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ABSTRACT

Neural networks are one of the widely-used time series forecasting methods in time series applica-
tions. Among different neural network architectures and learning algorithms, the most popular choice 
is the feedforward Multilayer Perceptron (MLP). However, it suffers from some drawbacks such as 
getting trapped in local minima, human intervention during the stage of training, and limitations in 
architecture design. The aims of this study were twofold. The first was to employ NeuroEvolution of 
Augmenting Topologies (NEAT), which has many successful applications in numerous fields. In this 
paper, we applied it to time series forecasting for the first time and compared its performance with that 
of the MLP. The second aim was to analyse the performance resulting from the pairwise combination of 
these methods. In general, the results suggested that the forecasts from the NEAT algorithm were more 
accurate than those of the MLP. The results also showed that pairwise combined forecasts in general 
were better than single forecasts. The best forecasts of all were obtained by pairwise combination of 
MLP and NEAT.

 Corresponding author. Tel: +90 555 254 37 28, e-mail: serkan.aras@deu.edu.tr
e-mail addresses: serkan.aras@deu.edu.tr (S. Aras), ngducanh2009@gmail.com (A. Nguyen), apwhite@yahoo.co.uk (A. White), s.he@cs.bham.ac.uk (S. He)
aDepartment of Econometrics, Dokuz Eylül University Faculty of Economics and Administrative Sciences, İzmir, Turkey
bUniversity of Birmingham School of Computer Science, Birmingham, United Kingdom

1. Introduction

Time-series forecasting is an important and consistent-
ly growing area that includes many different areas of 
scientific, industrial, commercial and economic activi-
ty. Linear forecasting methods such as moving average, 

exponential smoothing and Box-Jenkins techniques had 
dominated the field of time series analysis and applied 
to numerous real-world applications for a long time. 
However, many real-world problems in fact exhibit 
nonlinear characteristics. In such cases, using nonlin-
ear forecasting techniques would be reasonable. Hence, 
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many nonlinear forecasting methods have been devel-
oped e.g., bilinear, threshold autoregressive (TAR), 
smooth-transition autoregressive (STAR), autoregres-
sive conditional heteroscedasticity (ARCH) and gen-
eralised autoregressive conditional heteroscedasticity 
(GARCH) models in attempts to capture nonlinear pat-
terns in the data (Enders, 2010). The problem with these 
model-based methods is the need to specify the nonlin-
ear functional relationship between the variables. This 
property of model-based nonlinear techniques leads to 
their application being limited to specific problems (De 
Goojier and Kumar, 1992).

The need for flexible nonlinear modelling to overcome 
the necessity of specifying nonlinear functions before fit-
ting the data in time series forecasting has led some mod-
ellers to focus on neural networks because of their valu-
able properties. Neural networks originated as a result 
of an attempt to find the answer to the question of how 
human brains process information and trying to mimic the 
behaviour of real neurons. The main feature of neural net-
works consists of the ability to perform parallel data pro-
cessing using many distributed nodes over the net. Some 
of the properties of neural networks make them very 
appealing in the modelling process compared with tradi-
tional time series forecasting techniques. First of all, they 
are data-driven, which means that there is no assumed 
function of the relationship between the variables being 
modelled. From a theoretical point of view, it has been 
proved that if there are sufficient hidden nodes in a neural 
network, it can converge to any functional form to any 
desired level of precision (Cybenko, 1989; Hornik et al., 
1989). Also, the large number of successful applications 
of neural networks to time series forecasting problems 
provides evidence for them being a valuable tool in the 
modeller’s toolkit (Zhang et al., 1998). Neural networks 
learn from past examples and the only thing needed is to 
present the relevant data relating to the problem in hand. 
This situation is very useful for many of the problems in 
which obtaining data is easier than predicting the data 
generation process of the system theoretically. 

Evolutionary Artificial Neural Networks (EANN) is the 
family of biologically-inspired computational models 
which use evolutionary algorithms to optimise the archi-
tecture or weights or some other important parameters 
of neural networks or which use joint evolution of the 

weights and architecture simultaneously. A large number 
of studies have been carried out on this topic and more 
information can be found in Yao’s review paper (1999). 
One interesting paper dealing with the joint evolution of 
weights and architecture of neural networks is reported 
by Stanley and Miikkulainen (2002). They proposed the 
NEAT algorithm which attempts to gain an advantage 
from evolving neural network topologies together with 
the weights. In their study, they showed that the NEAT 
algorithm can handle difficult control task problems very 
well, compared with other EANN techniques. However, 
according to our knowledge, there is no direct applica-
tion of the NEAT algorithm in time series forecasting up 
to the present time. Thus, we hope that this study will 
form an example of the forecasting capability of NEAT 
in the time series forecasting context and prepare the way 
for future work on this topic.

After the first published papers on the use of multiple 
forecasts (Reid, 1968; Bates and Granger, 1969) to im-
prove forecast accuracy by using individual methods in 
combination, the research area of combined forecasts 
has come to be of interest to researchers from every fore-
casting field. Clemen (1989) has presented a compre-
hensive review and annotated bibliography of this area. 
It is a fact accepted by almost everyone working in the 
forecasting field that no single forecasting method is the 
best for every modelling task application (Makridakis et 
al., 1982). The expectation of combining models is that 
a composite forecasting method will be better at captur-
ing different patterns in data by means of combining the 
unique features of each model. Both theoretical and em-
pirical evidence show that the accuracy of forecasts can 
be improved by combining different methods (Newbold 
and Granger, 1974; Armstrong, 1989; Palm and Zellner, 
1992; Ginzburg and Horn, 1994; Zhang, 2003). 

The purpose of this paper is firstly to adapt the NEAT 
algorithm to time series forecasting applications and 
compare its performance with the MLP, which is the 
most popular type of neural network used for forecast-
ing purposes (Lachtermacher and Fuller, 1995; Zhang 
et al., 1998), in order to evaluate its potential modelling 
power. Secondly, in an attempt to improve the overall 
prediction performance, the two techniques are com-
bined and the resulting performance assessed and com-
pared with that of the techniques used separately.
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The paper is organised as follows: the next section de-
scribes the feedforward MLP. The NEAT algorithm is 
presented in the third section. Section four deals with 
combining forecasts. Section five provides information 
on the model estimation processes. Then, in section six, 
empirical results and their implications are presented. 
Conclusions arising out of the experiments are present-
ed and possible directions for future investigation are 
reported in the final section.

2. Multilayer Perceptron

Many different kind of neural networks have been 
proposed in the past. However, most attention has 
been directed towards the MLP because of its rela-
tive simplicity and successful application in various 
fields. The MLP employs the backpropagation algo-
rithm that is based on the steepest gradient descent 
method during training, which is the process of mi-
nimising the objective function of the network by 
means of changing the connection weights. However, 
this method has some disadvantages like slow conver-
gence, linear searching, the tendency to get trapped in 
local minima, possible oscillations during searching 
and sensitivity to learning rate. With the intention of 
ameliorating these difficulties with the gradient de-
scent method, second-order methods such as conju-
gate gradient and Levenberg-Marquardt (which are 
more efficient nonlinear optimisation techniques) 
are used. More details about these techniques and the 
MLP can be found in Hagan (1994).

The MLP is structured with a particular topology for the 
duration of each experimental run. Within each training 
run, only the connection weights are allowed to change. 
After finishing one experimental run, the modeller can 
change some components of the topology to observe the 
behaviour of neural networks with different architec-
tures. Determining the best neural network architecture 
requires making a large number of experiments. Also, 
in order to avoid getting trapped in local minima, many 
experimental runs should be repeated with the same ar-
chitecture but different initial weights. In summary, the 
success of MLP neural networks could be said to be 
dependent on a large number of experimental runs and 
much human intervention during the training process. 
Even though there are many rules of thumb to assist 

in the design of MLP architectures, there are no cer-
tain rules accepted by all researchers as being the best. 
Hence the best way to handle this problem is to employ 
empirical techniques.

3. NeuroEvolution of Augmenting Topologies (NEAT)

EANN algorithms are designed to utilise the principles 
of evolutionary algorithms to derive neural networks in 
an attempt to minimise human intervention during the 
training process. Numerous studies have been published 
in which evolutionary algorithms are used to evolve and 
optimise architecture design, connection weights, input 
feature selection, connection weight initialisation, trans-
fer function optimisation etc. (Yao, 1999; Floreano et 
al., 2008). The focus of this paper is on the simultaneous 
evolution of the architecture and connection weights. The 
main advantage in using the evolution of the connection 
weights is to avoid the principal drawback of the back-
propagation algorithm by taking advantage of properties 
of evolutionary algorithms. Evolutionary algorithms are 
population-based search strategies and, as such, are less 
likely to get trapped in local minima than search algo-
rithms based on gradient information. When the evolu-
tion of architectures is carried out regardless of connec-
tion weights, the result is likely to be suboptimal because 
of poor fitness evaluation. To overcome this problem, the 
evolution of architectures with connection weights can 
be performed simultaneously. Different ideas have been 
proposed concerning the joint evolution of weights and 
architecture (Maniezzo, 1994; Angeline et al., 1994; Gru-
au et al., 1996; Yao and Liu, 1997; Leung et al., 2003; Pe-
drajas et al., 2003; Islam et al., 2003; Palmes et al., 2005). 

Among these papers, the NEAT algorithm proposed 
by Stanley and Miikkulainen (2002) has received the 
most citations and has been applied to different prob-
lems such as pole balancing (Stanley and Miikkulain-
en, 2002), robot control (Stanley and Miikkulainen, 
2004), computer games (Reisinger et al., 2007) and an 
automobile crash warning system (Stanley et al., 2005) 
but no studies have analyzed the behaviour of the algo-
rithm for time series forecasting. NEAT automatically 
takes into account the number of hidden units and the 
particular connections that are necessary in order to be 
able to model the problem at hand during training while 
setting the values of the connection weights according 
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to the objective function (error measure). The modeller 
decides the form of the objective function. The NEAT 
method consists of three crucial components. These 
three components were developed in response to three 
different issues. Firstly, due to the competing conven-
tions problem (also known as the permutations prob-
lem), using the crossover operator for the evolution of 
architectures has become a subject of discussion be-
tween researchers and some of them have put forward 
several suggestions that rely only on the mutation op-
erator and don’t employ crossover (Yao and Liu, 1997; 
Palmes et al., 2005). NEAT presents a genetic represen-
tation that allows meaningful crossover between diverse 
topologies through historical markings to overcome the 
problem of competing conventions. An example of the 
genetic encoding used by the NEAT algorithm is given 
in Figure 1. The second issue is how to protect struc-
tural innovation that needs a few generations to gain its 
full potential functionality. For this problem, a histori-
cal genetic record is used to protect similar individuals 
under speciation. Thus, structural innovations that may 
disappear because of their low fitness at the beginning 
of their evolution are protected and given some time 
to optimise themselves. The last issue is how to mini-
mise error topologies without any fitness function that 
measures complexity. To address this problem, the al-
gorithm starts with an initial population which consists 
of neural networks without any hidden nodes and, after 
that, the number of hidden nodes is increased incremen-
tally. For a more detailed description of the NEAT algo-
rithm see Stanley and Miikkulainen (2002).

4. Combining Forecasts

A large number of papers dealing with combination 
methods for forecasting applications of neural networks 
can easily be found in the literature (Wedding and Cios, 
1996; Luxhoj et al., 1996; Kodogiannis and Lois, 2002; 
Tseng et al., 2002; Zhang, 2003; Zou et al., 2007). 
Some papers have claimed that combining individu-
al forecasts of dissimilar models or methods based on 
different information would lead to superior forecasts 
(Granger, 1989; Perrone and Cooper, 1992; Nikolopou-
los et al., 2007). These findings encouraged the use of 
combining techniques for this study because the MLP 
and NEAT algorithms are somewhat different types of 
neural network. The MLP make use of gradient infor-

mation to search for minima in the error surface, while 
NEAT takes advantage of an evolutionary algorithm 
and is therefore less likely to get trapped in local mini-
ma. However, even though the NEAT algorithm is more 
powerful in avoiding local minima, the MLP is able to do 
the search in a more finely tuned way. Sometimes, this 
property of the MLP can lead to finding lower points of 
the error surface than NEAT. The final model reached 
after spending much effort to model with neural net-
works cannot be claimed to be an optimal solution but 
it is more likely to be a suboptimal solution to the prob-
lem in question. Granger (1989) stated that in order to 
obtain better forecasts using combination methods, the 
component models should be suboptimal. Moreover, 
as expressed by Zhang (2003), the final selected mod-
el will still be unable to produce perfect forecasts for 
the future, because of factors like sampling variation, 
model uncertainty and structural changes in the model. 
After taking all of these comments into consideration, it 
is expected that the overall result of combined forecasts 
can lead to improved forecasting performance.

The combination approach implemented in this work 
is to use a simple averaging technique because of its 
robust properties and easily applied nature. Review arti-
cles of combined forecasts by Granger (1989), Clemen 
(1989) and de Menezes et al. (2000) show that many 
methods ranging from complex to simple ones are pre-
sented in the literature. The simplest method is to use an 
arithmetic average of the individual forecasts to produce 
combined forecasts. Elaborate combination schemes 
that depend on the estimation of many parameters have 

Figure 1: The mapping from NEAT genome to a phe-
notype structure
Source: Floreano et al., 2008, (pp.50).
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often been found to underperform schemes that utilise 
a simple equal-weighted strategy (Clemen, 1989; Stock 
and Watson, 2001). Armstrong (2001) stated that when 
there is much uncertainty for the problem at hand, using 
simple methods would be a good strategy. Many studies 
have found that a simple mean of the two forecasts per-
forms relatively well (de Menezes et al., 2000).

5. Model Building

When the literature is examined, it can be seen that 
some neural networks have two hidden layers, while 
most of them have just one hidden layer. In forecast-
ing problems, many successful applications have just 
one hidden layer and use the logistic function for the 
hidden nodes and a linear function for the output nodes 
(Zhang, 1998; Haykin, 1999). Most neural network 
software provides default values for the learning rate 
and momentum parameters that typically work well and 
automatically decrease the learning rate and increase 
the momentum values as convergence is approached 
(Kaastra and Boyd, 1996). The last explanation is es-
pecially useful for MLP modelling. In this study, we 
also constructed neural networks with these features, 
i.e. one hidden layer and the logistic function for the 
hidden nodes and a linear function for the output node. 
One step-ahead forecasting was performed. Thus just 
one output node was employed in the output layer. The 
data were transformed to have zero mean and unit vari-
ance before the training process. 

The data sets were divided into three subsets for train-
ing, validation and testing. The validation set was used 
to stop the training process, with aim of avoiding over-
fitting in order to determine the best neural network 
architecture structure. The final neural network mod-
el was selected according to the minimum error value 
reached on the validation set. The test set was used to 
evaluate the performance of the final neural network 
over the unseen data. It is a well-known fact that there 
is no consensus on which error measure is the best for 
forecasting (Makridakis et al., 1982; Armstrong and 
Fildes, 1995). Hence, two classical forecast evaluation 
statistics given in Equation 2 and 3, mean square er-
ror (MSE) and mean absolute error (MAE), were em-
ployed to compare the performances of neural network 
models on test data. The results obtained for these error 

measures were similar to those of other error measures 
which were not reported here to save space. All neural 
networks models in this study were implemented in the 
MATLAB software.

MSE=∑                (1)

MAE=   ∑             (2)

n
t=1

n
t=1

(ŷt –yt)2

ŷt –yt

n

1
n

where yt and ŷt represent the observation and forecast 
value at time t, respectively, and n denotes the number 
of data points in test set.

The aim of a forecasting application is to approximate 
the relationship between the output (yt) and the inputs 
(yt-1, yt-2, ... , yt-p). The mathematical form of the MLP 
model used in this study is as follows:

yt =w0 +∑a
j=1 wj f(w0 j+∑p

j=1 wi j y t-1)+εt     (3)

where w0 and w0j (j=1,2, ..., q) represent the biases on 
the neurons, wj (j=1,2, ..., q) and wij (i=1,2, ..., p; j=1,2, 
..., q) denote the connection weights between the lay-
ers of the model, f(.) shows the logistic function for the 
hidden nodes, and p and q are the number of input and 
hidden neurons, respectively.

When the MLP model given in Equation 3 is consid-
ered, it can be said that the MLP model performs a 
nonlinear functional mapping (nonlinear autoregres-
sive model) from the lagged values (yt-1, yt-2, ... , yt-p) 
to the future value (yt). While hidden nodes determine 
the degree of nonlinearity of the MLP model, the num-
ber of input nodes (or lagged observations) is the most 
important element in time series forecasting by the 
reason of identifying the autocorrelation structure of 
the time series at hand (Zhang et al., 2001; Aras and 
Kocakoç, 2016). There is no generally accepted rule to 
find out these substantial parameters. For this reason, 
a comprehensive experiment was conducted to deter-
mine the best number of hidden and input nodes in the 
scope of this study.

For the MLP experiments, the Levenberg-Marquardt 
optimisation method (which is frequently used for the 
backpropagation algorithm) was used to determine the 
connection weights for the MLP. In order to investigate 
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the best number of input and hidden nodes for the prob-
lem in hand, both the number of input nodes (i.e. lags 
of the time series) and the number of hidden units were 
each varied from one to ten and the resulting 10 x 10 
grid subjected to experimental search in the following 
way. Each of the 100 different architectures was repli-
cated 30 times with different initial weights. After that, 
the average validation set performance of the 300 neural 
networks corresponding to each number of input nodes 
was evaluated in order to determine the best number of 
input nodes. The process was repeated in order to select 
the best number of hidden units. This entire process was 
repeated 25 times, to yield 25 neural networks which 
were used to forecast the values in the test set. 

With regard to the NEAT experiments, some further 
parameter settings should be mentioned. Fitness was 
evaluated according to a fitness function that depended 
on fitting error and two penalty terms. The first of these 
penalises the number of neurons in the input and hidden 
layers, in order to guard against overfitting. The second 
penalty term penalises architectures that are no longer 
improving their fitness, helping NEAT avoid stagnation 
or getting stuck at local minima. The fitness function f 
was defined as follows:

f = C – error – αN – βG (4)

where;

C: A constant that depends on the task to ensure a pos-
itive fitness value and error is the forecasting error 
used which, in these experiments, was either (MSE) or 
(MAE).

N: The number of neurons (N) in use.

G: The number of consecutive generations (G) for 
which the model did not make any improvement.

α: The penalty parameter for the number of neurons (N) 
in use.

β: The penalty parameter for the number of consecutive 
generations (G).

To create species, the NEAT algorithm used compati-
bility function given in Equation 5. By this equation, 

the distance between any two genomes was computed 
as follows:

δ = 
c1E

N  + 
c2D

N  + c3W
–
  (5)

where E is the number of excess genes, D denotes the 
number of disjoint genes, and W is the average weight 
differences of matching genes. The coefficients for com-
patibility measurement were found experimentally as 
c1=1.0, c2=1.0, c3=1.0 and the compatible initial thresh-
old δt was set at 7.0. Species were created by speciation 
based on the distance between two genomes. If the dis-
tance was below δt, the two genomes were said to be 
compatible and belong to the same species. If the num-
ber of species was above 10, δt was increased by 0.2 to 
decrease the number of species. In addition, if the num-
ber of species was below 10, δt was decreased by 0.2 to 
make more room for new species. Also, a population size 
of 2000 NEAT networks was used. The probabilities of 
node mutation, weight mutation, and connection muta-
tion were set as 0.6, 0.7, and 0.85, respectively. The prob-
abilities of adding a new node and a new link were set at 
0.1 and 0.2, respectively. These two probabilities were 
higher than in most of the studies using NEAT, because 
the fitness function had been modified so that the fitness 
evaluation could penalise those models using more neu-
rons to get better results. However, if the model generat-
ed significantly better results, it could be accepted. The 
interspecies mating rate was 0.01. These parameter val-
ues were found by the experiments conducted. Finally, 
in order to prevent stagnation, the worst species in 50 
consecutive generations was not allowed to reproduce. 
The same experimental settings were used in both fore-
casting problems. As with the MLP, the NEAT algorithm 
was repeated 25 times with the same experimental pa-
rameter settings so that the final result was 25 forecasting 
attempts by each algorithm on each dataset.

Two well-known real-world time series were used in 
these experiments to investigate the forecasting ability 
of the MLP and NEAT algorithms and their combined 
forecasts. The first data set was the lynx series which 
consists of the number of lynx trapped per year in the 
Mackenzie River district of Northern Canada and has 
114 observations between 1821 and 1934. The data set is 
plotted in Figure 2. Prior to the modelling process, loga-
rithms (to base 10) of the data were taken for this series, 
as specified by Priestley (1988) and others (Zhang, 2003; 
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Khashei and Bijari, 2010). This data set has been widely 
employed in the literature to compare performances of 
linear and nonlinear models (Wong and Li, 2000; Stone 
and He, 2007). The first 70 observations were used for 
training, the next 30 observations were used for valida-
tion and the last 14 observations were held out for testing 
purposes. The second data set was the sunspot series that 
is a record of the annual number of sunspots from 1700 
to 1987. Figure 3 shows the sunspot series. The first 161 
observations of the series were used for training, the next 
60 observations of data were used for validation and the 
remainder of the series (consisting of 67 observations) 
were held out for testing. These data series were consid-
ered to be both nonlinear and non-Gaussian and were 
used in order to evaluate the effectiveness of nonlinear 
modelling procedures (De Groot and Würtz, 1991;Ghi-
assi and Saidane, 2005). They are available from Hynd-
man’s Time Series Data Library (2012).

Three different combination schemes were employed 
in this study. Firstly, the 25 replicates from a particular 
method were employed. Secondly, for each method, the 
means of all possible pairs were selected from the 25 
replicates, giving 300 means in total. Finally, pairs were 
selected by taking one of the 25 MLP replicates and 
one of the 25 NEAT replicates in all possible ways and 
calculating the means, yielding 625 altogether. The per-
formance of the models on each dataset was evaluated 
in terms of two commonly employed measures: mean 
square error (MSE) and mean absolute error (MAE). 
Planned comparisons (Keppel, 1973) were employed to 
test following hypotheses:

1. MLP was tested against NEAT. NEAT was expected 
to perform better because of its greater resistance to get-
ting trapped in local minima. 

2. MLP was tested against MLP pairing. The pairing 
technique was expected to produce superior forecasting 
performance, as discussed earlier in Section 4. 

3. NEAT was tested against NEAT pairing. As in the 
second comparison (above) the pairing method was ex-
pected to be better.

4. MLP pairing was tested against MLP+NEAT pairing. 
As discussed earlier in Section 4, the pairing of two dif-
ferent types of algorithm would be expected to produce 

better performance than pairing using the same tech-
nique for each member of the pair.

5. NEAT pairing was tested against MLP+NEAT pair-
ing. As in the fourth comparison (above), the combina-
tion of two different techniques was expected to pro-
duce superior performance.

All comparisons were made twice for each dataset 
(once using MSE and once using MAE).

6. Empirical Results and Discussions

As can be seen in Table 1, which consists of the 25 per-
formance results for the MLP and NEAT algorithms for 
the lynx data, their forecasting performance on the test 
data varied considerably.

Judging from Table 1, the optimum number of lags for the 
lynx series is two. However, in four of the replicates for 
the NEAT method, the best number of input nodes (lags) 

Figure 2: Canadian lynx series

Figure 3: Sunspot series
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was found to be three. We know from previous studies 
(Zhang, 2001; Zhang et al., 1998) that the effect of the 
number of hidden nodes on the performance of neural 
networks is lower than the effect of the number of input 
nodes. For this reason, we can expect that the variability 
in the number of hidden units to be higher than that of 
the input units and this was indeed found to be the case, 

with the optimum number ranging from two to 16 for the 
NEAT algorithm and from three to nine for the MLP.

Turning to Table 2, we find that the number of input 
nodes (lags) selected for the sunspot data is more vari-
able than for the lynx data. The number ranged from 
two to seven for the NEAT algorithm and from three 

Table 1. Initial results for NEAT and MLP with lynx data

NEAT MLP

Input Hidden MSE MAE Input Hidden MSE MAE

2 11 0.00980 0.06941 2 7 0.01452 0.10944

2 7 0.01440 0.09198 2 8 0.02397 0.12574

3 8 0.01569 0.10169 2 7 0.00986 0.07813

2 2 0.01184 0.07914 2 3 0.00839 0.07767

2 5 0.01511 0.09697 2 8 0.01323 0.09367

3 4 0.01303 0.08644 2 8 0.00817 0.06681

3 6 0.01255 0.08593 2 4 0.00966 0.07143

2 9 0.01539 0.09183 2 8 0.01078 0.08593

3 6 0.01571 0.09848 2 7 0.02054 0.11987

2 3 0.01593 0.10276 2 5 0.00965 0.07865

2 2 0.01542 0.09825 2 8 0.01057 0.07867

2 8 0.01680 0.10413 2 7 0.01963 0.10849

2 11 0.01624 0.10433 2 6 0.01388 0.10188

2 1 0.01192 0.08529 2 4 0.02100 0.11256

2 7 0.01479 0.08736 2 9 0.01210 0.07514

2 9 0.00587 0.05489 2 6 0.01079 0.07127

2 9 0.01481 0.09763 2 4 0.01097 0.08276

2 6 0.01482 0.09175 2 3 0.01298 0.07522

2 7 0.01452 0.08882 2 8 0.01366 0.08498

2 3 0.01257 0.08812 2 3 0.01502 0.08745

2 2 0.01416 0.08793 2 9 0.01273 0.08933

2 4 0.01239 0.07594 2 7 0.01033 0.07441

2 5 0.01006 0.08328 2 7 0.01108 0.07440

2 8 0.01202 0.08194 2 8 0.01438 0.09198

2 16 0.00590 0.05585 2 9 0.00912 0.06690
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to six for the MLP. The most common number of in-
put nodes was six. Again, the number of hidden nodes 
was found to be greater than the number of input nodes, 
ranging from two to 15 for the NEAT algorithm and 
from three to ten for the MLP.

Summary statistics for the various conditions are shown 
in Tables 3 and 4. Broadly speaking, the distribution of 
the results for each of the conditions was approximate-
ly Gaussian. However, the variances differed consid-

erably between the various conditions. Therefore, the 
comparisons were made using the Welch-Satterthwaite 
version of the t-test (Satterthwaite, 1946; Welch, 1947) 
that uses separate variances for the groups rather than a 
pooled variance and also applies an adjustment to the 
number of degrees of freedom. The results of the vari-
ous t-tests are displayed in Tables 5 and 6.

As regards the first hypothesis, the results are dataset 
dependent. They show that, compared with the MLP, 

Table 2. Initial results for NEAT and MLP with sunspot data
NEAT MLP

Input Hidden MSE MAE Input Hidden MSE MAE

2 3 396.104 14.581 3 8 565.156 16.827

3 7 409.993 14.893 6 3 444.141 14.994

3 3 409.454 15.367 3 10 327.226 13.197

3 3 407.908 14.928 6 8 499.102 15.919

4 2 403.125 15.122 3 7 343.507 13.662

4 3 381.831 14.196 3 8 471.989 14.317

4 7 427.594 15.542 6 3 472.811 15.595

6 3 378.930 14.620 3 4 754.677 19.397

6 7 338.141 13.775 3 7 412.109 14.130

6 15 370.695 14.788 6 8 435.796 15.288

3 7 408.166 14.744 3 5 522.565 16.226

7 2 418.734 14.912 6 9 423.894 13.391

5 8 390.558 15.151 6 5 400.081 13.917

6 11 346.642 13.977 6 10 501.915 16.215

6 6 313.751 13.447 6 9 401.828 15.296

6 8 315.487 13.423 6 7 347.691 14.453

7 2 332.932 13.066 6 7 432.775 14.758

7 6 335.094 14.240 3 9 549.567 16.852

6 7 400.374 14.891 6 6 456.940 15.561

6 11 375.150 14.677 6 9 425.127 15.100

6 13 339.693 13.606 6 7 366.391 14.572

6 4 309.705 13.416 3 8 480.061 14.840

6 8 364.908 14.655 6 5 475.867 15.935

5 6 419.848 14.330 6 8 530.671 16.123

6 3 409.314 14.969 4 4 695.002 18.109
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the NEAT algorithm produced significantly better 
forecasting performance on the sunspot data, whichev-
er measure of error was used. However, there was no 
corresponding significant benefit with the lynx data. It 
looks as if the MLP may have been more prone than the 
NEAT algorithm to getting stuck in local minima on the 
sunspot data than with the lynx data.

Comparing the performance of each algorithm with that 
of its pairwise counterpart, we find that the pairwise 
combination approach produces significantly better 
forecasting performance for the MLP on both datasets, 
whichever error measure was used. For the NEAT algo-
rithm, a similar picture emerged, except that the result 
for the MAE did not reach statistical significance.

When we compare the forecasting performance of the 
pairwise MLP, with the combination technique, we 
find that the combination approach produces signifi-
cantly better forecasting performance for the sunspot 
data but not for the lynx data, whichever error measure 
was employed.

The results for the final comparison were more mixed. 
The combination technique yielded significantly bet-
ter forecasting performance on the lynx data than the 
pairwise version of the NEAT algorithm, for both error 
measures. For the sunspot data, the combination meth-
od gave significantly better results than the MLP as 
measured by the MAE but not according to the MSE.

In summary, 18 of the 20 comparisons yielded results 
in the expected direction, although not all of these were 
statistically significant. The two contrary results were 
for the simple algorithms operating on the lynx data 
were small and very far from statistical significance. 

The NEAT algorithm showed superior forecasting per-
formance to that of the MLP. Pairwise combinations of 
the algorithms produced better performance than that 
of their simple counterparts. Combining the two algo-

Table 3. Summary statistics for sunspot data

Method
No. of 
Scores

Mean 
of MSE

Std. 
Dev. of 
MSE

Mean of 
MAE

Std. 
Dev. of 
MAE

MLP 25 469.5 99.6 15.387 1.435

NEAT 25 376.17 37.12 14.453 0.676

MLP Pair 300 422.46 72.56 14.535 1.038

NEAT Pair 300 358.24 28.74 14.101 0.543

Both Pair 625 353.58 51.45 13.819 0.912

Table 4. Summary statistics for lynx data.

Method
No. of 
Scores

Mean of 
MSE

Std. 
Dev. of 
MSE

Mean 
of MAE

Std. 
Dev. of 
MAE

MLP 25 0.01308 0.00417 0.08731 0.01673

NEAT 25 0.01327 0.00290 0.08761 0.01313

MLP Pair 300 0.01132 0.00234 0.07908 0.01026

NEAT Pair 300 0.01202 0.00240 0.08265 0.01046

Both Pair 625 0.01122 0.00213 0.07803 0.00928

Table 5. t-test comparison of NEAT, MLP and 
Combined Forecasts for sunspot set

Comparison
MSE MAE

t df p t df p

MLP-NEAT 4.39 30 0.000 2.94 34 0.006

MLP-MLP Pair 2.31 26 0.029 2.91 26 0.007

NEAT-NEAT 
Pair

2.36 26 0.026 2.53 26 0.018

MLP Pair-Both 
Pair

14.76 448 0.000 10.20 526 0.000

NEAT Pair-Both 
Pair

1.76 902 0.078 5.87 881 0.000

Table 6. t-test comparison of NEAT, MLP and 
Combined Forecasts for lynx set

Comparison
MSE MAE

t df p t df p

MLP-NEAT -0.19 42 0.853 -0.07 45 0.945

MLP-MLP Pair 2.09 25 0.047 2.42 25 0.023

NEAT-NEAT Pair 2.10 26 0.046 1.84 26 0.077

MLP Pair-Both 
Pair

0.60 542 0.548 1.51 540 0.132

NEAT Pair-Both 
Pair

4.90 531 0.000 6.51 531 0.000
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rithms produced superior performance to that of the 
pairwise algorithms.

After the performance comparison between the MLP, 
the NEAT, and the pairwise combination of these meth-
ods, we conducted an experiment by comparing the ob-
tained results with the autoregressive integrated moving 
average (ARIMA) model and two well-known hybrid 
models by Zhang (2003) and Khashei and Bijari (2010). 
These studies used the same ARIMA models as a sub-
set autoregressive model of order 12 for the lynx data 
and a subset autoregressive model of order 9, respec-

tively. Hence, we used the same ARIMA models in this 
study. The results of the ARIMA models and the two 
mentioned hybrid models are presented in Table 7 for 
both series. To perform a statistical performance com-
parison, a one-sample z-test was exploited in this study. 
This test is robust to violations of the assumption of 
normal distribution when the sample size is sufficiently 
large (Newbold et al. 2009). For each comparison point, 
the null hypothesis (H0) was that the error measure re-
sulting from the ARIMA model or one of the hybrid 
methods is the mean of the population. The alternative 
hypothesis (H1) is that the mean of the error measures 
obtained from the concerned methods (i.e. the MLP, the 
NEAT, or the pairwise combinations) is less than the 
population mean. In this case, the error measures in Ta-
ble 7 show the assumed population means for each of 
the one-sample z-tests to be conducted. 

The results of the one-sample z-tests for the lynx and 
sunspot data sets are presented in Tables 8 and 9. In 
these tables, z-values and the corresponding p-values, 
shown in parentheses, are given for both error measures 
considered. As shown in Table 8, the methods used in 

Table 7. The results of the linear and hybrid models

Models
Lynx Sunspot

MSE MAE MSE MAE

ARIMA 0.02049 0.11225 306.082 13.034

Zhang’s hybrid 
model

0.01723 0.10397 280.159 12.780

A hybrid (p,d,q) 
model by Khashei 
and Bijari

0.01361 0.08962 234.206 12.118

Table 8. The results of the one sample z-test for the lynx data

Methods
MSE MAE

ARIMA Zhang Khashei ARIMA Zhang Khashei

MLP -8.88 (0.00) -4.98 (0.00) -0.63 (0.26) -7.45 (0.00) -4.98 (0.00) -0.69 (0.25)

NEAT -12.45(0.00) -6.83 (0.00) -0.58 (0.28) -9.38 (0.00) -6.23 (0.00) -0.76 (0.22)

MLP Pair -67.87(0.00) -43.75(0.00) -16.95(0.00) -55.99(0.00) -42.02(0.00) -17.79(0.00)

NEAT Pair -61.13(0.00) -37.60(0.00) -11.47(0.00) -49.01(0.00) -35.30(0.00) -11.54(0.00)

Both Pair -108.80(0.00) -70.54(0.00) -28.05(0.00) -92.18(0.00) -69.88(0.00) -31.22(0.00)

Table 9. The results of the one sample z-test for the sunspot data.

Methods
MSE MAE

ARIMA Zhang Khashei ARIMA Zhang Khashei

MLP 8.20 (0.99) 9.50 (0.99) 11.81(0.99) 8.19 (0.99) 9.08 (0.99) 11.39(0.99)

NEAT 9.44 (0.99) 12.93(0.99) 19.12(0.99) 10.49(0.99) 12.37(0.99) 17.27(0.99)

MLP Pair 27.78(0.99) 33.97 (0.99) 44.94(0.99) 25.05(0.99) 29.28(0.99) 40.33(0.99)

NEAT Pair 31.43(0.99) 47.06(0.99) 74.75(0.99) 34.03(0.99) 42.14(0.99) 63.25(0.99)

Both Pair 23.07 (0.99) 35.67(0.99) 58.00(0.99) 21.52(0.99) 28.48(0.99) 46.62(0.99)
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this study led to statistically better performances in all 
almost all the cases than the linear model, the hybrid 
models for the lynx data. However, for the sunspot data, 
neither the single methods nor the pairwise combina-
tions produced forecasts that were statistically more ac-
curate than the ARIMA and the hybrid methods under 
investigation. It can be said that the results achieved 
are highly dependent on the data sets used even if the 
pairwise combined forecasts tend to exhibit better fore-
casting performances compared to the single forecasts.

7. Conclusions

The main aim of this paper was to implement the NEAT 
algorithm for time series forecasting and to compare 
its performance with the MLP in order to evaluate its 
capability of forecasting. For this purpose, two nonlin-
ear time series were used and the resulting performance 
was found to be similar to that obtained from the MLP 
for the one of the series and superior to the MLP for the 
other series investigated. As a result, it can be said that 
there is some evidence that NEAT is a promising tool 
for nonlinear forecasting.

The other interesting conclusion from this study is that 
combined forecasts resulting from simple averaging of 
pairwise selected MLP and NEAT forecasts produced 
superior performance, whichever algorithm was used. 
Possibly the most important finding in this study is 
that combining the MLP forecasts with those from the 
relatively novel NEAT technique can improve the ac-
curacy of forecasts still further. The results obtained in 
this study suggest that combining the MLP and NEAT 
algorithms helps to capture nonlinear patterns in the 
data more effectively than either of the algorithms used 
separately.

For future work, it is intended to apply the NEAT al-
gorithm to further nonlinear time series with a view 
to reaching more information about its usefulness. 
Although this study achieved interesting result with 
equal-weight combinations, other researchers have 
experimented with different schemes that might merit 
further investigation. Also, further work could be done 
on composition of the combinations, both in terms of 
the number of replicates and the particular combination 
scheme used.
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