations 6-7.

L= (e — e(t_Tlf) - sin (27r,) (5)

where t and T denote the recent and total number of
iterations respectively. 1, is a random number ranging
between 0 and 1.

_(1 ifk==g90), _ _
c(k) {0 ) Pk =1,.,d and 1 ©
1, ey [T3 * d]

g = randperm (d) @)

where [-] represents the ceiling function, randperm is an
integer permutation from 1 to d at random. 73 is a random
number between 0 and 1.

Random hiding

Rabbits can dig different tunnels around their burrows to
escape predators [10]. In each iteration, a rabbit digs d
tunnels in the search space in each dimension. They also
randomly choose one of the tunnels in each dimension to
reduce the probability of predation. Mathematical models
of random hiding are given in Equations 8-10.

Byt +1) = %) + R - (1, - by () — (D)), i

=1,..,n ®)
gr(k) = {(1) itk :efse[rs Al 1,4 ©)
by (t) = %(t) + H - g, - %:(t) (10)

where Ei_r(t) is the randomly chosen hiding place. r, and
rs are random numbers from 0 to 1. X;(t) is the ith
rabbit’s position at time t. R is the running operator, H is
the hiding parameter and d is the problem size. The
location update after performing detour foraging or
random hiding is given in Equation 11.

%+ 1)
_ {fi(f) fE) < f(Wi(t + 1)) (11)
vi(t+1) fE@®) > f@(t+ 1)

2)

In cases where the fitness value of the candidate position
of the ith rabbit exceeds its recent position, The rabbit will
move from where it was and stay at the candidate place
that either (Equation 2) or (Equation 8) determines. The
ARO pseudocode is presented in Algorithm 1.

Algorithm 1: ARO
1. Generate the initial population randomly and evaluate their

fitness

2. repeat

3. for each (rabbit) do

4. Calculate the energy shrink using (Equation 1)

5. if (energy shrink > 1) then

6. Choose a random rabbit

7. Calculate the running operator using
(Equations 3-7)

8. Perform detour foraging using (Equation 2)

9. Calculate fitness value

10. Update recent individual’s position using
(Equation 11)

11. else

12. Generate the nests using (Equation 10)

13. Perform random hiding using (Equation 8)

14. Calculate fitness value

15. Update recent individual’s position using
(Equation 11)

16. end if

17. Update the best solution so far

18. end for

19. until (stopping criterion is satisfied)
20. return the best solution

2.2. African Vultures
(AVOA)

Optimization Algorithm

AVOA is ametaheuristic inspired from the navigation and
competition behavior of African wvultures [11]. The
vultures are divided into two basic groups, each
representing a solution. In the algorithm, the fitness value
of all solutions is calculated to divide the vultures into
groups. The best vulture in the initial group is the first
vulture with the highest value. Likewise, the second
vulture in the second group is the best vulture in terms of
value. Other vultures in the population are used to move
or replace these two best vultures.

Vultures are divided into two groups to find food and live
in groups. Each group has different foraging and eating
abilities. Vultures are prevented from overeating by their
tendency to forage and eat for hours. In the metaheuristic,
the worst solution is the hungriest and weakest vulture.
The other vultures try to get closer to the best vulture by
avoiding the worst solution. There are four basic phases
in AVOA: Identifying the best vulture in a random group,
calculation of hunger rates, exploration and exploitation.

Identifying the best vulture in a random group

The initial population is created, and the solutions’ fitness
values are calculated. In this phase, the best vulture of the
first and second group is selected from the two best
solutions, respectively. The other solutions aim to reach
the best solutions by moving towards the best two groups.
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During each iteration, the population’s positioning is
adjusted according to their fitness values.

Calculation of the hunger rates

Vultures can fly longer distances when they have high
energy after eating their fill [12]. If they’re hungry, it
means they lack sufficient energy and cannot fly next to a
stronger vulture. The hunger rate, which tends to
decrease, is given in Equations 12-13.
s iter
b= sine (Tx 1)
2 maXiter

(12)

T iter
+ cos (—x7>—1>
2 maXiter

iter
F=(2rand1+1)><zx<1——>+t (13)
maXiter

where, iter and max;,,, are the recent and total number of
iterations respectively. w is a fixed number and
decreasing this parameter reduces the probability of
starting the exploration. The parameter h is a randomly

P(i+1)={

where, R (i) is the best vultures and X is the distance the
vultures move to protect the food. The rand symbols in the
equation are numbers between 0 and 1. u; and [, are the
boundaries of the search space. The convergence of
rand; to 1 increases the ability to explore different
spaces.

Exploitation

If the hunger rate is less than 1, it starts the stage of
metaheuristic exploitation. Depending on whether this

selected number that can assume values ranging from -2
to 2. Similarly, rand, is a random number from 0 to 1. F
is the hunger rate of vultures. According to the value of z,
it is determined whether vultures are hunger or not. If this
value is below 0, it indicates the vulture’s hunger. If it is
above 0, it means that the vulture is fed. In addition, if the
hunger rate of the vultures is greater than 1, they start
searching for food in different regions and perform the
exploration. Otherwise, they move to the exploitation by
searching for food near neighboring solutions.

Exploration

Vultures choose two different strategies by searching
random areas. They choose strategies based on the
parameter p, . This parameter should have a value
between 0 and 1 and should be evaluated before
exploration. The mathematical model of strategy selection
is described in Equation 14.

R(@) — |X X R(i) — P(D)| X F py; = randp, (14)
R(i) — F + rand, % ((ub — 1) X rand; + lb) p; <randp,

rate is less than 0.5 or not, this phase is divided into two.
If the value is small, vultures compete for food. Two
different strategies are selected for each choice with
randomly generated values. The selection of strategies is
determined by the parameters p, and p;. Vultures have
enough energy to search for food during the competition
phase and may conflict over food sources. Weaker
vultures fly in a spiral pattern and try to take food from
stronger ones. This behaviour is given in Equation 15,
depending on the parameter p,.

IX X R@) — P()| x (F + rand,) — (R(i) — P())) if p, = randp,

Pi+1)= R(i) — R(i) X (%:) (rands x cos(P(i)) + rands x sin(P(1))) if p, < randp,

where P(i) represents the recent vector position from
which the vulture’s distance from the best vultures in two
groups is calculated. R(i) denotes one of the two best
vultures’ position vectors in the last iteration. rand
values are numbers between 0 and 1.

In the two stages of the exploration, there are aggressive
competitions over the food source. If the hunger rate is
less than 0.5, this stage of the phase is started. At the
beginning of the stage, a parameter randp, is generated
between 0 and 1. If this parameter p; is greater than or
equal, several species of vultures gather on the food
source. Otherwise, there is a siege strife among the
vultures. The mathematical model for this stage is given
in Equation 16. Additionally, the gathering of vultures
over the food source is expressed based on Equations 17-
18.

(15)

Eq.18 if ps = randp,
Eq.19 if ps <randp,
BestVulture (i) x P(i)
BestVulture 4 (i) — P(i)?
+ BestVulture , (i) (17)
BestVulture , (i) X P(i)
BestVulture , (i) — P(i)?

+ BestVulture , (i)

. At 4,
P(i+1)= >

P(i+1) ={ (16)

A1=—FX

AZZ_FX

(18)

where, BestVulture {(i) and BestVulture , (i) represent
the best vultures. F is the hunger rate, P(i) is the recent
vulture’s position and P(i + 1) is the position of the
vulture in the next iteration.

When the hunger rate is less than 0.5, the leader vultures
of the groups remain hungry. Therefore, they lack the
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necessary energy to handle the other vultures within the
group. However, the remaining vultures also grow more
aggressive in their search for food. The leader vultures
move in the right different directions. Equation 19 is used
to model this movement.

P(i+1) = R(i) — F x LF (d) x |R(})
— P(D)]

where d is the problem size and |R(i) — P(i)| is the
vulture’s distance from among the best vultures in the two
groups. To improve the efficiency of AVOA, a Lévy flight
[13, 14] is included. The modeling of this flight is given
in Equation 20.

(19)

uxao
LF(x) = 0.01 X ——,0
lv|#

I(1+p) x sin (2)
r(1+ﬁ2)x/3xz($)

(20)

R

where u and v are randomly chosen numbers within the
range of 0 to 1. The default number value of 8 is 1.5 and
is constant. The AVOA pseudocode algorithm is given in
Algorithm 2.

Algorithm 2: AVOA
1. Randomly generate the initial population
2 repeat
3 Calculate fitness values of vultures
4. Set the best first position of vulture
5. Set the second best position of vulture
6
7
8

for each (vulture) do
Choose the best vulture position

. Update hunger rate

9. if (hunger rate > 1) then

10. if (Py = randp,) then

11. Update the position using Equation 14

12. else

13. Update the position using Equation 14
(part two)

14. end if

15. end if

16. if (hunger rate < 1) then

17. if (hunger rate > 0.5) then

18. if (Py = randp,) then

19. Update the position using
Equation 15

20. else

21. Update the position using
Equation 15 (part two)

22. end if

23. else

24. if (P; = randp,) then

25. Update the position using
Equation 16

26. else

27. Update the position using
Equation 16 (part two)

28. end if

29. end if

30. until (stopping criterion is satisfied)
31. return the position of the best vulture

2.3. Genetic Algorithm (GA)

GA is a metaheuristic algorithm inspired by natural
selection and based on survival of the fittest [4]. The
algorithm generates the next generation by starting
genetic variations and selection processes from a
randomly selected initial population. Crossover, mutation
and selection operators are used to find the best solution.
Problem-specific solutions are customized and encoded as
fixed bit strings. Solutions are represented by
chromosomes. The first mechanism used in solution
improvement, crossover is the replacement of a
chromosome or chromosomes passed from generation to
generation [15], as shown in Figure 1.

One-Point crossover

monnnn

two new
individuals

two new
individuals

Figure 1. Crossover

In crossover, as seen in Figure 1, there are two different
methods. In one-point crossover, a segment is taken from
one individual at a one point, and the remaining segment
is exchanged with the corresponding segment from the
other individual. In two-point crossover, two segments are
taken from two different points, and the chromosomes in
between are swapped with those of the other individual.
Another improvement mechanism, mutation is the
replacement of chromosomes that give rise to a gene [16],
as shown in Figure 2.

| 1 ‘ o | L] | L] | 1 ‘ 1 | ]— Inversion

| 1 ‘ o | o | 1 | 0 ‘ 1 |I |]— Insertion

| 1 | 0 | 1 ‘ o | 1 | } I)\\phucmcm
L] LTl ]—sw

Figure 2. Mutation

Mutation can occur in four different ways: inversion,
insertion, displacement, and swap. In inversion, a
chromosome’s value is reversed. In insertion, a new
chromosome is added. Displacement occurs by removing
a selected chromosome from its gene sequence. In swap,
the positions of two randomly selected chromosomes are
exchanged. In GA, the best individual solution is obtained
when the termination criterion is met. Additionally, the
GA flowchart is given in Figure 3.
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Figure 3. GA flowchart [4]
2.4. Prairie Dog Optimization Algorithm (PDO)

PDO is developed by the survival of prairie dogs and
modeling their behavior [17]. In the modeling, their
feeding patterns are first used to expand the problem
search space. They then look for strategic positions when
searching for food. These positions should serve a certain
purpose that improves the general functioning of the
coterie, the prairie dog community. This purpose
enhances exploration, which is the search for new
solutions in different regions. After the exploration, the
communication  skills of prairie dogs against
environmental threats play an important role in their
ability to prevent predation. The skills enable predators to
react differently to different hunting strategies. Reactions
carry out the exploitation, which aims to increase fitness
to make improvements to existing solutions. The
exploration and exploitation are given below.

Exploration

The first strategy for members of the coterie during the
exploration is to search for new food sources in the
coterie. Prairie dogs are best at catching food sources
using Lévy flight movement. They communicate the
precise position of food sources to other members by
making distinct sounds. Once the food source quality is
reached, the best one is selected for food search, and new
nests are built based on the food source quality. The
position update for the search in the exploration of the

metaheuristic is represented in Equation 21. In addition,
the Lévy flight movement is as in Equation 20.

PDj,q541 = GBestj; — e CBest;; * p

Max ;
* LF (n)V iter < —— e

where PD; 4 ;1 represents the (j + 1)th dimension of the
(i + 1)th prairie dog in a coterie. For this experiment, the
particular food source alarm, denoted by p, is set at 0.1
kHz. Likewise, the second strategy involves evaluating
the availability and quality of food sources and assessing
the digging strength. New nests are constructed according
to the digging strength, a parameter intentionally reduced
with each successive iteration. This helps to limit the
number of nests that can be constructed. The position
update for nest building is given in Equation 22.

PDi+1,j+1 = GBest ij * rPD * DS

iter

Max
* LF(n)V 7 (22)

Max ;
< iter < ——F
2
where rPD is a random solution’s position. When
GBest ;; represents the globally best solution obtained so

far, eCBest ;; evaluates the impact of the recent best

solution as shown in Equation 23. DS represents the
digging strength of a random value range group
determined by Equation 25, which relies on food source
quality.

eCBest;
PD; ; x mean (PDy ) (23)
GBest ; ; * (UB; — LB;) + A

= Best;;j*A+

where UB; and LB; represent the boundaries for the jth
dimension in the optimization problem., respectively.
CPD;; is the random cumulative effect of the whole

prairie dogs in the population and is defined in Equation
24.

GBest ij TPD,:’]'
GBest i,j + A

CPD;; = (24)

iter

iter \(wangsr)

DS =15 X7 X <1 -~ 7) e (25)

M AXiter

where r is a parameter that takes the value -1 or 1. A

represents a small number explaining existing differences.

iter and Max;;., represent the recent and total iteration
numbers, respectively.

Exploitation

Prairie dogs use vocalizations or signals for various
situations, ranging from predator dangers to availability
of food [18]. Communication plays an essential part in
prairie dogs’ ability to meet their nutritional needs and
protect against predation. They can also convey
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distinctions in the quality of food sources, predator
presence, and hunting behaviors. Various communication
skills in prairie dogs facilitate the discovery of improved
or nearly ideal solutions. These solutions result in
approaching a certain position or a promising position in
the case of the PDO application, where more searches are
conducted. The aim of the exploitation mechanisms used
in PDO is to intensively explore promising areas
identified during the exploration. The two strategies for
this phase are Equations 26-27.

GBest ;; —e CBest ;; x&¢ — CPD, ;
iter Max iter (26)
4

PDi+1,j+1 =

Max .
* rand V——— < iter <3
PDiy1js1 = GBest;j* PE
(27)

Max iter .
* rand VBT < iter < Max jor

where PD; 4 ;1 represents the (j + 1)th dimension of the
(i + 1)th prairie dog. € is a little number representing food
source quality. PE denotes the predator effect modeled by
Equation 28 and rand indicates a number between 0 and
1, which is random.

2 iter )

iter ( Maxiter 28

PE=1.5><(1——) (28)
M AXiter

where iter and Max;,, are the recent and total number of

iterations, respectively. The flowchart of the PDO is given

in Figure 4.

Initialize PDO

\ 4

Update predator effect (Eq.

28), digging strength (Eq. 25) «——  Find best solution so far |€
and cumulative effect (Eq. 24)

Evaluate fitness of PD Best solution

iter < Mag e, /4

Execute the new burrow
building activities (Eq. 22)

Execute the foraging
activities (Eq. 21)

Moz, /4 < iter < Maziye /2

Mazte, /2 < iter < 3Maz;e,/4

No

v

v

Execute the response to food
alarm activities (Eq. 26)

Execute the antipredation
activities (Eq. 27)

J-—¢—L

» iter = iter + 1 <

Figure 4. PDO flowchart [17]
3. EXPERIMENTAL DESIGN

In this section, the parameters of the metaheuristics and
the test functions to be used in comparisons are given.

3.1. Parameters

Each metaheuristic has its own parameter and is given in
Table 1. ARO does not require any algorithm-specific
control parameters, as stated by Wang et al. [8].
Therefore, it is not listed in this table. p;, p,, p; are the
parameters for selecting strategies in the exploration and
exploitation. The parameters L  represents the
probabilities associated with the selection of the best
vulture. w is the parameter whether the exploration and
exploitation will be terminated. p. gives the crossover
probability and P, represents the probability of mutation.

p is the food source alarm parameter. ¢ is the food source
quality parameter. Additionally, A is individual prairie
dog difference.

3.2. Test functions

In this paper, 8 different test functions were used to
compare metaheuristics. Among the functions presented
in Table 2, Fy, F,, F; and F, are unimodal, Fs, F, F; and
Fg are multimodal. In addition, F,;, represents the
optimum value and the range represents the boundaries of
the search space of the functions. The dimension value for
all functions is taken as 10, 30, 50 respectively.
Furthermore, the plots of the functions are given in Figure
5.
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Table 1. Parameters of metaheuristics A total of 8 benchmark functions were selected to ensure
Metaheuristic Parameter Vglge a balanced and representative evaluation of the
51 04 algorithms’ capabilities. Four unimodal functions were
pz 06 included to assess the exploitation performance, i.e., the
A L 0.8 algorithms’ ability to converge quickly to a single global
L, 0.2 optimum. Four multimodal functions were chosen to
w 2.5 evaluate exploration performance, reflecting the ability to
GA Pe 0.80 escape local optima and explore the solution space
P, 0.20 . .
) 01 broadly. Selecting 4 functions from each category also
PDO < 22204516 helps maintain computational efficiency while allowing
A 0.005 statistically meaningful analysis across different
. Population size 50 dimensions.
All metaheuristics Max. iterations 1000
Table 2. Test functions
Function Dimension Range Fpin
Fyi(x) = ¥ a2 10,30,50 [-100,100] 0
Fo(x) = Xico |2 4 TTiso %] 10,30,50 [-10,10] 0
F3(x) = 215 [1000x; — x40 + (1 — x)?] 10,30,50 [-30,30] 0
Fy(x) = XI5 = 3, (fx; — 0.5])? 10,30,50 [-100,100] 0
F5(x) = 10 + Y7, (x? — 10cos (27x;)) 10,30,50 [-5.12,5,12] 0
Fg(x) = —aexp <—0.02 ’n‘l ?:19‘?) —exp (n1Y%, cos (2nx;)) +a+e,a =20 10,30,50 [-32,32] 0
1 n .2 n Xi
Fy() = 1+ 55 oa Sl xf = [Ty cos (W> 10,30,50 [-600,600] 0
Fg(x) = 0.1(sin? (3mx,) + ¥, (x; — 1?[1 + sin? (3mx; + 1
8(2) ( g 1). 221_1( i )n[ Bmx; +1)] 103050 [-50.50] 0
+ (x, — 1)*1 +sin (ann)) + ¥ u(x;,5,100,4)
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Figure 5. Test functions (F;- Fg)
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Parameter space

Figure 5. Test functions (F,- Fg) (continued)

3.3. Engineering problems

In this study, three well-known engineering design
problems are investigated: pressure vessel design,
tension/compression spring design, and three-bar truss
design. This section presents the mathematical
formulation of each problem in detail.

3.3.1. Pressure Vessel Design

In this engineering design problem, the goal is to
minimize the total cost associated with constructing a
cylindrical pressure vessel. The design involves four
decision variables: the shell thickness (z; = T), the head
thickness (z, = Tj,), the inner radius of the vessel (z3 = 1),
and the length of the cylindrical section without the head

(24 = L).

The objective function, which represents the cost, is
subject to four nonlinear constraints related to structural
and volume requirements. The  mathematical
representation of the problem is given below:

Design vector: Z = [z, Z,, z3, 24| = [T, Ty, 7, L]
Objective function:
f(Z) = 1.7781z,23 + 3.1661z%z, + 19.84z%z,
+ 0.6224z,252,
Constraints:
g1(2) = —z; +0.01932; < 0
g2(Z2) = —z3 + 0.00954z; < 0

4
g3(Z) = —mziz, — gnzg + 1,296,000 < 0

gu(@)=2,—240<0
Variable bounds:
0<2,2,<99,10 < z3,2, < 200
This formulation ensures that the structural integrity and
volume constraints are met while minimizing material and
manufacturing costs.

3.3.2. Tension/Compression Spring Design

This optimization problem focuses on minimizing the
weight of a tension or compression spring. The design
involves three key variables: the wire diameter (z; = d),
the mean coil diameter (z, = D), and the number of active
coils (z3 = N). These parameters determine the physical
structure of the spring.

The objective is to reduce the spring’s weight while
ensuring it satisfies several mechanical constraints,

FB(x, . X,)

Parameter space

including limits on deflection, shear stress, and surge
frequency. The mathematical formulation of the problem
is as follows:

Design vector: Z = [z, 2,, 73] = [d, D, N]
Objective function:
f(@) = (23 4 2)z,2¢

Constraints: ,
91D = 1=l 7 <0
2 _
9:(9) = 51018212 1252262(2222131 = =0
g =1- —14:;521 <0
a@=""" 150

This formulation ensures that the spring design is both
lightweight and structurally feasible under mechanical
and dynamic load conditions.

3.3.3. The Three-Bar Truss Design Problem

This structural optimization problem aims to minimize the
total weight of a simple planar truss system subjected to
external loading. The design involves two decision
variables: the cross-sectional areas of two different truss
elements, denoted as x; = A; and x, = A,. These
parameters directly affect the truss’s weight and its
mechanical behavior under stress. The objective function
is defined as a function of the material length and the
cross-sectional areas, while the design is subject to
multiple nonlinear constraints, including limits on
deflection, buckling, and maximum allowable stress.
These constraints ensure the structural integrity of the
truss under given loading conditions. The mathematical
formulation is expressed as follows:

Design vector: X = [x,x,] = [44, 4,]
Objective function:

FX) = (2V2x; +x,) X L

Constraints:
, V2x, + x,
X)=——P—-0<0
9:(%) V2x2 + 2x,x,
S X,
X)=———P—-0<0
92(X) V2x2 + 2x,x,
g:(X) = P-0<0

\/Exz + xq
Variable bounds: 0 < x;,x, <1

81
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where: L = 100 cm (length of each truss member), P =
2kN/cm? (applied load), o = 2kN/cm? (maximum
allowable stress).

This problem is widely used in the literature to test the
effectiveness of optimization algorithms under multi-
constraint structural design scenarios, as it combines
weight minimization with critical mechanical limitations.

4. Result and Discussion

In order to provide a more comprehensive and structured
evaluation of the metaheuristic algorithms, this section is
divided into four subsections. First, the simulation results
of the test functions are analyzed in terms of mean, best,
and worst values. Then, the convergence behaviors of the
algorithms are investigated by plotting convergence
curves for different dimensions. In the third subsection, a
statistical evaluation is conducted using a one-tailed t-test
to determine whether the observed performance
differences are significant. Finally, a new subsection is

Table 3. Simulation results of test functions for dim = 10

introduced to analyze the computational time and
complexity of the algorithms. This addition directly
addresses reviewer comments regarding the importance of
computational cost in real-world applications.

4.1. Benchmark Function Results

In this paper, metaheuristics were run independently 30
times. MATLAB R2022b platform was wused for
performance analysis of metaheuristics. Simulations were
implemented on a machine with AMD Ryzen 5 3500X
CPU, 3.6 GHz speed and 16 GB RAM. Simulation results
of the test functions are given in Tables 3, 4 and 5,
respectively. The mean, standard deviation, best and
worst results of all functions are presented in these tables.
Additionally, the metaheuristics with the lowest mean and
best value are bolded.

Functions Algorithms ARO AVOA GA PDO

Mean 2.99E-141 0.00E+00 2.04E+03 0.00E+00

F Std 1.44E-140 0.00E+00 5.17E+02 0.00E+00
1 Best 2.56E-152 0.00E+00 8.01E+02 0.00E+00
Worst 8.03E-140 0.00E+00 2.83E+03 0.00E+00

Mean 5.71E-74 0.00E+00 1.07E+01 0.00E+00

F Std 241E-73 0.00E+00 1.85E+00 0.00E+00
z Best 3.36E-82 0.00E+00 6.44E+00 0.00E+00
Worst 1.33E-72 0.00E+00 1.38E+01 0.00E+00

Mean 1.36E+00 4.81E-06 1.78E+04 4.28E+00

F Std 1.80E+00 6.22E-06 3.76E+03 3.65E+00
3 Best 5.94E-06 4.81E-10 1.03E+04 6.35E-02
Worst 4.34E+00 2.03E-05 2.57E+04 9.00E+00

Mean 1.71E-20 1.53E-16 2.24E+03 2.97E-30

F Std 3.60E-20 2.02E-16 5.87E+02 1.18E-29
4 Best 4.33E-24 5.01E-18 9.15E+02 3.08E-33
Worst 1.8E-19 8.67E-16 3.20E+03 6.43E-29

Mean 0.00E+00 0.00E+00 4.99E+02 0.00E+00

F Std 0.00E+00 0.00E+00 6.29E+00 0.00E+00
5 Best 0.00E+00 0.00E+00 4.80E+02 0.00E+00
Worst 0.00E+00 0.00E+00 5.08E+02 0.00E+00

Mean 4.44E-16 4.44E-16 1.35E+01 4.44E-16

F Std 0.00E+00 0.00E+00 1.27E+00 0.00E+00
6 Best 4.44E-16 4.44E-16 1.0SE+01 4.44E-16
Worst 4.44E-16 4.44E-16 1.53E+01 4.44E-16

Mean 0.00E+00 0.00E+00 2.09E+01 0.00E+00

F Std 0.00E+00 0.00E+00 5.58E+00 0.00E+00
7 Best 0.00E+00 0.00E+00 1.25E+01 0.00E+00
Worst 0.00E+00 0.00E+00 3.07E+01 0.00E+00

Mean 2.43E-18 1.83E-14 1.12E+06 7.48E-01

F Std 1.22E-17 2.53E-14 7.49E+05 3.70E-01
8 Best 8.52E-25 5.77E-16 1.07E+05 1.97E-02
Worst 6.82E-17 1.16E-13 2.85E+06 1.00E+00

When all simulation results are evaluated, AVOA and
PDO reach the optimum value in F;, F,, F5 and F,, while
ARO reaches the optimum value in Fy ve F,. ARO
follows AVOA and PDO with very small differences in
F; ve F, where it does not reach an optimum value. GA,
on the other hand, did not achieve the optimum value in
any function and was the worst performing metaheuristic.
In Fg function, the newly proposed metaheuristics
performed the same. In the simulation results of
dimension 10, AVOA has the best and lowest mean values

in F3, PDO in F, and ARO in Fg. In the other dimensions,
AVOA performs better in these functions. In dimension
10, the new metaheuristics have the largest difference in
Fg , with an approximate value of 1.97E-02. For
dimension 30, the biggest difference in the best values that
the GA has is in Fg and is about 7.37E+07. In dimension
50, the GA has the largest difference of 1.14E+11 (F,) and
6.53E+08 (Fg) in the means and best values for all
functions.
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Table 4. Simulation results of test functions for dim = 30

Functions Algorithms ARO AVOA GA PDO

Mean 9.07E-124 0.00E+00 3.24E+04 0.00E-+00

F Std 4.96E-123 0.00E+00 2.85E+03 0.00E+00
1 Best 1.05E-143 0.00E+00 2.64E+04 0.00E-+00
Worst 2.72E-122 0.00E+00 3.69E+04 0.00E+00

Mean 2.74E-70 0.00E+00 1.01E+03 0.00E+00

F Std 6.50E-70 0.00E+00 1.66E+03 0.00E+00
z Best 6.75E-76 0.00E+00 8.76E+01 0.00E+00
Worst 3.04E-69 0.00E+00 6.34E+03 0.00E+00

Mean 1.67E+00 1.83E-06 3.63E+05 6.80E+00

F Std 6.33E+00 1.98E-06 3.81E+04 1.05E+01
3 Best 1.75E-04 4.94E-08 2.91E+05 3.24E-01
Worst 2.52E+01 7.63E-06 4.39E+05 2.90E+01

Mean 1.86E-06 1.64E-10 3.36E+04 3.46E+00

F Std 1.63E-06 1.21E-10 2.68E+03 2.08E+00
4 Best 4.46E-08 2.85E-11 2.71E+04 1.60E-01
Worst 5.60E-06 5.35E-10 3.95E+04 7.25E+00

Mean 0.00E+00 0.00E+00 4.65E+03 0.00E+00

F Std 0.00E+00 0.00E+00 1.42E+01 0.00E+00
5 Best 0.00E+00 0.00E+00 4.62E+03 0.00E+00
Worst 0.00E+00 0.00E+00 4.68E+03 0.00E+00

Mean 4.44E-16 4.44E-16 1.93E+01 4.44E-16

F Std 0.00E+00 0.00E+00 2.07E-01 0.00E+00
6 Best 4.44E-16 4.44E-16 1.89E+01 4.44E-16
Worst 4.44E-16 4.44E-16 1.96E+01 4.44E-16

Mean 0.00E+00 0.00E+00 3.00E+02 0.00E+00

F Std 0.00E+00 0.00E+00 2.58E+01 0.00E+00
7 Best 0.00E+00 0.00E+00 2 44E+02 0.00E-+00
Worst 0.00E+00 0.00E+00 3.40E+02 0.00E+00

Mean 7.39E-04 4.80E-10 2.38E+08 2.93E+00

F Std 2.79E-03 3.05E-10 5.42E+07 1.44E-01
8 Best 5.88E-08 1.47E-10 7.37E+07 2 44E+00
Worst 1.10E-02 1.39E-09 3.23E+08 3.00E+00

Table 5. Simulation results of test functions for dim = 50

Functions Algorithms ARO AVOA GA PDO

Mean 8.80E-122 0.00E+00 7.70E+04 0.00E+00

F Std 3.21E-121 0.00E+00 4.59E+03 0.00E+00
1 Best 2.21E-137 0.00E+00 6.71E+04 0.00E-+00
Worst 1.56E-120 0.00E+00 8.48E+04 0.00E+00

Mean 2.10E-66 0.00E+00 1.14E+11 0.00E-+00

F Std 8.24E-66 0.00E+00 3.03E+11 0.00E+00
z Best 8.95E-75 0.00E+00 2.11E+06 0.00E+00
Worst 4.14E-65 0.00E+00 1.40E+12 0.00E+00

Mean 2.18E-02 4.28E-06 9.71E+05 1.81E+01

F Std 2.05E-02 3.63E-06 6.27E+04 2.01E+01
3 Best 3.19E-03 2.06E-07 8.13E+05 1.14E+00
Worst 9.02E-02 1.85E-05 1.08E+06 4.90E+01

Mean 2.28E-04 1.83E-08 7.75E+04 7.52E+00

F Std 1.03E-04 1.26E-08 3.44E+03 2.52E+00
4 Best 7.22E-05 4.59E-09 6.91E+04 2.83E+00
Worst 4.12E-04 6.22E-08 8.30E+04 1.23E+01

Mean 0.00E+00 0.00E+00 1.28E+04 0.00E-+00

F Std 0.00E+00 0.00E+00 1.54E+01 0.00E+00
5 Best 0.00E+00 0.00E+00 1.28E-+04 0.00E-+00
Worst 0.00E+00 0.00E+00 1.29E+04 0.00E+00

Mean 4.44E-16 4.44E-16 2.00E+01 4.44E-16

P Std 0.00E+00 0.00E+00 9.99E-02 0.00E+00
6 Best 4.44E-16 4.44E-16 1.98E+01 4.44E-16
Worst 4.44E-16 4 .44E-16 2.02E+01 4.44E-16

Mean 0.00E-+00 0.00E+00 6.69E+02 0.00E+00

F Std 0.00E+00 0.00E+00 5.36E+01 0.00E+00
7 Best 0.00E-+00 0.00E+00 5.25E+02 0.00E+00
Worst 0.00E+00 0.00E+00 7.43E+02 0.00E+00

Mean 6.28E-03 2.11E-09 8.65E+08 4.85E+00

F Std 1.93E-02 1.98E-09 9.42E+07 7.08E-01
8 Best 1.32E-05 1.07E-10 6.53E+08 1.13E+00

Worst 9.74E-02 8.32E-09 1.00E+09 5.00E+00
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Table 6. Metaheuristics total rank

Metaheuristic Best Mean
ARO 10 10
AVOA 22 22
GA 0 0
PDO 16 16

4.2. Convergence curves of functions

best results than the closest PDO. Among the new
proposed ones, ARO seems to be the most unsuccessful,
but it produced very close values compared to the others.

The numbers of providing the best and mean result in
terms of metaheuristics in all simulation results are given
in Table 6. According to the table, in terms of overall
success, the best metaheuristic is AVOA, followed by
PDO, ARO, and GA, respectively. The most successful
values are bolded in the table. AVOA achieved 6 more

The convergence curve is a graph that shows how quickly
or accurately a mathematical or computational process
progresses towards a specific goal or outcome [19]. The
convergence plots of metaheuristics on test functions for
dimensions 10, 30, and 50 are provided in Figures 6-7.
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Figure 7. Convergence curves of test functions (Fg - Fg)
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AVOA showed faster convergence for each dimension in
all functions. AVOA is followed by ARO. Even though
PDO shows slower convergence than ARO, it has better
performance in simulation results as seen in Table 6.
AVOA and PDO produced the same values after a certain
iteration for all dimensions in Fy, F,, F5, Fs, and F,.
Similarly, ARO terminated by producing the same values

4.3. t-test result

The t-test is a statistical method used to determine whether
there is a significant difference between the means of two
groups [20, 21]. In this study, a one-tailed t-test was
performed on the results of the metaheuristic simulations
with a 5% significance level (« 0.05). A result where
h = 1 and p < 0.05 indicates that the metaheuristic
algorithm on the right side of the pairwise comparison
outperformed the other with

statistical significance.

after a certain iteration for all dimensions in Fs, Fg, and
F, . Additionally, the convergence speed of the
metaheuristics became slower as the dimension increased.
In contrast to the newly proposed metaheuristics, GA
performed worse and showed less convergence.

The detailed p-values and h-values for each function and
dimension are provided in Tables 7, 8, and 9. However, it
is also crucial to interpret the practical implications of
these statistical differences in terms of algorithm
performance.
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Table 7. t-test results (dim=10)

. GA-ARO GA-AVOA GA-PDO ARO-AVOA ARO-PDO PDO-AVOA
Functions
p h p h p h p h p h p h
F, 9.29E-20 1 9.29E-20 1 9.29E-20 1 1.40E-01 0 1.40E-01 0 - -
F, 2.13E-24 1 2.13E-24 1 2.13E-24 1 1.10E-01 0 1.10E-01 0 - -
F3 6.03E-22 1 6.02E-22 1 6.01E-22 1 1.64E-04 1 1.00E+00 1 2.58E-07 1
Fy 2.42E-19 1 2.42E-19 1 2.42E-19 1 1.00E+00 0 7.90E-03 1 1.00E+00 0
Fq 3.65E-57 1 3.65E-57 1 3.65E-57 1 - - - - - -
Fg 5.92E-32 1 5.92E-32 1 5.92E-32 1 - - - - - -
F, 4.06E-19 1 4.06E-19 1 4.06E-19 1 - - - - -
Fg 2.33E-09 1 2.33E-09 1 2.33E-09 1 1.00E+00 0 1.00E+00 0 3.12E-12 1
Table 8. t-test results (dim=30)
. GA-ARO GA-AVOA GA-PDO ARO-AVOA ARO-PDO PDO-AVOA
Functions
p h p h p h p h p h p h
F, 1.00E-32 1 1.00E-32 1 1.00E-32 1 1.60E-01 0 1.60E-01 0 - -
F, 1.20E-03 1 1.20E-03 1 1.20E-03 1 1.00E-02 1 1.00E-02 1 - -
F, 1.63E-30 1 1.63E-30 1 1.63E-30 1 7.97E-02 0 9.99E-01 0 6.51E-04 1
F, 5.65E-34 1 5.65E-34 1 5.65E-34 1 4.06E-07 1 1 0 2.46E-10 1
Fg 2.17E-74 1 2.17E-74 1 2.17E-74 1 - - - - - -
Fg 9.44E-59 1 9.44E-59 1 9.44E-59 1 - - - - - -
F, 4.83E-33 1 4.83E-33 1 4.83E-33 1 - - - - - -
Fg 5.24E-21 1 5.24E-21 1 5.24E-21 1 7.85E-02 0 1 0 4.70E-40 1
Table 9. t-test results (dim=50)
. GA-ARO GA-AVOA GA-PDO ARO-AVOA ARO-PDO PDO-AVOA
Functions
p h p h p h p h p h p h
F, 1.31E-37 1 1.31E-37 1 1.31E-37 1 7.18E-02 0 7.18E-02 0 - -
F, 2.42E-02 1 2.42E-02 1 2.42E-02 1 9.00E-02 0 9.00E-02 0 - -
Fs 1.80E-36 1 1.80E-36 1 1.80E-36 1 1.31E-06 1 1 0 1.55E-05 1
F, 2.55E-41 1 2.55E-41 1 2.56E-41 1 3.85E-13 1 1 0 2.00E-16 1
Fs 3.36E-72 1 3.36E-72 1 3.36E-72 1 - - - - - -
Fg 6.55E-68 1 6.55E-68 1 6.55E-68 1 - - - - - -
F, 6.50E-34 1 6.50E-34 1 6.50E-34 1 - - - - - -
Fg 4.53E-30 1 4.53E-30 1 4.53E-30 1 4.22E-02 1 1 0 191E-26 1

According to Tables 7,8 and 9, the evaluations are as
follows:

real-world usage, the differences would yield
very similar results from a practical optimization

e In all dimensions (10, 30, 50), GA performed perspective.
significantly worse than the newly proposed e  The statistically significant superiority of AVOA
metaheuristics (ARO, AVOA, PDO), both in several functions (e.g.,
statistically and practically. The mean values for F3, F,, Fg) highlights its strong exploration and
GA were multiple orders of magnitude higher, exploitation balance, leading to better

showing weak convergence and poor
optimization capacity across all test functions.

e  While AVOA consistently outperformed ARO
and PDO in most cases, especially in multimodal
functions, the differences between AVOA and
the other new algorithms were generally small in
practical terms, even when statistically
significant (e.g., differences on the order of 10~
to 107°).

e PDO showed strong robustness, occasionally
outperforming ARO in certain functions, such as
those involving higher dimensions and complex
landscapes. Although t-tests confirmed some of
these differences as statistically significant, in

4.4. Engineering problem results
The optimization results for the engineering design

problems are evaluated across three benchmark cases:
Pressure Vessel Design, Tension/Compression Spring

convergence. However, in functions where no
significant difference was observed between
AVOA and PDO or ARQO, it is inferred that all
three algorithms can be safely considered high-
performing  alternatives  for  benchmark
problems.

In conclusion, while t-tests reveal which differences are
statistically significant, the practical value lies in the
consistency, speed of convergence, and robustness of the
algorithms. AVOA leads in most metrics, but PDO and
ARO offer competitive results, especially when
computational cost or algorithm simplicity is considered.

Design, and Three-Bar Truss Design. The best run results
obtained for each problem, along with the corresponding
parameter values, are presented in Tables 10—12.
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Table 10. Best results for the pressure vessel design problem

Algorithm T, T, r L Optimal value
ARO 0.7782 0.3847 40.3217 199.9712 5.8854¢+03
AVOA 0.7790 0.3851 40.3639 10.0010 5.8868e+03
GA 1.2918 0.5706 42.2641 12.7864 1.1017e+04
PDO 0.8156 0.3975 40.8373 10.0000 6.0308e+03

According to Table 10, ARO achieved the best result with
the lowest cost (5.8854¢+03), followed closely by AVOA
(5.8868¢+03). GA performed the worst with a
significantly higher cost (1.1017e+04), while PDO

Table 11. Best results for the tension/compression spring design

showed moderate performance (6.0308e+03). The longer
cylinder length in ARO’s design may have contributed to
its better outcome.

Algorithm d D N Optimal value
ARO 0.0516 0.3537 10.4114 0.0127
AVOA 0.0500 03174 42926 0.0127
GA 0.0534 0.3572 22595 0.0139
PDO 0.0500 0.3116 8.1058 0.0127

According to Table 11, ARO, AVOA, and PDO all
achieved the same optimal value (0.0127), indicating
equal performance. GA performed worse with a higher
cost (0.0139). Although the optimal values are the same

Table 12. Best results for the three bar truss design

for the three algorithms, the design parameters differ,
especially in the number of active coils (N).

Algorithm Ay A, Optimal value
ARO 0.7887 0.4082 263.8958
AVOA 0.7835 0.3640 263.8958
GA 0.7624 0.2454 263.9174
PDO 0.7356 0.4074 263.8958

According to Table 12, ARO, AVOA, and PDO achieved
the same optimal value (263.8958), indicating equally
successful performance. GA resulted in a slightly higher
value (263.9174), making it the least effective among the
four. Despite identical outcomes for three algorithms,

x10°

Pressure vessel design

their parameter values differ slightly, showing that
multiple configurations can lead to the same objective
value. To provide further insight into the optimization
behavior, convergence curves for all three engineering
design problems are presented in Figure 8.
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Figure 8. Convergence curves of the algorithms on three engineering problems
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The convergence plots reveal that ARO generally
demonstrates the fastest and most stable convergence
across the problems. In the spring design, ARO, AVOA,
and PDO exhibit nearly identical and immediate
convergence  behavior, indicating comparable
effectiveness. In the truss design, ARO and PDO reach the
optimum quickly, while AVOA converges more slowly
and GA performs moderately. For the pressure vessel
problem, ARO achieves the fastest convergence, closely
followed by PDO, both clearly outperforming AVOA and
GA.

4.4. Computational Complexity Analysis

In addition to the performance outcomes, the algorithms
were analyzed in terms of their computational
characteristics. While all algorithms were run under
identical conditions (population size = 50, iterations =
1000), they differ in the internal number of operations per
iteration. Table 13 summarizes the estimated per-iteration
computational complexity for each algorithm.

Table 13. Approximate computational complexity per iteration
Algorithm  Complexity Structural Notes

GA o) Basic evolutionary operators
PDO o) Simple interaction-based
updates
AVOA o x d) Phase switching and adaptive
terms
O(n xd Behavioral ~modeling  and
ARO . .
+ nlogn) sorting operations

n = population size,d = problem dimension.

It can be inferred from Table 10 that GA and PDO involve
relatively simple operations, while AVOA and ARO
include more complex mechanisms such as phase
switching, adaptive behaviors, and sorting processes.
These internal differences may influence total processing
time, especially in high-dimensional problems, although
all algorithms remain feasible for standard benchmark
testing.

5. CONCLUSION

In this paper, the performance analysis of ARO, AVOA,
PDO and GA metaheuristics is conducted for the first time
using 8 different test functions. The analyses revealed that
the newly proposed metaheuristics outperformed the
popular GA. AVOA was observed to be the most
successful, producing better results as referenced in Table
6. Other newly proposed is performed slightly worse than
AVOA. The obtained simulation results were evaluated
for statistical significance using t-tests. The tests indicated
that there were minimal significant differences among the
newly proposed methods, but these differences were more
expressed when compared to the popular GA. In future
studies, the performance of ARO, AVOA, and PDO will
be compared with other modern metaheuristics such as
Particle Swarm Optimization (PSO), Differential
Evolution (DE), and Artificial Bee Colony (ABC) under
similar conditions to expand the scope of the evaluation.
It is also aimed to solve different optimization problems
with these metaheuristics.
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