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Abstract: Various metaheuristic algorithms inspired by nature are used to solve optimization 

problems. With the increasing number of metaheuristics, their performance on problems is 

gradually improving. In this paper, the performance analysis of the newly proposed 

metaheuristics Artificial Rabbit Optimization Algorithm (ARO), African Vulture Optimization 

Algorithm (AVOA), Prairie Dog Optimization Algorithm (PDO) and the well-known Genetic 

Algorithm (GA) were performed for the first time. ARO is modeled after rabbits’ behavioral 

patterns, such as detour foraging and random hiding. AVOA is developed based on the 

navigation and competitive behaviors of African vultures. The newly proposed final 

metaheuristic PDO is inspired by the survival struggle of prairie dogs. As for the popular GA, 

it is based on survival of the fittest. Unimodal and multimodal test functions were used during 

the analysis. According to the simulation results, AVOA performed better and generated more 

successful results compared to the others 22 times in the mean and best values. AVOA was 

followed by PDO and ARO, proving that the newly proposed metaheuristics will be successful 

on different problems. 

 

 

Dört Metasezgisel Algoritmanın Kıyaslama Fonksiyonları Üzerindeki Performans Analizi 
 

 

Anahtar 

Kelimeler 

Metasezgiseller,  

Yapay tavşan 

optimizasyon 

algoritması,  

Afrika akbabası 

optimizasyon 

algoritması,  

Çayır köpeği 

optimizasyon 

algoritması,  

Genetik 

algoritma 

Öz: Doğadan ilham alan çeşitli metasezgisel algoritmalar, optimizasyon problemlerini çözmek 

için kullanılmaktadır. Metasezgisel algoritmaların sayısındaki artışla birlikte, bu algoritmaların 

problemlerdeki performansları da giderek iyileşmektedir. Bu makalede, yeni önerilen 

metasezgisel algoritmalar olan Yapay Tavşan Optimizasyon Algoritması (ARO), Afrika 

Akbaba Optimizasyon Algoritması (AVOA), Çayır Köpeği Optimizasyon Algoritması (PDO) 

ve iyi bilinen Genetik Algoritma'nın (GA) performans analizleri ilk kez gerçekleştirilmiştir. 

ARO, tavşanların dolambaçlı beslenme ve rastgele saklanma gibi davranış kalıplarını model 

alarak geliştirilmiştir. AVOA, Afrika akbabalarının navigasyon ve rekabetçi davranışlarına 

dayanmaktadır. Yeni önerilen son metasezgisel algoritma PDO ise çayır köpeklerinin hayatta 

kalma mücadelesinden esinlenilerek geliştirilmiştir. Popüler GA ise en uygun olanın hayatta 

kalması prensibine dayanır. Analiz sırasında tek modlu (unimodal) ve çok modlu (multimodal) 

test fonksiyonları kullanılmıştır. Simülasyon sonuçlarına göre, AVOA diğerlerine kıyasla 22 

kez ortalama ve en iyi değerlerde daha iyi performans göstermiş ve daha başarılı sonuçlar 

üretmiştir. AVOA’yı PDO ve ARO takip ederek, yeni önerilen metasezgisel algoritmaların 

farklı problemlerde başarılı olacağını kanıtlamıştır. 
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1. INTRODUCTION 

 

Nowadays, the number of metaheuristic algorithms 

developed inspired by nature is increasing. This increase 

is due to the fact that metaheuristics are less costly and 

more effective than traditional approaches. For this 

reason, they are used in many different fields, especially 

engineering [1,2]. Metaheuristics used in these areas 

contribute to the analysis of large data sets, efficient use 

of resources, improvement of decision-making processes 

and the solution of many other complex problems. Many 

popular metaheuristics that contribute to the solution of 

these complex problems such as Particle Swarm 

Optimization Algorithm [3], Genetic Algorithm (GA) [4], 

Artificial Bee Colony Algorithm [5] and Ant Colony 

Optimization Algorithm [6] are among them. However, 

newly developed metaheuristics perform better in less 

time compared to these popular ones [7]. With the 

increase in performances, determining the best 

metaheuristic provides important contributions to 

optimization problems. 

 

The aim of this paper is to compare the performances of 

the newly proposed metaheuristics, namely Artificial 

Rabbit Optimization Algorithm (ARO), African Vultures 

Optimization Algorithm (AVOA), Prairie Dog 

Optimization Algorithm (PDO), along with the popular 

metaheuristic GA, using various performance criteria. 

The motivation for selecting ARO, AVOA, and PDO lies 

in their novelty and increasing presence in recent 

metaheuristic research. These algorithms, developed 

between 2021 and 2023, are inspired by diverse biological 

systems—rabbits, vultures, and prairie dogs—which offer 

a wide behavioral spectrum for optimization modeling. 

Despite promising initial findings in their original 

proposals, no comprehensive and independent 

comparison has been conducted under identical test 

environments. This study aims to  address that gap and to 

evaluate their performance against a well-known 

algorithm, GA. Other contributions of the paper are as 

follows: 

 

• To the best of our knowledge, although ARO, 

AVOA, and PDO have been individually tested 

in their original studies, this is the first 

independent work to analyze all three under 

identical experimental conditions and compare 

them directly with a common reference 

algorithm (GA). This provides a more objective 

assessment of their relative performance. 

• The performances of metaheuristics are analyzed 

with different test functions. 

• According to the information obtained from the 

experiments, AVOA produces the best 

performance. 

 

In the remainder of the paper is as follows. Section 2 

explains information about metaheuristics and their 

pseudocodes. Section 3 presents the test functions used to 

analyze the performance of metaheuristics. Additionally, 

in this section, the parameters of the metaheuristics are 

given. Section 4 provides simulation results, convergence 

curves, and t-test results. Finally, Section 5 gives 

information about the conclusion and future work. 

  

2. MATERIAL AND METHOD 

 

In this section, detailed information about metaheuristic 

algorithms is given. In order to present the algorithms in 

a more comprehensive and diverse manner, this study 

includes pseudocode representations for ARO and 

AVOA, and flowcharts for GA and PDO. This mixed 

presentation aims to enhance understanding by offering 

both algorithmic logic and visual summaries. 

 

2.1. Artificial Rabbit Optimization Algorithm (ARO) 

 

ARO is a metaheuristic based on behavioral models of 

rabbits [8]. In ARO, the two behaviors that rabbits have 

are determined according to the energy of the rabbits, and 

the transition between the behavior is made depending on 

energy shrink. Initially, the energy levels of the rabbits are 

high and in order to expand the search space, the rabbits 

exhibit detour foraging behavior.  They do this by 

selecting grasses in remote areas to prevent predators 

from finding their nests. Energy shrink occurs when 

foraging becomes repetitive. When there is enough energy 

shrink, they switch to random hiding behavior. In order to 

update their recent position, they build many nests in their 

territory and aim to hide from predators. They randomly 

select one of the burrows and complete the random hiding. 

Energy shrink between detour foraging and random 

hiding then these two behavioral strategies are described 

in detail below. 

 

Energy shrink 

 

In the early phases of the iterations, rabbits consistently 

exhibit detour foraging behavior [8]. However, in the later 

phases of the iterations they perform random hiding. This 

intermediate transition is caused by energy shrink and its 

mathematical model is presented in Equation 1. 

 

𝐴(𝑡) = 4 (1 −
𝑡

𝑇
) ln⁡

1

𝑟
 (1) 

 

where 𝑟 represents a randomly generated number within 

the range of 0 to 1. 𝑡 is the recent number of iterations, 

while 𝑇 depicts the total number of iterations. 

 

Detour foraging 

 

Rabbits have a wide field of vision. For this reason, they 

do not eat food in their habitat to avoid predators detecting 

their nests [9]. They randomly feed on grasses in remote 

areas. This behavior is termed detour foraging 

(exploration). In detour foraging, the ARO helps to avoid 

local extremes and search globally, as described in 

Equation 2. 
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𝑣⃗𝑖(𝑡 + 1) ⁡= 𝑥⃗𝑗(𝑡) + 𝑅 ⋅ (𝑥⃗𝑖(𝑡) − 𝑥⃗𝑗(𝑡)) + 𝑟𝑜𝑢𝑛𝑑⁡(0.5 ⋅ (0.05 + 𝑟1)) ⋅ 𝑛1,

𝑖, 𝑗 ⁡= 1, … , 𝑛 and 𝑗 ≠ 𝑖
 (2) 

where 𝑣⃗𝑖 (t+1) represents the 𝑖th rabbit’s likely position at 

time t+1. 𝑥⃗𝑖 (t) is the ith rabbit’s position at time t. n is the 

rabbit population size. round is rounding to the nearest 

integer. 𝑛1  depends on the standard normal distribution 

and is shown in Equation 3. 𝑟1 is a random number from 

0 to 1. R is the running operator and is expressed as in 

Equation 4. 

 

𝑛1 ∼ 𝑁(0,1) (3) 

𝑅 = 𝐿 ⋅ 𝑐 (4) 

 

Equation 5 defines the run length, denoted as 𝐿, which 

signifies the movement speed during detour foraging. 𝑐 is 

a mapping vector that can randomly assist the algorithm 

and is mathematically modeled as in Equations 6-7. 

 

𝐿 = (𝑒 − 𝑒
(
𝑡−1

𝑇
)
2

) ⋅ sin⁡(2𝜋𝑟2) (5) 

 

where 𝑡  and 𝑇  denote the recent and total number of 

iterations respectively. 𝑟2  is a random number ranging 

between 0 and 1. 

 

𝑐(𝑘) = {
1  if 𝑘 == 𝑔(𝑙)
0  else 

⁡𝑘 = 1,… , 𝑑  and 𝑙 =

1,… , ⌈𝑟3 ⋅ 𝑑⌉                 
(6) 

𝑔 = randperm⁡(𝑑) (7) 

 

where ⌈⋅⌉ represents the ceiling function, randperm is an 

integer permutation from 1 to d at random. 𝑟3 is a random 

number between 0 and 1. 

 

Random hiding 

 

Rabbits can dig different tunnels around their burrows to 

escape predators [10]. In each iteration, a rabbit digs d 

tunnels in the search space in each dimension. They also 

randomly choose one of the tunnels in each dimension to 

reduce the probability of predation. Mathematical models 

of random hiding are given in Equations 8-10. 

 

𝑣⃗𝑖(𝑡 + 1) = 𝑥⃗𝑖(𝑡) + 𝑅 ⋅ (𝑟4 ⋅ 𝑏⃗⃗𝑖,𝑟(𝑡) − 𝑥⃗𝑖(𝑡)), 𝑖

= 1,… , 𝑛 
(8) 

𝑔𝑟(𝑘) = {
1  if 𝑘 == ⌈𝑟5 ⋅ 𝑑⌉

0  else 
⁡𝑘 = 1,… , 𝑑 

(9) 

𝑏⃗⃗𝑖,𝑟(𝑡) = 𝑥⃗𝑖(𝑡) + 𝐻 ⋅ 𝑔𝑟 ⋅ 𝑥⃗𝑖(𝑡) (10) 

 

where 𝑏⃗⃗𝑖,𝑟(𝑡) is the randomly chosen hiding place. r4 and 

r5⁡ are random numbers from 0 to 1. 𝑥⃗𝑖(𝑡)  is the ith 

rabbit’s position at time⁡t.  R is the running operator, H is 

the hiding parameter and 𝑑  is the problem size. The 

location update after performing detour foraging or 

random hiding is given in Equation 11. 

 

𝑥⃗𝑖(𝑡 + 1)

= {
𝑥⃗𝑖(𝑡) 𝑓(𝑥⃗𝑖(𝑡)) ≤ 𝑓(𝑣⃗𝑖(𝑡 + 1))

𝑣⃗𝑖(t + 1) 𝑓(𝑥⃗𝑖(𝑡)) > 𝑓(𝑣⃗𝑖(𝑡 + 1))
 

(11) 

In cases where the fitness value of the candidate position 

of the 𝑖th rabbit exceeds its recent position, The rabbit will 

move from where it was and stay at the candidate place 

that either (Equation 2) or (Equation 8) determines. The 

ARO pseudocode is presented in Algorithm 1. 

 
Algorithm 1: ARO 

1. Generate the initial population randomly and evaluate their 

fitness 
2. repeat  

3.          for each (rabbit) do 

4.                    Calculate the energy shrink using (Equation 1) 

5.                    if (energy shrink >  1) then 

6.                           Choose a random rabbit 
7.                           Calculate the running operator using 

(Equations 3-7) 

8.                           Perform detour foraging using (Equation 2) 
9.                           Calculate fitness value 

10.                           Update recent individual’s position using 

(Equation 11) 
11.                   else 

12.                           Generate the nests using (Equation 10) 

13.                           Perform random hiding using (Equation 8) 
14.                           Calculate fitness value 

15.                           Update recent individual’s position using 

(Equation 11) 
16.                  end if 

17.                      Update the best solution so far 

18.            end for            

19. until (stopping criterion is satisfied) 

20. return the best solution 

 

2.2. African Vultures Optimization Algorithm 

(AVOA) 

 

AVOA is a metaheuristic inspired from the navigation and 

competition behavior of African vultures [11]. The 

vultures are divided into two basic groups, each 

representing a solution. In the algorithm, the fitness value 

of all solutions is calculated to divide the vultures into 

groups. The best vulture in the initial group is the first 

vulture with the highest value.  Likewise, the second 

vulture in the second group is the best vulture in terms of 

value. Other vultures in the population are used to move 

or replace these two best vultures. 

 

Vultures are divided into two groups to find food and live 

in groups. Each group has different foraging and eating 

abilities. Vultures are prevented from overeating by their 

tendency to forage and eat for hours. In the metaheuristic, 

the worst solution is the hungriest and weakest vulture. 

The other vultures try to get closer to the best vulture by 

avoiding the worst solution. There are four basic phases 

in AVOA: Identifying the best vulture in a random group, 

calculation of hunger rates, exploration and exploitation. 

 

Identifying the best vulture in a random group 

 

The initial population is created, and the solutions’ fitness 

values are calculated. In this phase, the best vulture of the 

first and second group is selected from the two best 

solutions, respectively. The other solutions aim to reach 

the best solutions by moving towards the best two groups. 
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During each iteration, the population’s positioning is 

adjusted according to their fitness values. 

 

Calculation of the hunger rates 

 

Vultures can fly longer distances when they have high 

energy after eating their fill [12]. If they’re hungry, it 

means they lack sufficient energy and cannot fly next to a 

stronger vulture. The hunger rate, which tends to 

decrease, is given in Equations 12-13. 

 

𝑡 = ℎ × (sin𝑤 ⁡ (
𝜋

2
×

 iter 

 𝑚𝑎𝑥𝑖𝑡𝑒𝑟  
)

+ cos⁡ (
𝜋

2
×

 iter 

 𝑚𝑎𝑥𝑖𝑡𝑒𝑟  
) − 1) 

(12) 

𝐹 = (2𝑟𝑎𝑛𝑑1 + 1) × 𝑧 × (1 −
 iter  

 𝑚𝑎𝑥𝑖𝑡𝑒𝑟
) + 𝑡 

(13) 

 

where, iter and 𝑚𝑎𝑥𝑖𝑡𝑒𝑟  are the recent and total number of 

iterations respectively. w  is a fixed number and 

decreasing this parameter reduces the probability of 

starting the exploration. The parameter h is a randomly 

selected number that can assume values ranging from -2 

to 2. Similarly, 𝑟𝑎𝑛𝑑1 is a random number from 0 to 1. F 

is the hunger rate of vultures. According to the value of z, 

it is determined whether vultures are hunger or not. If this 

value is below 0, it indicates the vulture’s hunger. If it is 

above 0, it means that the vulture is fed. In addition, if the 

hunger rate of the vultures is greater than 1, they start 

searching for food in different regions and perform the 

exploration. Otherwise, they move to the exploitation by 

searching for food near neighboring solutions. 

 

Exploration 

 

Vultures choose two different strategies by searching 

random areas. They choose strategies based on the 

parameter 𝑝1 . This parameter should have a value 

between 0 and 1 and should be evaluated before 

exploration. The mathematical model of strategy selection 

is described in Equation 14. 

 

 

𝑃(𝑖 + 1) = {
𝑅(𝑖) − |𝑋 × 𝑅(𝑖) − 𝑃(𝑖)| × 𝐹⁡⁡𝑝1 ≥ 𝑟𝑎𝑛𝑑𝑃1 ⁡

𝑅(𝑖) − 𝐹 + 𝑟𝑎𝑛𝑑2 × ((𝑢𝑏 − 𝑙𝑏) × 𝑟𝑎𝑛𝑑3 + 𝑙𝑏)⁡⁡𝑝1 < 𝑟𝑎𝑛𝑑𝑃1
 

(14) 

where, 𝑅(𝑖) is the best vultures and 𝑋 is the distance the 

vultures move to protect the food. The rand symbols in the 

equation are numbers between 0 and 1. 𝑢𝑏 and 𝑙𝑏 are the 

boundaries of the search space. The convergence of 

𝑟𝑎𝑛𝑑3⁡ to 1 increases the ability to explore different 

spaces. 

 

Exploitation 

 

If the hunger rate is less than 1, it starts the stage of 

metaheuristic exploitation. Depending on whether this 

rate is less than 0.5 or not, this phase is divided into two. 

If the value is small, vultures compete for food. Two 

different strategies are selected for each choice with 

randomly generated values. The selection of strategies is 

determined by the parameters 𝑝2  and 𝑝3 . Vultures have 

enough energy to search for food during the competition 

phase and may conflict over food sources. Weaker 

vultures fly in a spiral pattern and try to take food from 

stronger ones. This behaviour is given in Equation 15, 

depending on the parameter 𝑝2. 

 

 

𝑃(𝑖 + 1) = {

|𝑋 × 𝑅(𝑖) − 𝑃(𝑖)| × (𝐹 + 𝑟𝑎𝑛𝑑4) − (𝑅(𝑖) − 𝑃(𝑖))⁡𝑖𝑓⁡𝑝2 ≥ 𝑟𝑎𝑛𝑑𝑃2

𝑅(𝑖) − 𝑅(𝑖) × (
𝑃(𝑖)

2𝜋
) (𝑟𝑎𝑛𝑑5 × cos(𝑃(𝑖)) + 𝑟𝑎𝑛𝑑6 × sin(𝑃(𝑖)))⁡𝑖𝑓⁡𝑝2 < 𝑟𝑎𝑛𝑑𝑃2

 (15) 

where 𝑃(𝑖)  represents the recent vector position from 

which the vulture’s distance from the best vultures in two 

groups is calculated. 𝑅(𝑖)⁡denotes one of the two best 

vultures’ position vectors in the last iteration. 𝑟𝑎𝑛𝑑 

values are numbers between 0 and 1. 

 

In the two stages of the exploration, there are aggressive 

competitions over the food source. If the hunger rate is 

less than 0.5, this stage of the phase is started. At the 

beginning of the stage, a parameter 𝑟𝑎𝑛𝑑𝑃3  is generated 

between 0 and 1. If this parameter⁡⁡𝑝3 is greater than or 

equal, several species of vultures gather on the food 

source. Otherwise, there is a siege strife among the 

vultures. The mathematical model for this stage is given 

in Equation 16. Additionally, the gathering of vultures 

over the food source is expressed based on Equations 17-

18. 

 

 

𝑃(𝑖 + 1) = {
𝐸𝑞. 18⁡𝑖𝑓⁡⁡𝑝3 ≥ 𝑟𝑎𝑛𝑑𝑃3
𝐸𝑞. 19⁡𝑖𝑓⁡⁡𝑝3 < 𝑟𝑎𝑛𝑑𝑃3

 (16) 

𝐴1 = −⁡𝐹 ×⁡
 BestVulture 1(𝑖) × 𝑃(𝑖)

 BestVulture 1(𝑖) − 𝑃(𝑖)2

+ BestVulture 1(i)

𝐴2 = −⁡𝐹 ×⁡
 BestVulture 2(𝑖) × 𝑃(𝑖)

 BestVulture 2(𝑖) − 𝑃(𝑖)2

+ BestVulture 2(i)

 (17) 

𝑃(𝑖 + 1) =
𝐴1 + 𝐴2

2
 (18) 

 

where,  BestVulture 1(i)  and  BestVulture 2(i)  represent 

the best vultures. F is the hunger rate, P(i) is the recent 

vulture’s position and P(i + 1)  is the position of the 

vulture in the next iteration. 

 

When the hunger rate is less than 0.5, the leader vultures 

of the groups remain hungry. Therefore, they lack the 
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necessary energy to handle the other vultures within the 

group. However, the remaining vultures also grow more 

aggressive in their search for food. The leader vultures 

move in the right different directions. Equation 19 is used 

to model this movement. 

 

𝑃(𝑖 + 1) = 𝑅(𝑖) − 𝐹 × 𝐿𝐹⁡(𝑑) × |𝑅(𝑖)
− 𝑃(𝑖)| 

(19) 

 

where 𝑑  is the problem size and |𝑅(𝑖) − 𝑃(𝑖)|  is the 

vulture’s distance from among the best vultures in the two 

groups. To improve the efficiency of AVOA, a Lévy flight 

[13, 14] is included. The modeling of this flight is given 

in Equation 20. 

 

𝐿𝐹(𝑥) = 0.01 ×
𝑢 × 𝜎

|𝑣|
1

𝛽

, 𝜎

= (
Γ(1 + 𝛽) × sin⁡ (

𝜋𝜌

2
)

Γ(1 + 𝛽2) × 𝛽 × 2 (
𝛽−1

2
)
)

1

𝛽

 

(20) 

 

where u and v are randomly chosen numbers within the 

range of 0 to 1. The default number value of β is 1.5 and 

is constant. The AVOA pseudocode algorithm is given in 

Algorithm 2. 

 
Algorithm 2: AVOA 

1. Randomly generate the initial population  

2. repeat  

3.          Calculate fitness values of vultures 
4.          Set the best first position of vulture 

5.          Set the second best position of vulture 

6.          for each (vulture) do 

7.                    Choose the best vulture position 

8.                    Update hunger rate 

9.                    if (hunger rate ≥  1) then 

10.                         if (𝑷𝟏 ≥ 𝒓𝒂𝒏𝒅𝑷𝟏) then 

11.                             Update the position using Equation 14 
12.                         else 

13.                             Update the position using Equation 14 

(part two) 
14.                         end if 

15.                    end if 

16.                    if (hunger rate < 1) then 

17.                          if (hunger rate ≥ 0.5) then 

18.                               if (𝑷𝟏 ≥ 𝒓𝒂𝒏𝒅𝑷𝟐) then 

19.                                     Update the position using 

Equation 15 

20.                               else 
21.                                     Update the position using 

Equation 15 (part two)                               

22.                               end if 
23.                           else 

24.                                if (𝑷𝟏 ≥ 𝒓𝒂𝒏𝒅𝑷𝟐) then 

25.                                     Update the position using 

Equation 16 

26.                               else 

27.                                     Update the position using 

Equation 16 (part two)                               
28.                               end if 

29.                          end if 

30. until (stopping criterion is satisfied) 
31. return the position of the best vulture 

 

2.3. Genetic Algorithm (GA) 

 

GA is a metaheuristic algorithm inspired by natural 

selection and based on survival of the fittest [4]. The 

algorithm generates the next generation by starting 

genetic variations and selection processes from a 

randomly selected initial population. Crossover, mutation 

and selection operators are used to find the best solution. 

Problem-specific solutions are customized and encoded as 

fixed bit strings. Solutions are represented by 

chromosomes. The first mechanism used in solution 

improvement, crossover is the replacement of a 

chromosome or chromosomes passed from generation to 

generation [15], as shown in Figure 1.  

 

 
Figure 1. Crossover 

 

In crossover, as seen in Figure 1, there are two different 

methods. In one-point crossover, a segment is taken from 

one individual at a one point, and the remaining segment 

is exchanged with the corresponding segment from the 

other individual. In two-point crossover, two segments are 

taken from two different points, and the chromosomes in 

between are swapped with those of the other individual. 

Another improvement mechanism, mutation is the 

replacement of chromosomes that give rise to a gene [16], 

as shown in Figure 2. 

 

 
Figure 2. Mutation 

 

Mutation can occur in four different ways: inversion, 

insertion, displacement, and swap. In inversion, a 

chromosome’s value is reversed. In insertion, a new 

chromosome is added. Displacement occurs by removing 

a selected chromosome from its gene sequence. In swap, 

the positions of two randomly selected chromosomes are 

exchanged. In GA, the best individual solution is obtained 

when the termination criterion is met. Additionally, the 

GA flowchart is given in Figure 3. 
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Figure 3. GA flowchart [4] 

 

2.4. Prairie Dog Optimization Algorithm (PDO) 

 

PDO is developed by the survival of prairie dogs and 

modeling their behavior [17]. In the modeling, their 

feeding patterns are first used to expand the problem 

search space. They then look for strategic positions when 

searching for food. These positions should serve a certain 

purpose that improves the general functioning of the 

coterie, the prairie dog community. This purpose 

enhances exploration, which is the search for new 

solutions in different regions. After the exploration, the 

communication skills of prairie dogs against 

environmental threats play an important role in their 

ability to prevent predation. The skills enable predators to 

react differently to different hunting strategies. Reactions 

carry out the exploitation, which aims to increase fitness 

to make improvements to existing solutions. The 

exploration and exploitation are given below. 

 

Exploration 

 

The first strategy for members of the coterie during the 

exploration is to search for new food sources in the 

coterie. Prairie dogs are best at catching food sources 

using Lévy flight movement. They communicate the 

precise position of food sources to other members by 

making distinct sounds. Once the food source quality is 

reached, the best one is selected for food search, and new 

nests are built based on the food source quality. The 

position update for the search in the exploration of the 

metaheuristic is represented in Equation 21. In addition, 

the Lévy flight movement is as in Equation 20. 

 

PDi+1,j+1 =⁡GBesti,j − 𝑒 CBest i,j ∗ ⁡𝜌

−  CPD 𝑖,𝑗 ∗

∗ LF⁡(𝑛)∀ iter <
 Max 𝑖𝑡𝑒𝑟

4
 

(21) 

 

where 𝑃𝐷𝑖+1,𝑗+1 represents the (j + 1)th dimension of the 

(i + 1)th prairie dog in a coterie. For this experiment, the 

particular food source alarm, denoted by ρ, is set at 0.1 

kHz. Likewise, the second strategy involves evaluating 

the availability and quality of food sources and assessing 

the digging strength. New nests are constructed according 

to the digging strength, a parameter intentionally reduced 

with each successive iteration. This helps to limit the 

number of nests that can be constructed. The position 

update for nest building is given in Equation 22. 

 

PDi+1,j+1 =⁡  GBest i,j ∗ rPD ∗ DS

∗  LF(n)∀
  Max iter

4

≤  iter <
 Max iter

2
 

(22) 

 

where rPD  is a random solution’s position. When 

 GBest i,j represents the globally best solution obtained so 

far, 𝑒CBest i,j  evaluates the impact of the recent best 

solution as shown in Equation 23. DS represents the 

digging strength of a random value range group 

determined by Equation 25, which relies on food source 

quality. 

 

𝑒𝐶𝐵𝑒𝑠𝑡𝑖,𝑗

= 𝐵𝑒𝑠𝑡⁡𝑖,𝑗 ∗ Δ +
𝑃𝐷𝑖,𝑗 ∗ 𝑚𝑒𝑎𝑛⁡(𝑃𝐷𝑛,𝑚)

 GBest 𝑖,𝑗 ∗ (𝑈𝐵𝑗 − 𝐿𝐵𝑗) + Δ
 

(23) 

 

where 𝑈𝐵𝑗  and 𝐿𝐵𝑗  represent the boundaries for the 𝑗th 

dimension in the optimization problem., respectively. 

𝐶𝑃𝐷𝑖,𝑗  is the random cumulative effect of the whole 

prairie dogs in the population and is defined in Equation 

24. 

 

𝐶𝑃𝐷𝑖,𝑗 =
 GBest 𝑖,𝑗 − 𝑟𝑃𝐷𝑖,𝑗

 GBest 𝑖,𝑗 + Δ
 (24) 

𝐷𝑆 = 1.5 × 𝑟 × (1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)
(2

 iter 

 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 
)

 (25) 

 

where 𝑟  is a parameter that takes the value -1 or 1. Δ 

represents a small number explaining existing differences. 

𝑖𝑡𝑒𝑟 and 𝑀𝑎𝑥𝑖𝑡𝑒𝑟  represent the recent and total iteration 

numbers, respectively. 

 

Exploitation 

 

Prairie dogs use vocalizations or signals for various 

situations, ranging from predator dangers to availability 

of food [18]. Communication plays an essential part in 

prairie dogs’ ability to meet their nutritional needs and 

protect against predation. They can also convey 
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distinctions in the quality of food sources, predator 

presence, and hunting behaviors. Various communication 

skills in prairie dogs facilitate the discovery of improved 

or nearly ideal solutions. These solutions result in 

approaching a certain position or a promising position in 

the case of the PDO application, where more searches are 

conducted. The aim of the exploitation mechanisms used 

in PDO is to intensively explore promising areas 

identified during the exploration. The two strategies for 

this phase are Equations 26-27. 

 
𝑃𝐷𝑖+1,𝑗+1 =  GBest 𝑖,𝑗 − 𝑒 CBest 𝑖,𝑗 ∗ 𝜀 − 𝐶𝑃𝐷𝑖,𝑗

∗  rand ∀
  Max iter  

2
≤  iter < 3

 Max iter 

4

 (26) 

𝑃𝐷𝑖+1,𝑗+1 =  GBest 𝑖,𝑗 ∗ 𝑃𝐸

∗  rand ∀3
 Max iter 

4
≤  iter <  Max iter 

 (27) 

where 𝑃𝐷𝑖+1,𝑗+1 represents the (j + 1)th dimension of the 

(i + 1)th prairie dog. ε is a little number representing food 

source quality. PE denotes the predator effect modeled by 

Equation 28 and rand indicates a number between 0 and 

1, which is random. 

 

𝑃𝐸 = 1.5 × (1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥iter 

)
(2

𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟 
)

 (28) 

 

where iter and 𝑀𝑎𝑥iter  are the recent and total number of 

iterations, respectively. The flowchart of the PDO is given 

in Figure 4. 

 
Figure 4. PDO flowchart [17] 

 

3. EXPERIMENTAL DESIGN 

 

In this section, the parameters of the metaheuristics and 

the test functions to be used in comparisons are given. 

 

3.1. Parameters 

 

Each metaheuristic has its own parameter and is given in 

Table 1. ARO does not require any algorithm-specific 

control parameters, as stated by Wang et al. [8]. 

Therefore, it is not listed in this table. p1, p2, p3 are the 

parameters for selecting strategies in the exploration and 

exploitation. The parameters 𝐿  represents the 

probabilities associated with the selection of the best 

vulture. 𝑤 is the parameter whether the exploration and 

exploitation will be terminated. pc  gives the crossover 

probability and Pm represents the probability of mutation. 

ρ is the food source alarm parameter. ε is the food source 

quality parameter. Additionally, Δ is individual prairie 

dog difference. 

 

3.2. Test functions 

 

In this paper, 8 different test functions were used to 

compare metaheuristics. Among the functions presented 

in Table 2, 𝐹1, 𝐹2, 𝐹3 and 𝐹4 are unimodal, 𝐹5, 𝐹6, 𝐹7 and 

𝐹8  are multimodal. In addition, 𝐹𝑚𝑖𝑛  represents the 

optimum value and the range represents the boundaries of 

the search space of the functions. The dimension value for 

all functions is taken as 10, 30, 50 respectively. 

Furthermore, the plots of the functions are given in Figure 

5.  
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Table 1. Parameters of metaheuristics 

Metaheuristic Parameter Value 

AVOA 

𝑝1 0.6 

𝑝2 0.4 

𝑝3 0.6 

𝐿1 0.8 

𝐿2 0.2 

𝑤 2.5 

GA 
𝑝𝑐 0.80 

𝑃𝑚 0.20 

PDO 

𝜌 0.1 

𝜀 2.2204E-16 

Δ 0.005 

All metaheuristics 
Population size 50 

Max. iterations 1000 

A total of 8 benchmark functions were selected to ensure 

a balanced and representative evaluation of the 

algorithms’ capabilities. Four unimodal functions were 

included to assess the exploitation performance, i.e., the 

algorithms’ ability to converge quickly to a single global 

optimum. Four multimodal functions were chosen to 

evaluate exploration performance, reflecting the ability to 

escape local optima and explore the solution space 

broadly. Selecting 4 functions from each category also 

helps maintain computational efficiency while allowing 

statistically meaningful analysis across different 

dimensions. 

 

 
Table 2. Test functions 

Function Dimension Range 𝑭𝒎𝒊𝒏 

𝐹1(𝑥) = ∑𝑖=1
𝑛  𝑥𝑖

2 10,30,50 [-100,100] 0 

𝐹2(𝑥) = ∑𝑖=0
𝑛  |𝑥𝑖| + ∏𝑖=0

𝑛  |𝑥𝑖| 10,30,50 [-10,10] 0 

𝐹3(𝑥) = ∑𝑖=1
𝑛−1  [100(𝑥𝑖 − 𝑥𝑖+1)

2 + (1 − 𝑥𝑖)
2] 10,30,50 [-30,30] 0 

𝐹4(𝑥) = ∑𝑖=1
𝑛−1 = ∑𝑖=1

𝑛  ([𝑥𝑖 − 0.5])2 10,30,50 [-100,100] 0 

𝐹5(𝑥) = 10 + ∑𝑖=1
𝑛  (𝑥𝑖

2 − 10cos⁡(2𝜋𝑥𝑖)) 10,30,50 [-5.12,5,12] 0 

𝐹6(𝑥) = −aexp⁡ (−0.02√𝑛−1∑𝑖=1
𝑛  𝑥𝑖

2) − exp⁡(𝑛−1∑𝑖=1
𝑛  cos⁡(2𝜋𝑥𝑖)) + 𝑎 + 𝑒, 𝑎 = 20 10,30,50 [-32,32] 0 

𝐹7(𝑥) = 1 +
1

4000
∑𝑖=1
𝑛  𝑥𝑖

2 −∏𝑖=1
𝑛  cos⁡ (

𝑥𝑖

√𝑖
) 10,30,50 [-600,600] 0 

𝐹8(𝑥) = 0.1(sin2⁡(3𝜋𝑥1) + ∑𝑖=1
𝑛  (𝑥𝑖 − 1)2[1 + sin2⁡(3𝜋𝑥𝑖 + 1)]

⁡ + (𝑥𝑛 − 1)21 + sin2⁡(2𝜋𝑥𝑛)) + ∑𝑖=1
𝑛  𝑢(𝑥𝑖 , 5,100,4)

 10,30,50 [-50,50] 0 

 
Figure  5.  Test functions (𝐹1- 𝐹8)  
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Figure  5.  Test functions (𝐹1- 𝐹8) (continued) 

 

3.3. Engineering problems 

 

In this study, three well-known engineering design 

problems are investigated: pressure vessel design, 

tension/compression spring design, and three-bar truss 

design. This section presents the mathematical 

formulation of each problem in detail. 

 

3.3.1. Pressure Vessel Design 

 

In this engineering design problem, the goal is to 

minimize the total cost associated with constructing a 

cylindrical pressure vessel. The design involves four 

decision variables: the shell thickness (𝑧1 = 𝑇𝑠), the head 

thickness (𝑧2 = 𝑇ℎ), the inner radius of the vessel (𝑧3 = 𝑟), 

and the length of the cylindrical section without the head 

(𝑧4 = 𝐿). 

 

The objective function, which represents the cost, is 

subject to four nonlinear constraints related to structural 

and volume requirements. The mathematical 

representation of the problem is given below: 

 

Design vector: 𝑧 = [𝑧1, 𝑧2, 𝑧3, 𝑧4] = [𝑇𝑠 , 𝑇ℎ, 𝑟, 𝐿] 
Objective function: 

𝑓(𝑧) = 1.7781𝑧2𝑧3
3 + 3.1661𝑧1

2𝑧4 + 19.84𝑧1
2𝑧3⁡

+ 0.6224𝑧1𝑧3𝑧4 

Constraints: 

𝑔1(𝑧) = −𝑧1 + 0.0193𝑧3 ≤ 0

𝑔2(𝑧) = −𝑧3 + 0.00954𝑧3 ≤ 0

𝑔3(𝑧) = −𝜋𝑧3
2𝑧4 −

4

3
𝜋𝑧3

3 + 1,296,000 ≤ 0

𝑔4(𝑧) = 𝑧4 − 240 ≤ 0

 

Variable bounds: 

0 ≤ 𝑧1, 𝑧2 ≤ 99, 10 ≤ 𝑧3, 𝑧4 ≤ 200 

This formulation ensures that the structural integrity and 

volume constraints are met while minimizing material and 

manufacturing costs. 

 

3.3.2. Tension/Compression Spring Design 

 

This optimization problem focuses on minimizing the 

weight of a tension or compression spring. The design 

involves three key variables: the wire diameter (𝑧1 = 𝑑), 

the mean coil diameter (𝑧2 = 𝐷), and the number of active 

coils (𝑧3 = 𝑁). These parameters determine the physical 

structure of the spring. 

 

The objective is to reduce the spring’s weight while 

ensuring it satisfies several mechanical constraints, 

including limits on deflection, shear stress, and surge 

frequency. The mathematical formulation of the problem 

is as follows: 

 

Design vector: 𝑧 = [𝑧1, 𝑧2, 𝑧3] = [𝑑, 𝐷, 𝑁] 
Objective function: 

𝑓(𝑧) = (𝑧3 + 2)𝑧2𝑧1
2 

Constraints: 

𝑔1(𝑧) = 1 −
𝑧2
3𝑧3

71785𝑧1
4 ≤ 0

𝑔2(𝑧) =
1

5108𝑧1
2 +

4𝑧2
2 − 𝑧1𝑧2

12566(𝑧2𝑧1
3 − 𝑧1

4)
≤ 0

𝑔3(𝑧) = 1 −
140.45𝑧1

𝑧2
2𝑧3

≤ 0

𝑔4(𝑧) =
𝑧1 + 𝑧2
1.5

− 1 ≤ 0

 

This formulation ensures that the spring design is both 

lightweight and structurally feasible under mechanical 

and dynamic load conditions. 

 

3.3.3. The Three-Bar Truss Design Problem 

 

This structural optimization problem aims to minimize the 

total weight of a simple planar truss system subjected to 

external loading. The design involves two decision 

variables: the cross-sectional areas of two different truss 

elements, denoted as 𝑥1 = 𝐴1 and 𝑥2 = 𝐴2. These 

parameters directly affect the truss’s weight and its 

mechanical behavior under stress. The objective function 

is defined as a function of the material length and the 

cross-sectional areas, while the design is subject to 

multiple nonlinear constraints, including limits on 

deflection, buckling, and maximum allowable stress. 

These constraints ensure the structural integrity of the 

truss under given loading conditions. The mathematical 

formulation is expressed as follows: 

 

Design vector: 𝑋⃗ = [𝑥1, 𝑥2] = [𝐴1, 𝐴2] 
Objective function: 

𝑓(𝑋⃗) = (2√2𝑥1 + 𝑥2) × 𝐿 

Constraints: 

𝑔1(𝑋⃗)⁡=
√2𝑥1 + 𝑥2

√2𝑥1
2 + 2𝑥1𝑥2

𝑃 − 𝜎 ≤ 0

𝑔2(𝑋⃗)⁡=
𝑥2

√2𝑥1
2 + 2𝑥1𝑥2

𝑃 − 𝜎 ≤ 0

𝑔3(𝑋⃗)⁡=
1

√2𝑥2 + 𝑥1
𝑃 − 𝜎 ≤ 0

 

Variable bounds: 0 < 𝑥1, 𝑥2 ≤ 1 



     

Tr. J. Nature Sci. Volume 14, Issue 3, Page 73-89, 2025 
 

 

82 

where: 𝐿 = 100 cm (length of each truss member), 𝑃 =
2kN/cm2  (applied load), 𝜎 = 2kN/cm2  (maximum 

allowable stress). 

 

This problem is widely used in the literature to test the 

effectiveness of optimization algorithms under multi-

constraint structural design scenarios, as it combines 

weight minimization with critical mechanical limitations. 

 

4. Result and Discussion 

In order to provide a more comprehensive and structured 

evaluation of the metaheuristic algorithms, this section is 

divided into four subsections. First, the simulation results 

of the test functions are analyzed in terms of mean, best, 

and worst values. Then, the convergence behaviors of the 

algorithms are investigated by plotting convergence 

curves for different dimensions. In the third subsection, a 

statistical evaluation is conducted using a one-tailed t-test 

to determine whether the observed performance 

differences are significant. Finally, a new subsection is 

introduced to analyze the computational time and 

complexity of the algorithms. This addition directly 

addresses reviewer comments regarding the importance of 

computational cost in real-world applications. 

 

4.1. Benchmark Function Results 

 

In this paper, metaheuristics were run independently 30 

times. MATLAB R2022b platform was used for 

performance analysis of metaheuristics. Simulations were 

implemented on a machine with AMD Ryzen 5 3500X 

CPU, 3.6 GHz speed and 16 GB RAM. Simulation results 

of the test functions are given in Tables 3, 4 and 5, 

respectively. The mean, standard deviation, best and 

worst results of all functions are presented in these tables. 

Additionally, the metaheuristics with the lowest mean and 

best value are bolded. 

 

 
Table 3. Simulation results of test functions for dim = 10 

Functions Algorithms ARO AVOA GA PDO 

𝑭𝟏 

Mean 2.99E-141 0.00E+00 2.04E+03 0.00E+00 

Std 1.44E-140 0.00E+00 5.17E+02 0.00E+00 

Best 2.56E-152 0.00E+00 8.01E+02 0.00E+00 

Worst 8.03E-140 0.00E+00 2.83E+03 0.00E+00 

𝑭𝟐 

Mean 5.71E-74 0.00E+00 1.07E+01 0.00E+00 

Std 2.41E-73 0.00E+00 1.85E+00 0.00E+00 

Best 3.36E-82 0.00E+00 6.44E+00 0.00E+00 

Worst 1.33E-72 0.00E+00 1.38E+01 0.00E+00 

𝑭𝟑 

Mean 1.36E+00 4.81E-06 1.78E+04 4.28E+00 

Std 1.80E+00 6.22E-06 3.76E+03 3.65E+00 

Best 5.94E-06 4.81E-10 1.03E+04 6.35E-02 

Worst 4.34E+00 2.03E-05 2.57E+04 9.00E+00 

𝑭𝟒 

Mean 1.71E-20 1.53E-16 2.24E+03 2.97E-30 

Std 3.60E-20 2.02E-16 5.87E+02 1.18E-29 

Best 4.33E-24 5.01E-18 9.15E+02 3.08E-33 

Worst 1.8E-19 8.67E-16 3.20E+03 6.43E-29 

𝑭𝟓 

Mean 0.00E+00 0.00E+00 4.99E+02 0.00E+00 

Std 0.00E+00 0.00E+00 6.29E+00 0.00E+00 

Best 0.00E+00 0.00E+00 4.80E+02 0.00E+00 

Worst 0.00E+00 0.00E+00 5.08E+02 0.00E+00 

𝑭𝟔 

Mean 4.44E-16 4.44E-16 1.35E+01 4.44E-16 

Std 0.00E+00 0.00E+00 1.27E+00 0.00E+00 

Best 4.44E-16 4.44E-16 1.05E+01 4.44E-16 

Worst 4.44E-16 4.44E-16 1.53E+01 4.44E-16 

𝑭𝟕 

Mean 0.00E+00 0.00E+00 2.09E+01 0.00E+00 

Std 0.00E+00 0.00E+00 5.58E+00 0.00E+00 

Best 0.00E+00 0.00E+00 1.25E+01 0.00E+00 

Worst 0.00E+00 0.00E+00 3.07E+01 0.00E+00 

𝑭𝟖 

Mean 2.43E-18 1.83E-14 1.12E+06 7.48E-01 

Std 1.22E-17 2.53E-14 7.49E+05 3.70E-01 

Best 8.52E-25 5.77E-16 1.07E+05 1.97E-02 

Worst 6.82E-17 1.16E-13 2.85E+06 1.00E+00 

When all simulation results are evaluated, AVOA and 

PDO reach the optimum value in 𝐹1, 𝐹2, 𝐹5 and 𝐹7, while 

ARO reaches the optimum value in 𝐹5  ve 𝐹7 . ARO 

follows AVOA and PDO with very small differences in 

𝐹1 ve 𝐹2 where it does not reach an optimum value. GA, 

on the other hand, did not achieve the optimum value in 

any function and was the worst performing metaheuristic. 

In 𝐹6  function, the newly proposed metaheuristics 

performed the same. In the simulation results of 

dimension 10, AVOA has the best and lowest mean values 

in 𝐹3, PDO in 𝐹4 and ARO in 𝐹8. In the other dimensions, 

AVOA performs better in these functions.  In dimension 

10, the new metaheuristics have the largest difference in 

𝐹8 , with an approximate value of 1.97E-02.  For 

dimension 30, the biggest difference in the best values that 

the GA has is in 𝐹8 and is about 7.37E+07. In dimension 

50, the GA has the largest difference of 1.14E+11 (𝐹2) and 

6.53E+08 (𝐹8 ) in the means and best values for all 

functions. 
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Table 4. Simulation results of test functions for dim = 30 

Functions Algorithms ARO AVOA GA PDO 

𝑭𝟏 

Mean 9.07E-124 0.00E+00 3.24E+04 0.00E+00 

Std  4.96E-123 0.00E+00 2.85E+03 0.00E+00 

Best 1.05E-143 0.00E+00 2.64E+04 0.00E+00 

Worst 2.72E-122 0.00E+00 3.69E+04 0.00E+00 

𝑭𝟐 

Mean 2.74E-70 0.00E+00 1.01E+03 0.00E+00 

Std 6.50E-70 0.00E+00 1.66E+03 0.00E+00 

Best 6.75E-76 0.00E+00 8.76E+01 0.00E+00 

Worst 3.04E-69 0.00E+00 6.34E+03 0.00E+00 

𝑭𝟑 

Mean 1.67E+00 1.83E-06 3.63E+05 6.80E+00 

Std 6.33E+00 1.98E-06 3.81E+04 1.05E+01 

Best 1.75E-04 4.94E-08 2.91E+05 3.24E-01 

Worst 2.52E+01 7.63E-06 4.39E+05 2.90E+01 

𝑭𝟒 

Mean 1.86E-06 1.64E-10 3.36E+04 3.46E+00 

Std 1.63E-06 1.21E-10 2.68E+03 2.08E+00 

Best 4.46E-08 2.85E-11 2.71E+04 1.60E-01 

Worst 5.60E-06 5.35E-10 3.95E+04 7.25E+00 

𝑭𝟓 

Mean 0.00E+00 0.00E+00 4.65E+03 0.00E+00 

Std  0.00E+00 0.00E+00 1.42E+01 0.00E+00 

Best 0.00E+00 0.00E+00 4.62E+03 0.00E+00 

Worst 0.00E+00 0.00E+00 4.68E+03 0.00E+00 

𝑭𝟔 

Mean 4.44E-16 4.44E-16 1.93E+01 4.44E-16 

Std  0.00E+00 0.00E+00 2.07E-01 0.00E+00 

Best 4.44E-16 4.44E-16 1.89E+01 4.44E-16 

Worst 4.44E-16 4.44E-16 1.96E+01 4.44E-16 

𝑭𝟕 

Mean 0.00E+00 0.00E+00 3.00E+02 0.00E+00 

Std  0.00E+00 0.00E+00 2.58E+01 0.00E+00 

Best 0.00E+00 0.00E+00 2.44E+02 0.00E+00 

Worst 0.00E+00 0.00E+00 3.40E+02 0.00E+00 

𝑭𝟖 

Mean 7.39E-04 4.80E-10 2.38E+08 2.93E+00 

Std  2.79E-03 3.05E-10 5.42E+07 1.44E-01 

Best 5.88E-08 1.47E-10 7.37E+07 2.44E+00 

Worst 1.10E-02 1.39E-09 3.23E+08 3.00E+00 

 
Table 5. Simulation results of test functions for dim = 50 

Functions Algorithms ARO AVOA GA PDO 

𝑭𝟏 

Mean 8.80E-122 0.00E+00 7.70E+04 0.00E+00 

Std  3.21E-121 0.00E+00 4.59E+03 0.00E+00 

Best 2.21E-137 0.00E+00 6.71E+04 0.00E+00 

Worst 1.56E-120 0.00E+00 8.48E+04 0.00E+00 

𝑭𝟐 

Mean 2.10E-66 0.00E+00 1.14E+11 0.00E+00 

Std 8.24E-66 0.00E+00 3.03E+11 0.00E+00 

Best 8.95E-75 0.00E+00 2.11E+06 0.00E+00 

Worst 4.14E-65 0.00E+00 1.40E+12 0.00E+00 

𝑭𝟑 

Mean 2.18E-02 4.28E-06 9.71E+05 1.81E+01 

Std 2.05E-02 3.63E-06 6.27E+04 2.01E+01 

Best 3.19E-03 2.06E-07 8.13E+05 1.14E+00 

Worst 9.02E-02 1.85E-05 1.08E+06 4.90E+01 

𝑭𝟒 

Mean 2.28E-04 1.83E-08 7.75E+04 7.52E+00 

Std 1.03E-04 1.26E-08 3.44E+03 2.52E+00 

Best 7.22E-05 4.59E-09 6.91E+04 2.83E+00 

Worst 4.12E-04 6.22E-08 8.30E+04 1.23E+01 

𝑭𝟓 

Mean 0.00E+00 0.00E+00 1.28E+04 0.00E+00 

Std  0.00E+00 0.00E+00 1.54E+01 0.00E+00 

Best 0.00E+00 0.00E+00 1.28E+04 0.00E+00 

Worst 0.00E+00 0.00E+00 1.29E+04 0.00E+00 

𝑭𝟔 

Mean 4.44E-16 4.44E-16 2.00E+01 4.44E-16 

Std  0.00E+00 0.00E+00 9.99E-02 0.00E+00 

Best 4.44E-16 4.44E-16 1.98E+01 4.44E-16 

Worst 4.44E-16 4.44E-16 2.02E+01 4.44E-16 

𝑭𝟕 

Mean 0.00E+00 0.00E+00 6.69E+02 0.00E+00 

Std 0.00E+00 0.00E+00 5.36E+01 0.00E+00 

Best 0.00E+00 0.00E+00 5.25E+02 0.00E+00 

Worst 0.00E+00 0.00E+00 7.43E+02 0.00E+00 

𝑭𝟖 

Mean 6.28E-03 2.11E-09 8.65E+08 4.85E+00 

Std 1.93E-02 1.98E-09 9.42E+07 7.08E-01 

Best 1.32E-05 1.07E-10 6.53E+08 1.13E+00 

Worst 9.74E-02 8.32E-09 1.00E+09 5.00E+00 
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Table 6. Metaheuristics total rank 

Metaheuristic Best Mean 

ARO 10 10 

AVOA 22 22 

GA 0 0 

PDO 16 16 

 

The numbers of providing the best and mean result in 

terms of metaheuristics in all simulation results are given 

in Table 6. According to the table, in terms of overall 

success, the best metaheuristic is AVOA, followed by 

PDO, ARO, and GA, respectively. The most successful 

values are bolded in the table. AVOA achieved 6 more 

best results than the closest PDO. Among the new 

proposed ones, ARO seems to be the most unsuccessful, 

but it produced very close values compared to the others. 

 

4.2. Convergence curves of functions 

 

The convergence curve is a graph that shows how quickly 

or accurately a mathematical or computational process 

progresses towards a specific goal or outcome [19]. The 

convergence plots of metaheuristics on test functions for 

dimensions 10, 30, and 50 are provided in Figures 6-7. 

 

 

 

 

 
Figure 6. Convergence curves of test functions (𝐹1 - 𝐹4)  
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Figure 7.  Convergence curves of test functions (F5 - F8) 

 

AVOA showed faster convergence for each dimension in 

all functions. AVOA is followed by ARO. Even though 

PDO shows slower convergence than ARO, it has better 

performance in simulation results as seen in Table 6. 

AVOA and PDO produced the same values after a certain 

iteration for all dimensions in  𝐹1 , 𝐹2 , 𝐹5 , 𝐹6 , and 𝐹7 . 

Similarly, ARO terminated by producing the same values 

after a certain iteration for all dimensions in 𝐹5, 𝐹6, and 

𝐹7 . Additionally, the convergence speed of the 

metaheuristics became slower as the dimension increased. 

In contrast to the newly proposed metaheuristics, GA 

performed worse and showed less convergence. 

4.3. t-test result 

 

The t-test is a statistical method used to determine whether 

there is a significant difference between the means of two 

groups [20, 21]. In this study, a one-tailed t-test was 

performed on the results of the metaheuristic simulations 

with a 5% significance level (𝛼⁡ = ⁡0.05). A result where 

ℎ⁡ = ⁡1  and 𝑝⁡ < ⁡0.05  indicates that the metaheuristic 

algorithm on the right side of the pairwise comparison 

outperformed the other with 

 statistical significance. 

The detailed p-values and h-values for each function and 

dimension are provided in Tables 7, 8, and 9. However, it 

is also crucial to interpret the practical implications of 

these statistical differences in terms of algorithm 

performance. 
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Table 7. t-test results (dim=10) 

 
Table 8. t-test results (dim=30) 

Functions 
GA-ARO GA-AVOA GA-PDO ARO-AVOA ARO-PDO PDO-AVOA 

𝑝 ℎ 𝑝 ℎ 𝑝 ℎ 𝑝 ℎ 𝑝 ℎ 𝑝 ℎ 

𝑭𝟏 1.00E-32 1 1.00E-32 1 1.00E-32 1 1.60E-01 0 1.60E-01 0 - - 

𝑭𝟐 1.20E-03 1 1.20E-03 1 1.20E-03 1 1.00E-02 1 1.00E-02 1 - - 

𝑭𝟑 1.63E-30 1 1.63E-30 1 1.63E-30 1 7.97E-02 0 9.99E-01 0 6.51E-04 1 

𝑭𝟒 5.65E-34 1 5.65E-34 1 5.65E-34 1 4.06E-07 1 1 0 2.46E-10 1 

𝑭𝟓 2.17E-74 1 2.17E-74 1 2.17E-74 1 - - - - - - 

𝑭𝟔 9.44E-59 1 9.44E-59 1 9.44E-59 1 - - - - - - 

𝑭𝟕 4.83E-33 1 4.83E-33 1 4.83E-33 1 - - - - - - 

𝑭𝟖 5.24E-21 1 5.24E-21 1 5.24E-21 1 7.85E-02 0 1 0 4.70E-40 1 

 
Table 9. t-test results (dim=50) 

Functions 
GA-ARO GA-AVOA GA-PDO ARO-AVOA ARO-PDO PDO-AVOA 

𝑝 ℎ 𝑝 ℎ 𝑝 ℎ 𝑝 ℎ 𝑝 ℎ 𝑝 ℎ 

𝑭𝟏 1.31E-37 1 1.31E-37 1 1.31E-37 1 7.18E-02 0 7.18E-02 0 - - 

𝑭𝟐 2.42E-02 1 2.42E-02 1 2.42E-02 1 9.00E-02 0 9.00E-02 0 - - 

𝑭𝟑 1.80E-36 1 1.80E-36 1 1.80E-36 1 1.31E-06 1 1 0 1.55E-05 1 

𝑭𝟒 2.55E-41 1 2.55E-41 1 2.56E-41 1 3.85E-13 1 1 0 2.00E-16 1 

𝑭𝟓 3.36E-72 1 3.36E-72 1 3.36E-72 1 - - - - - - 

𝑭𝟔 6.55E-68 1 6.55E-68 1 6.55E-68 1 - - - - - - 

𝑭𝟕 6.50E-34 1 6.50E-34 1 6.50E-34 1 - - - - - - 

𝑭𝟖 4.53E-30 1 4.53E-30 1 4.53E-30 1 4.22E-02 1 1 0 1.91E-26 1 

 

According to Tables 7,8 and 9, the evaluations are as 

follows: 

• In all dimensions (10, 30, 50), GA performed 

significantly worse than the newly proposed 

metaheuristics (ARO, AVOA, PDO), both 

statistically and practically. The mean values for 

GA were multiple orders of magnitude higher, 

showing weak convergence and poor 

optimization capacity across all test functions. 

• While AVOA consistently outperformed ARO 

and PDO in most cases, especially in multimodal 

functions, the differences between AVOA and 

the other new algorithms were generally small in 

practical terms, even when statistically 

significant (e.g., differences on the order of 10⁻⁴ 

to 10⁻⁶). 

• PDO showed strong robustness, occasionally 

outperforming ARO in certain functions, such as 

those involving higher dimensions and complex 

landscapes. Although t-tests confirmed some of 

these differences as statistically significant, in 

real-world usage, the differences would yield 

very similar results from a practical optimization 

perspective. 

• The statistically significant superiority of AVOA 

in several functions (e.g.,  
𝐹3, 𝐹4, 𝐹8) highlights its strong exploration and 

exploitation balance, leading to better 

convergence. However, in functions where no 

significant difference was observed between 

AVOA and PDO or ARO, it is inferred that all 

three algorithms can be safely considered high-

performing alternatives for benchmark 

problems. 

 

In conclusion, while t-tests reveal which differences are 

statistically significant, the practical value lies in the 

consistency, speed of convergence, and robustness of the 

algorithms. AVOA leads in most metrics, but PDO and 

ARO offer competitive results, especially when 

computational cost or algorithm simplicity is considered. 

 

4.4. Engineering problem results 

 

The optimization results for the engineering design 

problems are evaluated across three benchmark cases: 

Pressure Vessel Design, Tension/Compression Spring 

Design, and Three-Bar Truss Design. The best run results 

obtained for each problem, along with the corresponding 

parameter values, are presented in Tables 10–12. 

 

 

 
  

Functions 
GA-ARO GA-AVOA GA-PDO ARO-AVOA ARO-PDO PDO-AVOA 

𝑝 ℎ 𝑝 ℎ 𝑝 ℎ 𝑝 ℎ 𝑝 ℎ 𝑝 ℎ 

𝑭𝟏 9.29E-20 1 9.29E-20 1 9.29E-20 1 1.40E-01 0 1.40E-01 0 - - 

𝑭𝟐 2.13E-24 1 2.13E-24 1 2.13E-24 1 1.10E-01 0 1.10E-01 0 - - 

𝑭𝟑 6.03E-22 1 6.02E-22 1 6.01E-22 1 1.64E-04 1 1.00E+00 1 2.58E-07 1 

𝑭𝟒 2.42E-19 1 2.42E-19 1 2.42E-19 1 1.00E+00 0 7.90E-03 1 1.00E+00 0 

𝑭𝟓 3.65E-57 1 3.65E-57 1 3.65E-57 1 - - - - - - 

𝑭𝟔 5.92E-32 1 5.92E-32 1 5.92E-32 1 - - - - - - 

𝑭𝟕 4.06E-19 1 4.06E-19 1 4.06E-19 1 - - - - - - 

𝑭𝟖 2.33E-09 1 2.33E-09 1 2.33E-09 1 1.00E+00 0 1.00E+00 0 3.12E-12 1 
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Table 10. Best results for the pressure vessel design problem 

Algorithm 𝑻𝒔  𝑻𝒉  𝒓 𝑳 Optimal value 

ARO 0.7782 0.3847 40.3217 199.9712 5.8854e+03 

AVOA 0.7790 0.3851 40.3639 10.0010 5.8868e+03 

GA 1.2918 0.5706 42.2641 12.7864 1.1017e+04 
PDO 0.8156 0.3975 40.8373 10.0000 6.0308e+03 

 

According to Table 10, ARO achieved the best result with 

the lowest cost (5.8854e+03), followed closely by AVOA 

(5.8868e+03). GA performed the worst with a 

significantly higher cost (1.1017e+04), while PDO 

showed moderate performance (6.0308e+03). The longer 

cylinder length in ARO’s design may have contributed to 

its better outcome. 

 

Table 11. Best results for the tension/compression spring design 

Algorithm  𝒅 𝑫  𝑵 Optimal value 

ARO 0.0516 0.3537 10.4114 0.0127 

AVOA 0.0500 0.3174 4.2926 0.0127 
GA 0.0534 0.3572     2.2595 0.0139 

PDO 0.0500 0.3116 8.1058 0.0127 

 

According to Table 11, ARO, AVOA, and PDO all 

achieved the same optimal value (0.0127), indicating 

equal performance. GA performed worse with a higher 

cost (0.0139). Although the optimal values are the same 

for the three algorithms, the design parameters differ, 

especially in the number of active coils (𝑁). 

 
Table 12. Best results for the three bar truss design 

Algorithm 𝑨𝟏 𝑨𝟐 Optimal value 

ARO 0.7887 0.4082 263.8958 

AVOA 0.7835 0.3640 263.8958 
GA 0.7624 0.2454 263.9174 

PDO 0.7356 0.4074 263.8958 

 

According to Table 12, ARO, AVOA, and PDO achieved 

the same optimal value (263.8958), indicating equally 

successful performance. GA resulted in a slightly higher 

value (263.9174), making it the least effective among the 

four. Despite identical outcomes for three algorithms, 

their parameter values differ slightly, showing that 

multiple configurations can lead to the same objective 

value. To provide further insight into the optimization 

behavior, convergence curves for all three engineering 

design problems are presented in Figure 8. 

 

 

 

 
Figure 8. Convergence curves of the algorithms on three engineering problems 
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The convergence plots reveal that ARO generally 

demonstrates the fastest and most stable convergence 

across the problems. In the spring design, ARO, AVOA, 

and PDO exhibit nearly identical and immediate 

convergence behavior, indicating comparable 

effectiveness. In the truss design, ARO and PDO reach the 

optimum quickly, while AVOA converges more slowly 

and GA performs moderately. For the pressure vessel 

problem, ARO achieves the fastest convergence, closely 

followed by PDO, both clearly outperforming AVOA and 

GA. 

 

4.4. Computational Complexity Analysis 

In addition to the performance outcomes, the algorithms 

were analyzed in terms of their computational 

characteristics. While all algorithms were run under 

identical conditions (population size = 50, iterations = 

1000), they differ in the internal number of operations per 

iteration. Table 13 summarizes the estimated per-iteration 

computational complexity for each algorithm.  

 

 
Table 13. Approximate computational complexity per iteration 

Algorithm Complexity Structural Notes 

GA 𝑂(𝑛) Basic evolutionary operators 

PDO 𝑂(𝑛) 
Simple interaction-based 

updates 

AVOA 𝑂(𝑛⁡ × ⁡𝑑) 
Phase switching and adaptive 
terms 

ARO 
𝑂(𝑛⁡ × ⁡𝑑⁡
+ ⁡𝑛⁡𝑙𝑜𝑔⁡𝑛) 

Behavioral modeling and 
sorting operations 

𝑛⁡ = ⁡𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛⁡𝑠𝑖𝑧𝑒, 𝑑⁡ = ⁡𝑝𝑟𝑜𝑏𝑙𝑒𝑚⁡𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛. 

 

It can be inferred from Table 10 that GA and PDO involve 

relatively simple operations, while AVOA and ARO 

include more complex mechanisms such as phase 

switching, adaptive behaviors, and sorting processes. 

These internal differences may influence total processing 

time, especially in high-dimensional problems, although 

all algorithms remain feasible for standard benchmark 

testing. 

 

5. CONCLUSION 

 

In this paper, the performance analysis of ARO, AVOA, 

PDO and GA metaheuristics is conducted for the first time 

using 8 different test functions. The analyses revealed that 

the newly proposed metaheuristics outperformed the 

popular GA. AVOA was observed to be the most 

successful, producing better results as referenced in Table 

6. Other newly proposed is performed slightly worse than 

AVOA. The obtained simulation results were evaluated 

for statistical significance using t-tests. The tests indicated 

that there were minimal significant differences among the 

newly proposed methods, but these differences were more 

expressed when compared to the popular GA. In future 

studies, the performance of ARO, AVOA, and PDO will 

be compared with other modern metaheuristics such as 

Particle Swarm Optimization (PSO), Differential 

Evolution (DE), and Artificial Bee Colony (ABC) under 

similar conditions to expand the scope of the evaluation. 

It is also aimed to solve different optimization problems 

with these metaheuristics. 

 

REFERENCES 

 

[1] Yang XS. Nature-inspired metaheuristic algorithms. 

2nd ed. Frome (UK): Luniver Press; 2008. 

[2] Jia H, Rao H, Wen C, Mirjalili S. Crayfish 

optimization algorithm. Artif Intell Rev. 2023;1–61. 

[3] Kennedy J, Eberhart R. Particle swarm optimization. 

In: Proceedings of ICNN’95 - International 

Conference on Neural Networks. Vol. 4. IEEE; 

1995. p. 1942–8. 

[4] Mirjalili S. Genetic algorithm. In: Mirjalili S, editor. 

Evolutionary algorithms and neural networks: 

theory and applications. Cham: Springer; 2019. p. 

43–55. 

[5] Karaboga D. Artificial bee colony algorithm. 

Scholarpedia. 2010;5(3):6915. 

[6] Dorigo M, Birattari M, Stützle T. Ant colony 

optimization. IEEE Comput Intell Mag. 

2006;1(4):28–39. 

[7] Dehghani M, Montazeri Z, Trojovská E, Trojovský 

P. Coati optimization algorithm: A new bio-inspired 

metaheuristic algorithm for solving optimization 

problems. Knowl Based Syst. 2023;259:110011. 

[8] Wang L, Cao Q, Zhang Z, Mirjalili S, Zhao W. 

Artificial rabbits optimization: A new bio-inspired 

meta-heuristic algorithm for solving engineering 

optimization problems. Eng Appl Artif Intell. 

2022;114:105082. 

[9] Tynes VV, editor. Behavior of exotic pets. Hoboken: 

John Wiley & Sons; 2010. 

[10] Camp MJ, Rachlow JL, Shipley LA, Johnson TR, 

Bockting KD. Grazing in sagebrush rangelands in 

western North America: implications for habitat 

quality for a sagebrush specialist, the pygmy rabbit. 

Rangel J. 2014;36(2):151–9. 

[11] Abdollahzadeh B, Gharehchopogh FS, Mirjalili S. 

African vultures optimization algorithm: A new 

nature-inspired metaheuristic algorithm for global 

optimization problems. Comput Ind Eng. 

2021;158:107408. 

[12] Xue Y, Jia W, Zhao X, Pang W. An evolutionary 

computation based feature selection method for 

intrusion detection. Secur Commun Netw. 

2018;2018:1–15. 

[13] Yang XS, Deb S. Cuckoo search via Lévy flights. In: 

Proceedings of the 2009 World Congress on Nature 

& Biologically Inspired Computing (NaBIC). IEEE; 

2009. p. 210–4. 

[14] Yang XS. A new metaheuristic bat-inspired 

algorithm. In: González JR, Pelta DA, Cruz C, 

Terrazas G, Krasnogor N, editors. Nature inspired 

cooperative strategies for optimization (NICSO 

2010). Berlin: Springer; 2010. p. 65–74. 

[15] Gwiazda TD. Crossover for single-objective 

numerical optimization problems. Vol. 1. Wroclaw: 

Wroclaw University of Technology Press; 2006. 

[16] Vasconcelos JA, Ramirez JA, Takahashi RHC, 

Saldanha RR. Improvements in genetic algorithms. 

IEEE Trans Magn. 2001;37(5):3414–7. 

[17] Ezugwu AE, Agushaka JO, Abualigah L, Mirjalili S, 

Gandomi AH. Prairie dog optimization algorithm. 

Neural Comput Appl. 2022;34(22):20017–65. 



     

Tr. J. Nature Sci. Volume 14, Issue 3, Page 73-89, 2025 
 

 

89 

[18] Hoogland JL. The black-tailed prairie dog: social 

life of a burrowing mammal. Chicago: University of 

Chicago Press; 1995. 

[19] Yiğit H, Ürgün S, Mirjalili S. Comparison of recent 

metaheuristic optimization algorithms to solve the 

SHE optimization problem in MLI. Neural Comput 

Appl. 2023;35(10):7369–88. 

[20] Kim TK. T test as a parametric statistic. Korean J 

Anesthesiol. 2015;68(6):540–6. 

[21] Mishra P, Singh U, Pandey CM, Mishra P, Pandey 

G. Application of student’s t-test, analysis of 

variance, and covariance. Ann Card Anaesth. 

2019;22(4):407–11. 


