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ABSTRACT: This study investigates the nondimensional buckling behavior of a functionally graded 

material (FGM) sandwich nanoplate. The analysis consider variations in material gradation 

parameter, length ratio, thickness ratio, incline angle, nonlocal parameter and size parameter. Higher-

order shear deformation theory (HSDT), Nonlocal strain gradient theory (NSGT), Hamilton's 

principle, and the Navier solution with simply supported boundary conditions are employed to derive 

and solve the governing equations of motion. The effects of nonlocal elasticity, strain gradient 

elasticity, dimension change of the core layer on the thermomechanical buckling behavior of the 

sandwich nanoplate have been examined in a broad framework. It is observed that the thickness ratio 

and incline angle in the core layer are effective on the thermomechanical buckling behavior of the 

sandwich nanoplate whereas length ratio change has a neglectable results. Material gradation 

parameter changes buckling behavior significantly. The research provides critical conclusions for the 

design of FG nanoplates in advanced thermal and mechanical applications, emphasizing the 

adjustability of buckling behavior via material and structural modifications. 

Keywords: Sandwich nanoplate, Honeycomb, Ti-6Al-4V, Al2O3, Thermomechanical buckling 
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1. INTRODUCTION 

FGMs are abundantly studied by researchers for their significant and unique resistance to 

environmental conditions. FGMs are researched in many different structure types such as plate, beam, 

hollow pipe, sphere or as shell to these specific structure types (Abuteir and Boutagouga, 2022; Akgöz 

and Civalek, 2014; Chen et al., 2022; Ozalp and Esen, 2025). These models are used as helpful for 

the production of dental applications, space technology, smart nanoelectromechanical systems, 

nanosensors, and invisibility technology. 

FGMs are not just produced as one material as they are produced of generally metal and ceramic 

materials in terms of different volumes along the thickness. This characteristic of FGMs features a 

distinct and specific response to environmental conditions compared to composites. Also FGMs can 

be used with different structure types such as a plate with pure metal foam core between two FGM 

surface layers (Al-Waily et al., 2022). Additionally, honeycomb can be used instead of foam core and 

supply different results for different conditions. 

Because of its cellular design, honeycomb structures have special mechanical qualities that 

enable effective distribution of load and energy absorption. Geometric setup, material anisotropy, and 

temperature fluctuations all affect these structures' thermal buckling response. For instance, the angle 

parameter of honeycomb cell will have the largest load capacity. This can be seen in the nanobeam's 

lowest level of displacement and its highest level of critical buckling stress. Different results are 

obtained with auxetic honeycomb structures compared to materials with positive Poisson's ratios. 

These structures have variable stiffness and negative Poisson's ratios, which are affected by their 

geometric features (Van Lieu et al., 2024). 

FGMs are made with different properties that can be changed to lower stress levels and make 

them more resistant to heat. A lot of research has been conducted on the thermal buckling of 

cylindrical shells with FGM coatings. This studies show how defective cylinder shells react to thermal 

stress (Dang et al., 2024; Wang et al., 2016). The results show that the difference in the material's 

properties has a big effect on the critical buckling temperature. This shows that FGMs can make 

honeycomb structures more resistant to heat. The addition of auxetic materials to honeycomb 

constructions is very helpful in situations where high energy absorption and structural resilience are 

needed. 

One important feature of honeycomb structures is how they change when they are hit. 

Experiments are conducted to assess the damage patterns that happen when high-speed impact hit 

honeycomb sandwich structures with FGM face plates (Arslan and Gunes, 2018). The test results 

showed that changing the FGM face plates' material makeup changed the types of damage they could 

take, how much energy they could absorb, and how well they could withstand impacts. There was 

also energy absorption from the honeycomb core through plastic buckling of the cell walls and lateral 

crushing deformations.  

Spaceship bus designs should make designs more flexible and lighter without sacrificing 

functionality. To keep the needed rigidity while minimizing mass, a spacecraft structure needs to be 

very efficient. Because they are light, stiff, and strong in bending, honeycomb sandwich shapes are 

being used more and more in industry (Boudjemai et al., 2013). 

Modern computing methods, like finite element analysis (FEA), have led to more about how 

honeycomb FGM plates react to temperature changes. The study of how new re-entrant circular 

auxetic honeycombs react to dynamic crushing shows how accurate numerical models can be at 

predicting what complex structures will behave under different loading conditions. Results show that 
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design factors might make honeycomb-FGM structures work better in terms of heat and force (Qi et 

al., 2022). 

Biological tissues, including bone, wood, and sponge, demonstrate hierarchical cellular 

structures that are lightweight and exhibit enhanced energy absorption properties. A study on bio-

inspired hierarchical honeycombs demonstrates the ability of these materials to exhibit improved 

reliability and energy absorption characteristics (Yin et al., 2018). Plates also can be utilized in many 

areas at nanoscale such as nanocardboard could be used as a structural element for scanning probe 

cantilevers, microflyer or interstellar lightsail wings, and other microscopic and macroscopic systems 

(Lin et al., 2018) 

Mentioned literature reveals that the examination of FG surface plates with honeycomb core 

sandwich structures affected by temperature forms a relatively unexplored research area. Recent 

studies have concentrated on these structures because of the remarkable mechanical and thermal 

properties associated with honeycomb configurations. Honeycomb structures, due to their 

metamaterial characteristics, have the potential for novel applications in various fields. This study 

examines the thermomechanical buckling properties of composite nanoplates, consisting of a 

honeycomb core layer and FG metal/ceramic surface layers. This research provides a comprehensive 

analysis of the thermomechanical buckling response of sandwich nanoplates, with findings presented 

in detail. The investigation's results demonstrated that the buckling response of the sandwich 

nanoplate can be substantially altered to meet defined conditions and requirements. The findings of 

this study will contribute to important application areas, such as aerospace and submarine vehicles, 

which need protection against ultrasonic and mechanical waves in both standard and high temperature 

conditions. The results obtained are expected to be relevant for radar stealth applications and for the 

protection of nanoelectromechanical systems operating in high noise and vibration environments. 

 

2. FG NANOPLATE SANDWICH STRUCTURE 

Figure 1 presents a schematic representation of the sandwich nanoplate under investigation, 

while Figure 2 depicts core layer structure comprised of honeycomb. The sandwich structure consists 

of a honeycomb core layer (Ti-6Al-4V) between top and bottom FGM layers (Ti-6Al-4V; Al2O3). 

 

 

 

a) b) 
Figure 1. (a) Top and bottom FGM plates with honeycomb core (b) SSSS plate boundary conditions 
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Figure 2. Honeycomb core layer and dimension symbols 

 

2.1 Core Layer 

Gibson formula (Gibson, 2003) is used to find the properties of honeycomb layer changing with 

structural dimensions as follows: 

 

𝐸11 =
𝐸𝑐𝜁3

3cos𝜃

(𝜁1 + sin𝜃)sin2𝜃
[1 − 𝜁3

2cot2𝜃] (1) 

𝐸22 =
𝐸𝑐𝜁3

3(𝜁1 + sin𝜃)

cos3𝜃
[1 − 𝜁3

2(𝜁1sec
2⁡𝜃 + tan2𝜃)] (2) 

𝐸33 =
𝐸𝑐𝜁3(2 + 𝜁1)

2(𝜁1 + sin𝜃)cos𝜃
 (3) 

𝑣12 =
cos2𝜃

(𝜁1 + sin𝜃)sin𝜃
[1 − 𝜁3

2csc2𝜃] (4) 

𝐺12 =
𝐸𝑐𝜁3

3(𝜁1 + sin𝜃)

𝜁1
2(1 + 2𝜁1)cos𝜃

 (5) 

𝐺13 =
𝐺𝑐𝜁3cos𝜃

𝜁1 + sin𝜃
 (6) 

𝐺23 =
𝐺𝑐𝜁3

2cos𝜃
[

𝜁1 + sin𝜃

(1 + 2𝜁1)cos𝜃
+

𝜁1 + 2sin2𝜃

2(𝜁1 + sin𝜃)
] (7) 

𝜌𝑐 =
𝜌𝑇𝑖𝐴𝑙𝑉𝜁3(𝜁1 + 2)

2cos𝜃(𝜁1 + sin𝜃)
 (8) 

𝛼𝑐 =
𝛼𝑇𝑖𝐴𝑙𝑉𝜁3(𝜁1 + 2)

2cos𝜃(𝜁1 + sin𝜃)
 (9) 

𝜓𝑐 =
𝜓𝑇𝑖𝐴𝑙𝑉𝜁3(𝜁1 + 2)

2cos𝜃(𝜁1 + sin𝜃)
 (10) 

𝜁1 =
𝑏𝑐

𝑎𝑐
 (11) 

𝜁3 =
𝑡𝑐
𝑎𝑐

 (12) 

 

𝐺𝑖𝑗,𝑖𝑘,𝑗𝑘⁡, 𝑣𝑖𝑗 , 𝐸𝑖𝑖,𝑗𝑗 and 𝜌 denote Shear moduli, Poisson's ratio, Elastic modulus, and density, 

respectively, for the hexagonal core. 𝜓 denotes the thermal conductivity coefficient while 𝛼 is thermal 

expansion coefficient. Coefficient subscript 𝑐 stands for the honeycomb material (eg., 𝐸𝑐 as Elastic 

moduli). For other honeycomb coefficients, 𝑎𝑐, 𝑏𝑐, and 𝑡𝑐 denote inclined lengths, vertical length and 

thickness of the cell rib respectively, while 𝜃 represents the inclination degree. 𝜁1 denotes length ratio 

and 𝜁3 represents thickness ratio (Figure 1, 2). 
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2.2 FGM Face Layers 

Numerous distribution functions have been proposed in the literature for the simulation of FGM 

structures (Touloukian, 1967). This research examines the applied Voigt model (Markworth et al., 

1995). 

 

Top layer: 

𝑃(𝑧) = [𝑃𝑚 − 𝑃𝑐]𝑉𝑐 + 𝑃𝑚, 𝑉𝑐 = (
𝑧

ℎ
+

1

2
)
𝑝

, 𝑉𝑐 + 𝑉𝑚 = 1,⁡ 

ℎ2 < 𝑧 < ℎ3 

(13a) 

 

Bottom layer: 

𝑃(𝑧) = [𝑃𝑐 − 𝑃𝑚]𝑉𝑚 + 𝑃𝑐 , 𝑉𝑚 = (
𝑧

ℎ
+

1

2
)

𝑝

, 𝑉𝑐 + 𝑉𝑚 = 1,⁡ 

ℎ0 < 𝑧 < ℎ1 

(13b) 

 

Each layer can have a different P(z) which symbolizes effective material parameter and it 

changes along the z-direction. Pc stands for the properties of ceramic constituent and Pm denotes metal 

property characteristics. The volume fraction of the ceramic material is represented by Vc and Vm 

correspond to ceramic and metal material, also the power distribution, denoted as p, ranges from zero 

to infinity. In the condition of p=∞, the layer completely contains metal, but at p=0, it purely contains 

ceramic (Equation 13a, 13b). From ℎ0 to ℎ1 are the boundaries of bottom plate thickness and from 

ℎ2 to ℎ3 is defined as top plate thickness boundaries. For the core plate thickness boundaries range 

from ℎ1 to ℎ2. 

The calculation of temperature dependent material coefficients can be conducted using a 

nonlinear temperature function (Table 1), as accounting for the temperature effect is crucial for 

precise predictions of the structure's behavior (Markworth et al., 1995). 

 

𝑃𝑖 = 𝑃0⁡(𝑃−1𝑇
−1 + 1 + 𝑃1𝑇 + 𝑃2𝑇

2 + 𝑃3𝑇
3) (14) 

 

The characteristics of each material are determined by its Pi (i=0,1,2,3) values, corresponding 

to various temperature ( T ) values. 

2.3 The Temperature Effect 

To find uniform, linear and nonlinear temperature rise in the equation, FG nanoplate 

temperature is raised to its final temperature in the condition of initial temperature is T0=300K and 

plate is stress-free. 

 

𝛥𝑇 = 𝑇 − 𝑇0 (15) 

 

Based on the assumption that the temperature increases linearly (LTR) from Tt to Tb across the 

thicknesses, the temperature of a horizontal surface that extends in the z-axis with the temperatures 

of its bottom and upper surfaces, Tb and Tt, respectively, can be computed as follows (Kiani and 

Eslami, 2013): 
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𝑇(𝑧) = 𝑇𝑏 + (𝑇𝑡 − 𝑇𝑏) (
ℎ + 2𝑧

2ℎ
) (16) 

 

Table 1. Temperature dependent coefficients of the FG sandwich plate (Reddy and Chin, 1998) 

Material Property P-1 P0 P1 P2 P3 

Ti-6Al-4V 

𝐸(Pa) 0 122.56x109 -4.586x10-4 0 0 

𝑣 0 0.2884 1.121x10-4 0 0 

𝛼(K−1) 0 7.5788x10-6 6.638x10-4 -3.147x10-6 0 

𝜓(W/mK) 0 1.000 1.704x10-2 0 0 

𝜌(kg/m3) 0 4420 0 0 0 

Al2O3 

𝐸(Pa) 0 349.55 x109 -3.853 x10-4 4.027 x10-7 -1.673 x10-10 

𝑣 0 0.26 0 0 0 

𝛼(K−1) 0 6.8269 x10-6 1.838 x10-4 0 0 

𝜓(W/mK) 
-

1123.6 
-14.087 -6.227 x10-3 0 0 

𝜌(kg/m3) 0 3750 0 0 0 

 

The one-dimensional heat transfer problem can be analyzed under conditions of a nonlinear 

temperature increase (NLTR) across the thickness of the nanoplates, utilizing defined temperature 

boundary limits to determine the upper and lower surface temperatures (Tb and Tt) of the plate (Ozalp 

and Esen, 2024). 

 

−
𝑑

𝑑𝑧
(𝜓(𝑧)

𝑑𝑇

𝑑𝑧
) = 0, 𝑇 (

ℎ

2
) = 𝑇𝑡,   ⁡𝑇 (−

ℎ

2
) = 𝑇𝑏 (17) 

 

𝜓 represents the thermal conductivity coefficient. The temperature at any position along the 

thickness of the z-axis, given a specific boundary condition, can be determined as follows: 

 

𝑇(𝑧) = 𝑇𝑏 + (𝑇𝑡 − 𝑇𝑏)

∫
1

𝜓(𝑧, 𝑇)
𝑑𝑧

𝑧

−
ℎ
2

∫ ⁡⁡
1

𝜓(𝑧, 𝑇)
𝑑(𝑧)

ℎ
2

−
ℎ
2

 (18) 

 

2.4 Application of Nonlocal Strain Gradient Elasticity 

The calculations for shear and normal stresses at any particular position can be performed using 

𝜎𝑥𝑥
𝑡  and 𝜎𝑥𝑧

𝑡  the total stress in the xz and xy directions as follows (Arani, 2017): 

 

𝜎𝑥𝑥
𝑡 = 𝜎𝑥𝑥

𝑐 − ∇2𝜎𝑥𝑥
ℎ  

𝜎𝑥𝑧
𝑡 = 𝜎𝑥𝑧

𝑐 − ∇2𝜎𝑥𝑧
ℎ  

(19) 
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Where: 

𝜎𝑥𝑥
𝑐 = ∫𝐸(𝑧)𝛼0(

𝑉

𝒙′, 𝒙, 𝑒0𝑎)𝜀𝑥𝑥
′ (𝒙′)𝑑𝑉′ (20a) 

𝜎𝑥𝑥
ℎ = 𝑙𝑚

2 ∫𝐸(𝑧)𝛼1(
𝑉

𝒙′, 𝒙, 𝑒1𝑎)∇𝜀𝑥𝑥
′ (𝒙′)𝑑𝑉′ (20b) 

𝜎𝑥𝑧
𝑐 = ∫𝐺(𝑧)𝛼0(

𝑉

𝒙′, 𝒙, 𝑒0𝑎)𝜀𝑥𝑧
′ (𝒙′)𝑑𝑉′ (20c) 

𝜎𝑥𝑧
ℎ = 𝑙𝑚

2 ∫𝐺(𝑧)𝛼1(
𝑉

𝒙′, 𝒙, 𝑒1𝑎)∇𝜀𝑥𝑧
′ (𝒙′)𝑑𝑉′ (20d) 

 

Here, 𝜎𝑐 and 𝜎ℎ represent the normal and shear stresses of higher-order and classical types, 

with ∇ utilized as the Laplacian operator. Additionally, the size parameter lm quantifies the impact of 

size at the nanoscale. The functions α0 (𝒙′, 𝒙, 𝑒0𝑎) and α1 (𝒙′, 𝒙, 𝑒1𝑎) denote the nonlocal weakening 

functions associated with the strains 𝜀𝑥𝑥
′  and 𝜀𝑥𝑧

′ . Additionally, V signifies volume. The nonlocality 

coefficients are represented as e0 and e1 (Arani and Jalaei, 2017). Assuming e0 = e1, and utilizing a 

linear differential operator, we can derive the next equation pertaining to the Nonlocal Strain Gradient 

Theory (NSGT) (Lim et al., 2015): 

 

[1 − ( 𝑒0𝑎 )
2
 ∇2]𝜎𝑥𝑥

𝑡 ⁡= [1 − 𝑙𝑚
2 ∇2]𝐸(z)𝜀𝑥𝑥 (21a) 

[1 − (𝑒0𝑎 )
2
 ∇2]𝜎𝑥𝑧

𝑡 ⁡= [1 − 𝑙𝑚
2 ∇2]𝐺(z)𝜀𝑥𝑧 (21b) 

 

where 𝜀𝑥𝑥⁡ denotes normal strain, 𝛾𝑥𝑧 signifies the shear strain, and 𝜎𝑡 represents the total stress: 

 

𝜎𝑥𝑥
𝑡 − ( 𝑒0𝑎 )

2 𝜕2𝜎𝑥𝑥
𝑡 ⁡

𝜕𝑥2
⁡⁡= [𝜀𝑥𝑥 − 𝑙𝑚

2
𝜕2𝜀𝑥𝑥⁡

𝜕𝑥2
] 𝐸(z) (22a) 

𝜎𝑥𝑧
𝑡 − ( 𝑒0𝑎 )

2 𝜕2𝜎𝑥𝑧
𝑡 ⁡

𝜕𝑥2
⁡= [𝛾𝑥𝑧 − 𝑙𝑚

2
𝜕2𝛾𝑥𝑧⁡

𝜕𝑥2
] 𝐺(z) (22b) 

 

2.5 Displacement Fields and Strains 

The HSDT (Shimpi, 2002) is developed based on the subsequent assumptions: 

 

𝑢1(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑦, 𝑡) − 𝑧
∂𝑤𝑏

∂𝑥
− 𝑓(𝑧)

∂𝑤𝑠

∂𝑥
 (23a) 

𝑢2(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣(𝑥, 𝑦, 𝑡) − 𝑧
∂𝑤𝑏

∂y
− 𝑓(𝑧)

∂𝑤𝑠

∂y
 (23b) 

𝑢3(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤𝑏(𝑥, 𝑦, 𝑡) + 𝑤𝑠(𝑥, 𝑦, 𝑡) (23c) 

 

Here, 𝑓(𝑧) = −𝑧/4 + 5𝑧3/3ℎ2. The displacements along the coordinate directions (x, y, z) are 

represented by 𝑢1, 𝑢2, 𝑢3. The variables 𝑢 and 𝑣 indicate the displacements of a point on the midplane 

along the x and y directions. For the transverse displacement, 𝑤𝑠 is shear component and 𝑤𝑏 is 

bending component. The variable ℎ signifies the thickness length. The HSDT, as stated earlier, 

neglects the effect of the thickness stretching considering a uniform transverse displacement 

throughout the thickness. The displacement field in equation (23c) is altered by integrating 
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supplementary variables addressing the thickness stretching that signifies the transverse 

displacement. 

 

𝑢3(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤𝑏(𝑥, 𝑦, 𝑡) + 𝑤𝑠(𝑥, 𝑦, 𝑡) + 𝑔(𝑧)𝑤𝑧(𝑥, 𝑦, 𝑡) (24) 

 

The displacement function 𝑤𝑧 denotes an unspecified function that accounts for the influence 

of thickness stretching. The shape function 𝑔(𝑧) is established in accordance with the stress-free 

boundary conditions at the upper and lower surfaces of the nanoplate. Utilizing the same methods 

described by Reddy, the form function 𝑔(𝑧) is derived as (Reddy, 1984): 

 

𝑔(𝑧) = 1 − 𝑓′(𝑧) =
5

4
(1 −

4𝑧2

ℎ2
) (25) 

 

The linear strains associated with the newly established displacement field in equations (23, 24) 

are as follows: 

 

𝜀𝑥𝑥 =
∂𝑢

∂𝑥
− 𝑧

∂2𝑤𝑏

∂𝑥2
− 𝑓(𝑧)

∂2𝑤𝑠

∂𝑥2
 (26a) 

𝜀𝑦𝑦 =
∂𝑣

∂𝑦
− 𝑧

∂2𝑤𝑏

∂𝑦2
− 𝑓(𝑧)

∂2𝑤𝑠

∂𝑦2
 (26b) 

𝜀𝑧 = 𝑔′(𝑧)𝑤𝑧 (26c) 

𝛾𝑥𝑦 =
∂𝑢

∂𝑦
+

∂𝑣

∂𝑥
− 2𝑧

∂2𝑤𝑏

∂𝑥 ∂𝑦
− 2𝑓(𝑧)

∂2𝑤𝑠

∂𝑥 ∂𝑦
 (26d) 

𝛾𝑥𝑧 = 𝑔(𝑧) (
∂𝑤𝑠

∂𝑥
+

∂𝑤𝑧

∂𝑥
) (26e) 

𝛾𝑦𝑧 = 𝑔(𝑧) (
∂𝑤𝑠

∂𝑦
+

∂𝑤𝑧

∂𝑦
) (26f) 

 

The tensions develop due to constitutive interactions. 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

[
 
 
 
 
 
𝜎𝑥

𝜎𝑦

𝜎𝑧

𝜎𝑥𝑦

𝜎𝑥𝑧

𝜎𝑦𝑧]
 
 
 
 
 

=
1

𝐸(𝑧)

[
 
 
 
 
 
1 −𝑣 −𝑣 0 0 0
−𝑣 1 −𝑣 0 0 0
−𝑣 −𝑣 1 0 0 0
0 0 0 2(1 + 𝑣) 0 0
0 0 0 0 2(1 + 𝑣) 0
0 0 0 0 0 2(1 + 𝑣)]

 
 
 
 
 

[
 
 
 
 
 
𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑧𝑧

𝛾𝑥𝑦

𝛾𝑥𝑧

𝛾𝑦𝑧 ]
 
 
 
 
 

+ 𝛼𝛥𝑇

[
 
 
 
 
 
1
1
1
0
0
0]
 
 
 
 
 

 (27) 

 

𝐶𝑖𝑗𝑘𝑙 represents the three-dimensional elastic constants. 

 

𝜀𝑖𝑗 =
(1 + 𝑣)

𝐸(𝑧)
𝜎𝑖𝑗 −

𝑣

𝐸(𝑧)
𝜎𝑘𝑘𝛾𝑖𝑗 + 𝛼𝛥𝑇𝛾𝑖𝑗 (28a) 

𝜎𝑖𝑗 =
𝐸(𝑧)

1 + 𝑣
{𝜀𝑖𝑗 +

𝑣

(1 − 2𝑣)
} −

𝐸𝛼𝛥𝑇

1 − 2𝜈
𝛾𝑖𝑗 (28b) 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙(𝜀𝑘𝑙 − 𝛼𝛥𝑇𝛿𝑘𝑙) and 𝜀𝑖𝑗 = 𝑆𝑖𝑗𝑘𝑙𝜎𝑘𝑙 − 𝛼𝛥𝑇𝛾𝑖𝑗 (28c) 
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𝐶𝑖𝑗𝑘𝑙 =
𝐸(𝑧)

2(1 + 𝑣)
(𝛾𝑖𝑙𝛾𝑗𝑘 + 𝛾𝑖𝑘𝛾𝑗𝑙) +

𝑣𝐸(𝑧)

(1 − 2𝑣)(1 + 𝑣)
𝛾𝑖𝑗𝛾𝑘𝑙 (28d) 

𝑆𝑖𝑗𝑘𝑙 =
(1 + 𝑣)

2𝐸(𝑧)
(𝛾𝑖𝑙𝛾𝑗𝑘 + 𝛾𝑖𝑘𝛾𝑗𝑙) −

𝑣

𝐸(𝑧)
𝛾𝑖𝑗𝛾𝑘𝑙 (28e) 

 

In the absence of the thickness stretching effect (i.e., εz=0), Equation (27) is modified for 

constitutive relations as follows: 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

[
 
 
 
 
𝜎𝑥

𝜎𝑦

𝜎𝑥𝑦

𝜎𝑦𝑧

𝜎𝑥𝑧]
 
 
 
 

=
𝐸

1 − 𝑣2

[
 
 
 
 
 
 
 
1 𝑣 0 0 0
𝑣 1 0 0 0

0 0
(1 − 𝑣)

2
0 0

0 0 0
(1 − 𝑣)

2
0

0 0 0 0
(1 − 𝑣)

2 ]
 
 
 
 
 
 
 

[
 
 
 
 
𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

𝛾𝑦𝑧

𝛾𝑥𝑧]
 
 
 
 

+
𝐸𝛼𝛥𝑇

1 − 2𝜈

[
 
 
 
 
 
1
1
1
0
0
0]
 
 
 
 
 

 (29) 

 

Given the negligible influence of Poisson's ratio on the response of FG plates (Kitipornchai et 

al., 2006; Yang et al., 2005), it is assumed to be constant for simplicity. This study suggests that 

elastic moduli exhibits variation throughout the nanoplate thickness, following a power-law 

distribution based on the volume fraction of the constituents. 

The mathematical expression for the strain energy of the nanoplate is as follows: 

 

𝑈 =
1

2
∫ ⁡(∑ ∫ (𝜎𝑥𝜀𝑥 + 𝜎𝑦𝜀𝑦 + 𝜎𝑧𝜀𝑧 + 𝜎𝑥𝑦𝛾𝑥𝑦 + 𝜎𝑥𝑧𝛾𝑥𝑧 + 𝜎𝑦𝑧𝛾𝑦𝑧)𝑑𝑧

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

)
𝐴

𝑑𝐴 (30) 

 

The area is denoted by 𝐴. By replacing equation (26) into equation (27) and subsequently 

applying the results in equation (30) allows for the reformulation of the strain energy expression as: 

 

𝑈 = ⁡
1

2
∫

(

 
 

𝑁𝑥

∂𝑢

∂𝑥
− 𝑀𝑥

𝑏
∂2𝑤𝑏

∂𝑥2
− 𝑀𝑥

𝑠
∂2𝑤𝑠

∂𝑥2
+ 𝑁𝑦

∂𝑣

∂𝑦
− 𝑀𝑦

𝑏
∂2𝑤𝑏

∂𝑦2
− 𝑀𝑦

𝑠
∂2𝑤𝑠

∂𝑦2
+ 𝑅𝑧𝑤𝑧

+𝑁𝑥𝑦 (
∂𝑢

∂𝑦
+

∂𝑣

∂𝑥
) − 2𝑀𝑥𝑦

𝑏
∂2𝑤𝑏

∂𝑥 ∂𝑦
− 2𝑀𝑥𝑦

𝑠
∂2𝑤𝑠

∂𝑥 ∂𝑦
+ 𝑄𝑥 (

∂𝑤𝑏

∂𝑥
+

∂𝑤𝑧

∂𝑥
) + 𝑄𝑦 (

∂𝑤𝑠

∂𝑦
+

∂𝑤𝑧

∂𝑦
)
)

 
 

𝐴

⁡

𝑑𝐴 (31) 

 

Here N, M, Q, and R represent the specified stress resultants. 

 

(𝑁𝑥 , 𝑁𝑦, 𝑁𝑥𝑦) = ∑ ∫ (𝜎𝑥 , 𝜎𝑦, 𝜎𝑥𝑦)𝑑𝑧
ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (32a) 

(𝑀𝑥
𝑏 , 𝑀𝑦

𝑏 , 𝑀𝑥𝑦
𝑏 ) = ∑ ∫ (𝜎𝑥 , 𝜎𝑦, 𝜎𝑥𝑦)𝑑𝑧

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (32b) 

(𝑀𝑥
𝑠 , 𝑀𝑦

𝑠 , 𝑀𝑥𝑦
𝑠 ) = ∑ ∫ (𝜎𝑥, 𝜎𝑦, 𝜎𝑥𝑦)𝑓(𝑧)𝑑𝑧

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (32c) 
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(𝑄𝑥, 𝑄𝑦) = ∑ ∫ (𝜎𝑥𝑧 , 𝜎𝑦𝑧)𝑔(𝑧)𝑑𝑧
ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (32d) 

𝑅𝑧 = ∑ ∫  𝜎𝑧𝑔
′(𝑧)𝑑𝑧

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (32e) 

 

Replacing equation (25) into equation (26) and subsequently incorporating the resulting values 

into equation (32) allows for the representation of stress resultants in the form of displacement 

components (u, v, wb, ws, wz). 

 

𝑁𝑥 = 𝐴11

∂𝑢

∂𝑥
+ 𝐴12

∂𝑣

∂𝑦
− 𝐵11

∂2𝑤𝑏

∂𝑥2
− 𝐵12

∂2𝑤𝑏

∂𝑦2
− 𝐵11

𝑠
∂2𝑤𝑠

∂𝑥2
− 𝐵12

𝑠
∂2𝑤𝑠

∂𝑦2
+ 𝑋13𝑤𝑧 (33a) 

𝑁𝑦 = 𝐴12

∂𝑢

∂𝑥
+ 𝐴22

∂𝑣

∂𝑦
− 𝐵12

∂2𝑤𝑏

∂𝑥2
− 𝐵22

∂2𝑤𝑏

∂𝑦2
− 𝐵12

𝑠
∂2𝑤𝑠

∂𝑥2
− 𝐵22

𝑠
∂2𝑤𝑠

∂𝑦2
+ 𝑋23𝑤𝑧 (33b) 

𝑁𝑥𝑦 = 𝐴66 (
∂𝑢

∂𝑦
+

∂𝑣

∂𝑥
) − 2𝐵66

∂2𝑤𝑏

∂𝑥 ∂𝑦
− 2𝐵66

𝑠
∂2𝑤𝑠

∂𝑥 ∂𝑦
 (33c) 

𝑀𝑥
𝑏 =𝐵11

∂𝑢

∂𝑥
+ 𝐵12

∂𝑣

∂𝑦
− 𝐷11

∂2𝑤𝑏

∂𝑥2
− 𝐷12

∂2𝑤𝑏

∂𝑦2
− 𝐷11

𝑠
∂2𝑤𝑠

∂𝑥2
 (33d) 

𝑀𝑦
𝑏 = 𝐵12

∂𝑢

∂𝑥
+ 𝐵22

∂𝑣

∂𝑦
− 𝐷12

∂2𝑤𝑏

∂𝑥2
− 𝐷22

∂2𝑤𝑏

∂𝑦2
− 𝐷12

𝑠
∂2𝑤𝑠

∂𝑥2
− 𝐷22

𝑠
∂2𝑤𝑠

∂𝑦2
+ 𝑌23𝑤𝑧 (33e) 

𝑅𝑧 = ∑ ∫  𝜎𝑧𝑔
′(𝑧)𝑑𝑧

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (33f) 

𝑀𝑥
𝑠 =𝐵11

𝑠
∂𝑢

∂𝑥
+ 𝐵12

𝑠
∂𝑣

∂𝑦
− 𝐷11

𝑠
∂2𝑤𝑏

∂𝑥2
− 𝐷12

𝑠
∂2𝑤𝑏

∂𝑦2
− 𝐻11

𝑠
∂2𝑤𝑠

∂𝑥2
− 𝐻12

𝑠
∂2𝑤𝑠

∂𝑦2
+ 𝑌13

𝑠 𝑤𝑧 (33g) 

𝑀𝑦
𝑠 =𝐵12

𝑠
∂𝑢

∂𝑥
+ 𝐵22

𝑠
∂𝑣

∂𝑦
− 𝐷12

𝑠
∂2𝑤𝑏

∂𝑥2
− 𝐷22

𝑠
∂2𝑤𝑏

∂𝑦2
− 𝐻12

𝑠
∂2𝑤𝑠

∂𝑥2
− 𝐻22

𝑠
∂2𝑤𝑠

∂𝑦2
+ 𝑌23

𝑠 𝑤𝑧 (33h) 

𝑀𝑥𝑦
𝑠 = 𝐵66

𝑠 (
∂𝑢

∂𝑦
+

∂𝑣

∂𝑥
) − 2𝐷66

𝑠
∂2𝑤𝑏

∂𝑥 ∂𝑦
− 2𝐻66

𝑠
∂2𝑤𝑠

∂𝑥 ∂𝑦
 (33i) 

𝑅𝑧 = 𝑋13

∂𝑢

∂𝑥
+ 𝑋23

∂𝑣

∂𝑦
− 𝑌13

∂2𝑤𝑏

∂𝑥2
− 𝑌23

∂2𝑤𝑏

∂𝑦2
− 𝑌13

𝑠
∂2𝑤𝑠

∂𝑥2
− 𝑌23

𝑠
∂2𝑤𝑠

∂𝑦2
+ 𝑍33𝑤𝑧 (33j) 

𝑄𝑥 = 𝐴55
𝑠 (

∂𝑤𝑠

∂𝑥
+

∂𝑤𝑧

∂𝑥
),⁡⁡⁡⁡𝑄𝑦 = 𝐴44

𝑠 (
∂𝑤𝑠

∂𝑦
+

∂𝑤𝑧

∂𝑦
) (33k) 

 

Where 

 

(𝐴𝑖𝑗 , 𝐴𝑖𝑗
𝑠 , 𝐵𝑖𝑗, 𝐵𝑖𝑗

𝑠 , 𝐷𝑖𝑗 , 𝐷𝑖𝑗
𝑠 , 𝐻𝑖𝑗

𝑠 ) = ∑ ∫  (1, 𝑔2, 𝑧, 𝑓, 𝑧2, 𝑓𝑧, 𝑓2)𝐶𝑖𝑗𝑑𝑧
ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (34) 

(𝑋𝑖𝑗, 𝑌𝑖𝑗, 𝑌𝑖𝑗
𝑠 , 𝑍𝑖𝑗) = ∑ ∫  (𝑔′, 𝑔′𝑧, 𝑔′𝑓, 𝑔′2)𝐶𝑖𝑗𝑑𝑧

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (35) 
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The effects of transverse loads 𝑞 which are externally applied can be expressed as follows: 

 

𝑉 = −∫𝑞(𝑤𝑏 + 𝑤𝑠 + 𝑔𝑤𝑧)
𝐴

𝑑𝐴 (36) 

 

The expression for kinetic energy is: 

 

𝐾 =
1

2
∫ ⁡(∑ ∫ 𝜌(�̇�1

2 + �̇�2
2 + �̇�3

2)𝑑𝑧
ℎ𝑛

ℎ𝑛−1

3

𝑛=1

)
𝐴

𝑑𝐴 (37) 

 

The axial force due to temperature variation is specified for both directions. 

 

𝑁𝑥𝑥
𝑇 = b ∑ ∫ (𝑄11)

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 𝛼(𝑛)(𝑧)𝑇(𝑧)𝑑𝑧 (38a) 

𝑁𝑦𝑦
𝑇 = a ∑ ∫ (𝑄11)

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 𝛼(𝑛)(𝑧)𝑇(𝑧)𝑑𝑧 (38b) 

 

From the mid-plane distance (z) at a particular layer (n); the variable 𝛼(𝑛) denotes coefficient 

of thermal expansion of the FG sandwich plate. Q11 represents the honeycomb core elastic moduli. 

The external potential energy of thermal loads and in-plane mechanical loads are 𝑁𝑜𝑥 and 𝑁𝑜𝑦: 

 

𝑉 = ∫ [(−𝑁𝑜𝑥 − 𝑁𝑥𝑥
𝑇 )(𝑤𝑏,𝑥𝑥 + 𝑤𝑠,𝑥𝑥) + (−𝑁𝑜𝑦 − 𝑁𝑦𝑦

𝑇 )(𝑤𝑏,𝑦𝑦 + 𝑤𝑠,𝑦𝑦)]
Ω

𝑑Ω (39) 

 

Where 𝑤𝑏,𝑥𝑥 =
𝜕2𝑤𝑏

𝜕𝑥2 , 𝑤𝑏,𝑦𝑦 =
𝜕2𝑤𝑏

𝜕𝑦2  , 𝑤𝑠,𝑥𝑥 =
𝜕2𝑤𝑠

𝜕𝑥2 , 𝑤𝑠,𝑦𝑦 =
𝜕2𝑤𝑠

𝜕𝑦2   

 

Here, Hamilton's principle is applied to determine the equations of motion. The following is an 

analytical expression for the principle: 

 

 

∫ 𝛿(𝑈 + 𝑉 − 𝐾)
𝑇

0

𝑑𝑡 = 0 
(40) 

 

The variational operator is δ. Replacing the formulas for U, V, and K from equations (23, 24, 

37, 39) into equation (40), integrating, and collecting the coefficients of (δu, δv, δwb, δws, δwz) yields 

the subsequent motion equations as: 

 

⁡𝛿𝑢:
∂𝑁𝑥

∂𝑥
+

∂𝑁𝑥𝑦

∂𝑦
= 𝐼0�̈� − 𝐼1

∂�̈�𝑏

∂𝑥
− 𝐽1

∂�̈�𝑠

∂𝑥
 (41a) 

  

𝛿𝑣:
∂𝑁𝑥𝑦

∂𝑥
+

∂𝑁𝑦

∂𝑦
= 𝐼0�̈� − 𝐼1

∂�̈�𝑏

∂𝑦
− 𝐽1

∂�̈�𝑠

∂𝑦
 (41b) 
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𝛿𝑤𝑏:
∂2𝑀𝑥

𝑏

∂𝑥2
+ 2

∂2𝑀𝑥𝑦
𝑏

∂𝑥 ∂𝑦
+

∂2𝑀𝑦
𝑏

∂𝑦2
− 𝑞 + (𝑁𝑥𝑥

𝑇 + 𝑁𝑜𝑥)(𝑤𝑏,𝑥𝑥 + 𝑤𝑠,𝑥𝑥)

+ (𝑁𝑦𝑦
𝑇 + 𝑁𝑜𝑦)(𝑤𝑏,𝑦𝑦 + 𝑤𝑠,𝑦𝑦) 

= 𝐼0(�̈�𝑏 + �̈�𝑠) + 𝐽0�̈�𝑧 + 𝐼1 (
∂�̈�

∂𝑥
+

∂�̈�

∂𝑦
) − 𝐼2∇

2�̈�𝑏 − 𝐽2∇
2�̈�𝑠 

(41c) 

  

𝛿𝑤𝑠: ⁡
∂2𝑀𝑥

𝑠

∂𝑥2
+ 2

∂2𝑀𝑥𝑦
𝑠

∂𝑥 ∂𝑦
+

∂2𝑀𝑦
𝑠

∂𝑦2
+

∂𝑄𝑥𝑧

∂𝑥
+

∂𝑄𝑦𝑧

∂𝑦
− 𝑞 + (𝑁𝑥𝑥

𝑇 + 𝑁𝑜𝑥)𝑤0,𝑥𝑥

+ (𝑁𝑦𝑦
𝑇 + 𝑁𝑜𝑦)(𝑤𝑏,𝑦𝑦 + 𝑤𝑠,𝑦𝑦) 

(41d) 

  

𝛿𝑤𝑧:
∂𝑄𝑥𝑧

∂𝑥
+

∂𝑄𝑦𝑧

∂𝑦
− 𝑅𝑧 − 𝑔𝑞 + (𝑁𝑥𝑥

𝑇 + 𝑁𝑜𝑥)(𝑤𝑏,𝑥𝑥 + 𝑤𝑠,𝑥𝑥) + (𝑁𝑦𝑦
𝑇 + 𝑁𝑜𝑦)(𝑤𝑏,𝑦𝑦 + 𝑤𝑠,𝑦𝑦)

= 𝐽0(�̈�𝑏 + �̈�𝑠) + 𝐾0�̈�𝑧 

(41e) 

 

The following is the definition of the mass moments of inertia, which are denoted by Ii, Ji, Ki. 

 

(𝐼0, 𝐼1, 𝐼2) = ∑ ∫  (1, 𝑧, 𝑧2)𝜌𝑑𝑧
ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (42a) 

(𝐽0, 𝐽1, 𝐽2) = ∑ ∫  (𝑔, 𝑓, 𝑓𝑧)𝜌𝑑𝑧
ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (42b) 

(𝐾0, 𝐾1, 𝐾2) = ∑ ∫ (𝑔, 𝑓, 𝑓𝑧)𝜌𝑑𝑧
ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (42c) 

 

Using HSDT, the motion equations are generated by equation (41) if the influence of thickness 

stretching effect is ignored (wz=0) (Thai and Choi, 2011; Thai; Thai and Choi, 2012; Thai, et al., 

2012). 

Replacing equation (27) into equation (32) allows for the expression of the motion equations in 

forms of displacements (u, v, wb, ws, wz). 

 

𝕭=(1 − ( 𝑙𝑚)
2
 ∇2) (43a) 

𝕯=(1 − ( 𝑒0𝑎 )
2
 ∇2) (43b) 

𝕭(
𝐴11

∂2𝑢

∂𝑥2
+ 𝐴66

∂2𝑢

∂𝑦2
+ (𝐴12 + 𝐴66)

∂2𝑣

∂𝑥 ∂𝑦
− 𝐵11

∂3𝑤𝑏

∂𝑥3
− (𝐵12 + 2𝐵66)

∂3𝑤𝑏

∂𝑥 ∂𝑦2

−𝐵11
𝑠 ∂3𝑤𝑠

∂𝑥3 − (𝐵12
𝑠 + 2𝐵66

𝑠 )
∂3𝑤𝑠

∂𝑥 ∂𝑦2 + 𝑋13
∂𝑤𝑧

∂𝑥

)

⁡⁡⁡

 

=𝕯(𝐼0�̈� − ⁡⁡ 𝐼1
∂𝑤𝑏¨

∂𝑥
− 𝐽1

∂𝑤𝑠¨

∂𝑥
) 

(43c) 

  

𝔅⁡⁡

(

 
 

𝐴22

∂2𝑣

∂𝑦2
+ 𝐴66

∂2𝑣

∂𝑥2
+ (𝐴12 + 𝐴66)

∂2𝑢

∂𝑥 ∂𝑦
− 𝐵22

∂3𝑤𝑏

∂𝑦3

−(𝐵12 + 2𝐵66)
∂3𝑤𝑏

∂𝑥2 ∂𝑦
+⁡𝐵22

∂3𝑣𝑠

∂𝑦3
− (𝐵12

𝑠 + 2𝐵66
𝑠 )

∂3𝑤𝑏

∂𝑥2 ∂𝑦
+⁡𝑋13

∂𝑤𝑧

∂𝑦 )

 
 

 (43d) 
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= 𝔇(𝐼0�̈� − ⁡𝐼1
∂𝑤𝑏¨

∂𝑦
− 𝐽1

∂𝑤𝑠¨

∂𝑦
)⁡⁡ 

  

𝔅⁡

(

 
 
 
 

𝐵11

∂3𝑢

∂𝑥3
+ (𝐵12 + 2𝐵66) (

∂3𝑢

∂𝑥 ∂𝑦2
+

∂3𝑣

∂𝑥2 ∂𝑦
) + 𝐵22

∂3𝑣

∂𝑦3
− 𝐷11

∂4𝑤𝑏

∂𝑥4

−𝐷22

∂4𝑤𝑏

∂𝑦4
− 2(𝐷12 + 2𝐷66)

∂4𝑤𝑏

∂𝑥2 ∂𝑦2
− 𝐷11

𝑠
∂4𝑤𝑠

∂𝑥4
− 𝐷22

𝑠
∂4𝑤𝑠

∂𝑦4

−2(𝐷12
𝑠 + 2𝐷66

𝑠 )
∂4𝑤𝑠

∂𝑥2 ∂𝑦2
+ 𝑌13

∂2𝑤𝑧

∂𝑥2
+ 𝑌23

∂2𝑤𝑧

∂𝑦2
+ 𝑞

)

 
 
 
 

⁡ 

= 𝔇(
−𝐼2∇

2�̈�𝑏 − 𝐽2∇
2�̈�𝑠 + ⁡𝐼0(�̈�𝑏 + �̈�𝑠) + 𝐽0𝑤𝑧¨ − ⁡⁡ 𝐼1 (

∂�̈�

∂𝑥
+

∂�̈�

∂𝑦
)

−𝑞 + (𝑁𝑥𝑥
𝑇 + 𝑁𝑜𝑥)(𝑤𝑏,𝑥𝑥 + 𝑤𝑠,𝑥𝑥) + (𝑁𝑦𝑦

𝑇 + 𝑁𝑜𝑦)(𝑤𝑏,𝑦𝑦 + 𝑤𝑠,𝑦𝑦)

) 

(43e) 

  

𝔅

(

 
 
 
 
 
 
 

𝐵11
𝑠

∂3𝑢

∂𝑥3
+ (𝐵12

𝑠 + 2𝐵66
𝑠 ) (

∂3𝑢

∂𝑥 ∂𝑦2
+

∂3𝑣

∂𝑥2 ∂𝑦
)+𝐵22

𝑠
∂3𝑣

∂𝑦3
− 𝐷11

𝑠
∂4𝑤𝑏

∂𝑥4

−𝐷22
𝑠

∂4𝑤𝑏

∂𝑦4
− 2(𝐷12

𝑠 + 2𝐷66
𝑠 )

∂4𝑤𝑏

∂𝑥2 ∂𝑦2
− 𝐻11

𝑠
∂4𝑤𝑠

∂𝑥4

−𝐻22
𝑠

∂4𝑤𝑠

∂𝑦4
− 2(𝐻12

𝑠 + 2𝐻66
𝑠 )

∂4𝑤𝑠

∂𝑥2 ∂𝑦2
+ 𝐴55

𝑠
∂2𝑤𝑠

∂𝑥2
+ 𝐴44

𝑠
∂2𝑤𝑠

∂𝑦2

+(𝑌13
𝑠 + 𝐴55

𝑠 )
∂2𝑤𝑧

∂𝑥2
+ (𝑌23

𝑠 + 𝐴44
𝑠 )

∂2𝑤𝑧

∂𝑦2
+ 𝑞

)

 
 
 
 
 
 
 

⁡

 

= 𝔇(
𝐼0(�̈�𝑏 + �̈�𝑠) −⁡⁡ 𝐽0�̈�𝑧 + 𝐽1 (

∂𝑤𝑠¨

∂𝑥
+

∂𝑣�̈�

∂𝑦
⁡) −⁡⁡ 𝐽2�̈�𝑏∇

2 − 𝐾2�̈�𝑠∇
2 − 𝑞

⁡+(𝑁𝑥𝑥
𝑇 + 𝑁𝑜𝑥)(𝑤𝑏,𝑥𝑥 + 𝑤𝑠,𝑥𝑥) + (𝑁𝑦𝑦

𝑇 + 𝑁𝑜𝑦)(𝑤𝑏,𝑦𝑦 + 𝑤𝑠,𝑦𝑦)

) 

(43f) 

  

𝔅

(

 
 

−𝑋13

∂𝑢

∂𝑥
− 𝑋23

∂𝑣

∂𝑦
+ 𝑌13

∂2𝑤𝑏

∂𝑥2
+ 𝑌23

∂2𝑤𝑏

∂𝑦2
+ (𝑌13

𝑠 + 𝐴55
𝑠 )

∂2𝑤𝑠

∂𝑥2

+(𝑌23
𝑠 + 𝐴44

𝑠 )
∂2𝑤𝑠

∂𝑦2
+ 𝐴55

𝑠
∂2𝑤𝑧

∂𝑥2
+ 𝐴44

𝑠
∂2𝑤𝑧

∂𝑦2
− 𝑍33𝑤𝑧

⁡⁡ )

 
 

 

= 𝔇(
𝐽0(�̈�𝑏 + �̈�𝑠) + (𝑁𝑥𝑥

𝑇 + 𝑁𝑜𝑥)(𝑤𝑏,𝑥𝑥 + 𝑤𝑠,𝑥𝑥)

⁡+𝐾0�̈�𝑧+(𝑁𝑦𝑦
𝑇 + 𝑁𝑜𝑦)(𝑤𝑏,𝑦𝑦 + 𝑤𝑠,𝑦𝑦)

) 

(43g) 

 

2.6 Closed-Form Solutions 

The Navier method is used to get the analytical solutions to equation (43) for simply supported 

plates. The Navier approach states as follows: 

 

𝑢(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑈𝑚𝑛𝑒𝑖𝜔𝑡 cos 𝛼𝑥 sin𝛽𝑦

∞

𝑛=1

∞

𝑚=1

  (44a) 

𝑣(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑉𝑚𝑛𝑒𝑖𝜔𝑡 sin 𝛼𝑥 cos𝛽𝑦

∞

𝑛=1

∞

𝑚=1

  (44b) 
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𝑤𝑏(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑊𝑏𝑚𝑛𝑒𝑖𝜔𝑡 sin 𝛼𝑥 sin𝛽𝑦

∞

𝑛=1

∞

𝑚=1

  (44c) 

𝑤𝑠(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑊𝑠𝑚𝑛𝑒𝑖𝜔𝑡 sin 𝛼𝑥 sin𝛽𝑦

∞

𝑛=1

∞

𝑚=1

 (44d) 

𝑤𝑧(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑊𝑧𝑚𝑛𝑒𝑖𝜔𝑡 sin 𝛼𝑥 sin𝛽𝑦

∞

𝑛=1

∞

𝑚=1

  (44e) 

 

Here, 𝑖 = √−1, 𝛼 = 𝑚𝜋/𝑎, 𝛽 = 𝑛𝜋/𝑏. The coefficients are denoted as 

(𝑈𝑚𝑛, 𝑉𝑚𝑛,𝑊𝑏𝑚𝑛,𝑊𝑠𝑚𝑛,𝑊𝑧𝑚𝑛). In this context, 𝜔 denotes the angular frequency. A modification in 

the double-Fourier sine series is used to represent the transverse load q. 

 

𝑞(𝑥, 𝑦) = ∑ ∑ 𝑄𝑚𝑛 sin 𝛼𝑥 sin𝛽𝑦

∞

𝑛=1

∞

𝑚=1

   (45) 

 

The following lists the coefficients 𝑄𝑚𝑛 for a number of sample loads: 

 

𝑄𝑚𝑛 =
4

𝑎𝑏
∫ ∫ 𝑞(𝑥, 𝑦) sin 𝛼𝑥 sin𝛽𝑦

𝑏

0

𝑎

0

  𝑑𝑥𝑑𝑦 

(46) 

= {

𝑞0 

16𝑞0

𝑚𝜋2
 
 

for sinusoidally distributed load 

for uniformly distributed load 

 

The uniform distributed load is denoted as 𝑞0. The closed-form solutions can be obtained by 

replacing equation (43), with equations (44, 45). 

When the thickness stretching effect is eliminated (i.e., εz =0), the precise HSDT solutions are 

given as (Thai and Choi, 2011; Thai; Thai and Choi, 2012; Thai, et al., 2012).: 

 

(

 
 

[
 
 
 
 
𝑘11 𝑘12 𝑘13 𝑘14 𝑘15

𝑘12 𝑘22 𝑘23 𝑘24 𝑘25

𝑘13 𝑘23 𝑘33 𝑘34 𝑘35

𝑘14 𝑘24 𝑘34 𝑘44 𝑘45

𝑘15 𝑘25 𝑘35 𝑘45 𝑘55]
 
 
 
 

− 𝜔2

[
 
 
 
 
𝑚11 0 𝑚13 𝑚14 0
0 𝑚22 𝑚23 𝑚24 0

𝑚13 𝑚23 𝑚33 𝑚34 𝑚35

𝑚14 𝑚24 𝑚34 𝑚44 𝑚45

0 0 𝑚35 𝑚45 𝑚55]
 
 
 
 

)

 
 

[
 
 
 
 
𝑈𝑚𝑛

𝑉𝑚𝑛

𝑊𝑏𝑚𝑛

𝑊𝑠𝑚𝑛

𝑊𝑧𝑚𝑛 ]
 
 
 
 

=

[
 
 
 
 

0
0

𝑄𝑚𝑛

𝑄𝑚𝑛

0 ]
 
 
 
 

 (47) 

 

Where 

 

𝑘11 = 𝐴 (𝛼2 +
1 − 𝑣

2
𝛽2) 𝑐2, 𝑘12 =

1 + 𝑣

2
𝐴𝛼𝛽𝑐2 (48a) 

𝑘22 = 𝐴 (
1 − 𝑣

2
𝛼2 + 𝛽2) 𝑐2,⁡⁡⁡⁡𝑘13 = −𝐵𝛼(𝛼2 + 𝛽2)𝑐2 (48b) 

𝑘13 = −𝐵𝛼(𝛼2 + 𝛽2)𝑐2, 𝑘14 = −𝐵𝑠𝛼(𝛼2 + 𝛽2)𝑐2 (48c) 

𝑘14 = −𝐵𝑠𝛼(𝛼2 + 𝛽2)𝑐2, 𝑘23 = −𝐵𝛽(𝛼2 + 𝛽2)𝑐2 (48d) 

𝑘24 = −𝐵𝑠𝛽(𝛼2 + 𝛽2)𝑐2, 𝑘33 = 𝐷(𝛼2 + 𝛽2)2𝑐2 + 𝜖 (48e) 

𝑘34 = 𝐷𝑠(𝛼2 + 𝛽2)2𝑐2 + 𝜖, 𝑘44 = (𝐻(𝛼2 + 𝛽2)2 + 𝐴𝑠(𝛼2 + 𝛽2))𝑐2 + 𝜖 (48f) 
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𝑚11 = 𝑚22 = 𝐼0𝑐1, 𝑚13 = 𝑚14 = −𝛼𝐼1𝑐1 (48g) 

𝑚23 = 𝑚24 = −𝛽𝐼1𝑐1, 𝑚33 = 𝐼0 + 𝐼2(𝛼
2 + 𝛽2)𝑐1 (48h) 

𝑚34 = 𝐼0 + 𝐽2(𝛼
2 + 𝛽2)𝑐1, 𝑚44 = 𝐼0 + 𝐾2(𝛼

2 + 𝛽2)𝑐1 (48i) 

𝜖 = (−𝑞+(𝑁𝑥𝑥
𝑇 + 𝑁𝑜𝑥)𝛼

2 + (𝑁𝑦𝑦
𝑇 + 𝑁𝑜𝑦)𝛽2)𝑐1 (48j) 

𝑐1 = (1 + (𝑒0𝑎)
2)(𝛼2 + 𝛽2), 𝑐2 = (1 + (𝑙𝑚)

2)(𝛼2 + 𝛽2) (48k) 

  

(𝐴, 𝐵, 𝐵𝑠, 𝐷, 𝐷𝑠 , 𝐻) =  ∑ ∫  (1, 𝑧, 𝑓, 𝑧2, 𝑧𝑓, 𝑓2)
𝐸(𝑧)

1 − 𝑣2
𝑑𝑧⁡

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (48l) 

  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐴𝑠 =⁡∑ ∫  
𝑔2𝐸(𝑧)

2(1 + 𝑣)
𝑑𝑧⁡

ℎ𝑛

ℎ𝑛−1

3

𝑛=1

 (48m) 

 

The following is a condensed version of equation (49) for the buckling solution: 

 

[
 
 
 
 
𝑘11 𝑘12 𝑘13 𝑘14 𝑘15

𝑘12 𝑘22 𝑘23 𝑘24 𝑘25

𝑘13 𝑘23 𝑘33 𝑘34 𝑘35

𝑘14 𝑘24 𝑘34 𝑘44 𝑘45

𝑘15 𝑘25 𝑘35 𝑘45 𝑘55]
 
 
 
 

[
 
 
 
 
𝑈𝑚𝑛

𝑉𝑚𝑛

𝑊𝑏𝑚𝑛

𝑊𝑠𝑚𝑛

𝑊𝑧𝑚𝑛 ]
 
 
 
 

=

[
 
 
 
 
0
0
0
0
0]
 
 
 
 

⁡ 

 

(𝐊)𝐝 = 0 

(49a) 

 

With 

 

𝐝 =

[
 
 
 
 
𝑈𝑚𝑛

𝑉𝑚𝑛

𝑊𝑏𝑚𝑛

𝑊𝑠𝑚𝑛

𝑊𝑧𝑚𝑛 ]
 
 
 
 

 (49b) 

 

The stiffness matrix 𝐊 incorporates all thermal and external loads as specified in equation (48). 

By setting the determinant of 𝐊 to zero, one can derive the critical buckling loads. When the 𝐊 matrix 

equals zero, the thermal force terms are moved to the right, and the terms on the left are divided by 

the coefficients of the force terms to determine the critical buckling load 𝑁𝑐𝑟
𝑇 (𝑚, 𝑛) as presented in 

equation (52). 

 

(𝐊)𝐝 = 0 (50) 

𝑁𝑐𝑟
𝑇 (𝑚, 𝑛) =

det⁡(𝐊) − 𝛹𝑁𝑇

𝛹
 (51) 

 

Under the assumption that the determinant of the 𝐊=0, the entire set of coefficients for the 

thermal force of magnitude 𝑁𝑇in the equation is represented by the symbol 𝛹. 

The dimensionless buckling load of the modes (m, n) is represented by the following equation: 
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𝜆𝑐𝑟(𝑚, 𝑛) =
12(1 − 𝑣𝑐

2)𝑁𝑐𝑟𝑎
2

𝐸𝑐ℎ3
 (52) 

 

The critical buckling load is denoted by 𝜆𝑐𝑟 and 𝐸𝑐 is the ceramic material's elasticity moduli. 

 

3. NUMERICAL RESULTS 

A sandwich plate with the dimensions of a=b=L=500 nm, FG face-layers comprised of Ti-6Al-

4V and Al2O3 with Ti-6Al-4V honeycomb is studied for the present study.  The nondimensional 

buckling response 𝜆1 is observed according to applied thermal environment with the change of p, 𝜁1, 

𝜁3, 𝜃, 𝑒0𝑎, 𝑙𝑚 parameters. 

It is observed that p rise in FG face plates drops down the buckling load 𝜆1 in Figure 3a. At 

p=0, 1, 2, 10, buckling temperatures are 2161 K, 2131 K, 2106 K, 2006 K respectively. Furthermore, 

at fixed temperature analysis with respect to p raise, p=0 shows higher buckling load results. p rise 

slopes down the dimensionless buckling load as it is seen in Figure 3b. Thermal expansion ratio 

directly affects the result as it is fully ceramic at p=0. 

 

  

a) b) 
Figure 3. Relationship between the dimensionless buckling load and (a) temperature rise for different values of p (0, 1, 

2, 10), (b) material grading index p of face-plates (0-5) for different values of temperature rise (ΔT=0, 50, 100, 125 K); 

hc=0.2h, hp=0.4h, h=L/10 

 

Increase in length ratio (𝜁1) doesn’t affect the response of buckling load very much (Figure 4a), 

however thickness ratio rise (𝜁3) and especially incline angle (𝜃) rise directly change the 𝜆1 response 

(Figure 4b and 4c). After an intersection point, buckling load curve starts sloping down with increase 

of 𝜁3. Before intersection point larger 𝜁3 values cause higher buckling load. Unlike 𝜁3, 𝜃 rise drops 

down the 𝜆1 response and after intersection point, 𝜆1 response rises together with 𝜃 rise. 
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a) b) 

 

c) 
Figure 3. Relationship between the dimensionless buckling load and temperature rise for different values of (a) 𝜁1=(1.5, 

3, 5, 7, 10), (b) 𝜁3=(0.05, 0.1, 0.15, 0.2, 0.25) (c) 𝜃=(15°, 30°, 45°, 60°) ; hc=0.8h, hp=0.1h, h=L/10 

 

At p=1 which is %50 Ti-6Al-4V and %50 Al2O3 constituent FG face layers, sandwich plate 

buckling load decreases with nonlocal parameter (𝑒0𝑎) rise due to softening effect (Figure 5a). Unlike 

𝑒0𝑎, size parameter (𝑙𝑚) shows opposite results and 𝑙𝑚 increases the 𝜆1 due to hardening effect. For 

(𝑒0𝑎)
2
=0, 1, 2, 4 nm2 nondimensional buckling loads are 23.93, 19.98, 17.18, 13.37 at 1500 K, 

respectively. Additionally, for ( 𝑙𝑚 )
2
=0, 1, 2, 4 nm2 nondimensional buckling loads are 23.93, 28.65, 

33.31, 42.81 at 1500 K respectively 

 

  

a) b) 
Figure 4. Relationship between the dimensionless buckling load and temperature rise for different values of (a) (𝒆𝟎𝒂)

𝟐
= 

(0, 1, 2, 4 nm2), (b) (𝒍𝒎)
𝟐
= (0, 1, 2, 4 nm2); hc=0.3h, hp=0.35h, h=L/10. 



Ozalp, A. F. JournalMM (2025), 6(1) 83-102 

 

 
100 

4. CONCLUSIONS 

A FGM sandwich nanoplate with honeycomb core layer and FG surface plates is analyzed in 

thermal environment to observe dimensionless buckling load according to changing parameters as p, 

𝜁1, 𝜁3, 𝜃, 𝑒0𝑎, 𝑙𝑚. For the solution higher-order shear deformation theory is considered. Using the 

Hamilton principle, the equations of motion of the plate are derived and written in terms of the 

displacement components. Assuming simply supported boundary conditions, the Navier solution is 

considered for the displacement components and rotation using the time harmonic function and 

harmonic solution along the plate length. 

In summary, the results demonstrate that the structural stability of FGM sandwich nanoplates 

is highly sensitive to material gradation, geometric parameters, and nonlocal effects. The ceramic-

rich composition (lower p values) enhances buckling resistance, while variations in thickness ratio 

(𝜁3) and incline angle (𝜃) exhibit nonlinear trends, with critical intersection points dictating their 

influence on structural performance. Additionally, the softening effect associated with the nonlocal 

parameter (𝑒0𝑎) reduces buckling strength, whereas the hardening effect linked to the size parameter 

(𝑙𝑚) improves it. These findings contribute to the optimization and design of advanced nanostructures 

for applications requiring superior thermal and mechanical performance in fields such as nanosensors, 

aerospace technology, and dental applications. 
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