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Abstract

This research presents a load frequency control (LFC)
system with demand response (DR) studied for robust
stability analysis based on gain and phase margins (GPMs)
utilizing a fractional-order proportional-integral (FOPI)
controller. Electric power systems contain many parametric
uncertainties. FOPI controller gains are adjustable
parameters and can be designed to provide the desired
frequency control and dynamic performance. Therefore, in
this article, the robust stability regions containing a set of
robust FOPI controller gains are designed for the range
model of the load frequency control system using
Kharitonov’s theorem, considering the uncertainties in the
LFC-DR system parameters and the time delay. Further, the
robust performance of the interval LFC-DR system in terms
of design features, including GPMs, is investigated.
Simulation studies indicate that GPM parameters provide a
better dynamic performance in terms of fast damping of
oscillations, less settling time, and overshoot time for the
interval LFC-DR system.

Keywords: Gain margin, Phase margin, Demand response,
Fractional-order controller, Robust stability region

1 Introduction

A need for renewable energy sources (RESs) has
emerged because of the decreasing availability of
conventional resources, the environmental effects of
greenhouse gas emissions from fossil fuel combustion, and
the rapid increase in energy demand [1, 2]. It is challenging
to use renewable energy sources for load frequency
management because of their drawbacks, such as significant
intermittency and power fluctuation [3, 4]. Demand response
(DR) is used in load frequency control systems to overcome
the intermittency of wind and solar power generation and
regulate system frequency and cope with fluctuations in load
demand [5-7]. Demand response control is an effective
method to shift or reduce the peak load on the demand side
(user side) to ensure the balance of production and
consumption in the power grid [8]. In the study conducted in

Oz

Bu arastirma, kesir dereceli oransal-integral (KDOI)
denetleyici kullanilarak, talep yanit1 (TY) ile yiik frekans
kontrolii (YFK) sisteminin giirbiizliik analizi i¢in kazang ve
faz marjlar1 (KFM'ler) temelinde incelendigi bir sistemi
sunmaktadir. Elektrik giic sistemleri bir¢ok parametre
belirsizlik igermektedir. KDOI denetleyici kazanglar
ayarlanabilir parametrelerdir ve istenen frekans kontrold ve
dinamik performans saglamak ic¢in tasarlanabilirler. Bu
nedenle, bu makalede, YFK-TY sistem parametrelerindeki
belirsizlikler ~ve zaman gecikmesi goz Oniinde
bulundurularak, Kharitonov Teoremi kullanilarak yiik
frekans kontrol sisteminin aralik modelinin tasariminda
glirbiz KDOI denetleyici kazanglar1 igeren giirbiizliik
bolgeleri tasarlanmistir. Ayrica, KFM'ler gibi tasarim
ozellikleri agisindan aralik YFK-TY sisteminin giizbiiz
performanst incelenmistir. Simiilasyon calismalari, KFM
parametrelerinin, aralik YFK-TY sistemi i¢in salinimlarin
hizli bir sekilde soniimlenmesi, yerlesme zamaninin ve
asim siiresinin daha diisiik olmasi agisindan daha iyi bir
dinamik performans sagladigini gostermektedir.

Anahtar kelimeler: Kazan¢ marji, Faz marji, Talep yaniti,
Kesir dereceli denetleyici, Saglamlik bolgesi

[9], frequency control of power systems using renewable
energy sources was implemented using demand response and
storage battery, utilizing a real 10-bus power system model.
In the study conducted in [10], using a simplified model of
Australia's eastern seaboard developed in DIgSILENT
PowerFactory, it was observed that both DR and large-scale
battery energy storage systems (BESSs) effectively reduced
frequency deviations. In this way, the reliability and
flexibility of load frequency control (LFC) systems are
increased. Controlled loads such as air conditioners (ACs),
electric water heaters (EWH), HVAC, and thermostatically
controlled loads (TCL) are included in frequency control to
involve demand response in LFC systems [11-13].
Measurement data and control commands in power
systems need to be transmitted back and forth between
control centers, stations, and DR, and a private or open

* Sorumlu yazar / Corresponding author, e-posta / e-mail: deniz.katipoglu@erzurum.edu.tr (D. Katipoglu)
Gelis / Received: 02.01.2025 Kabul / Accepted: 14.07.2025 Yayimlanma / Published: 15.10.2025

doi: 10.28948/ngumuh.1612061

1243


mailto:deniz.katipoglu@erzurum.edu.tr
https://orcid.org/0000-0003-3082-3879

NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1243-1252
D. Katipoglu

communication network that meets the performance needs of
the system is needed. When the command signal is being
transmitted from the control system to the reacting loads,
there are communication delays that could negatively impact
the dynamics and stability of the LFC-DR system [14].
Studies have been conducted on calculating the stability time
delay margin of time-delayed LFC-DR systems for specific
system and controller parameters [15, 16]. However, no
studies have been undertaken on obtaining all values of the
proportional-integral (PI) controller parameters, known as
the stability region, which ensure the stable operation of
time-delayed LFC-DR systems.

Because PI controllers are practical, straightforward, and
have reliable performance, they are employed to enhance the
dynamic behavior of LFC-DR systems [17-19]. In recent
years, fractional-order PI (FOPI) controllers have been
preferred to improve systems that have experienced
parametric uncertainty and external degradation because
they provide a greater degree of freedom and flexibility. In
this study, a FOPI controller is employed instead of FOPD
or FOPID controllers, as the use of these higher-order
controllers would increase the dimensionality of the
controller space and significantly complicate the stability
region analysis. In previous studies [20, 21], researchers used
a fractional order PI controller to control a single area time-
delayed LFC system. In the study cited [22], a single input
interval type-2 fuzzy fractional-order PI (SIT2-FFOPI)
controller based on stability boundary locus (SBL) was
proposed to be used in the LFC system of the time-delayed
microgrid (MG) of a ship. In [23], an efficient and robust
FOPID control method called MOGOA-FOPID, using the
multi-objective  grasshopper  optimization algorithm
(MOGOA) for frequency control in an MG consisting of
RESs, diesel generators, FCs, flywheels, and a battery
storage system was proposed. A FOPI controller was also
used in this study.

This study examines the effect of the FOPI controller of
the LFC-DR system that contains parametric uncertainties on
robust stability. Kharitonov's Theorem provides a more
flexible, faster, and computationally efficient way to
determine the stability of systems with parameter
uncertainties compared to Lyapunov theory. The Kharitonov
method simplifies the analysis and can be applied to time-
varying systems as well [24-26]. This study adds to the body
of knowledge by using Kharitonov's theorem to evaluate
robust stability areas of the interval LFC-DR system that
contain communication time delay and a FOPI controller.
Firstly, all possible characteristic polynomials of the
perturbed interval LFC-DR system are obtained using
Kharitonov's theorem. Then, the stability regions in the PI
controller plane that will stabilize each Kharitonov
polynomial are calculated using a simple graphical method
called the stability boundary locus (SBL) method [27, 28].
Lastly, the region that is the intersection of the calculated
stability regions, provides the interval system’s PI controller
plane’s robust stability region. This approach has been used
to study the stability regions of time-delayed communication
systems for large wind turbines [29], time-delayed two-area
load-frequency systems based on gain and phase margins

and micro-grid systems [30, 31], and time-delayed one-area
load-frequency systems with fractional-order PI controllers
and fuel cell micro-grids [20, 32]. One of the principal areas
of study in recent years has been the robust stability analysis
of fractional-order systems with parametric uncertainty. In
the study cited as [33], sixteen Kharitonov polynomials were
used for numerator and denominator polynomials of the open
loop transfer function of a time-delayed micro-grid system
that is time-delayed based on gain and phase margins to
design robust FOPI controller gains and robust stability areas
were obtained. In the study cited as [34], a robust FOPID
controller was designed for LFC systems containing
perturbed (interval) non-reheated and reheated turbines
using Kharitonov polynomials. In the study cited as [35], an
interval fractional order proportional integral derivative
(INFOPID) controller was proposed for a two-area LFC
system, and Kharitonov polynomials were obtained due to
parametric uncertainties. Robust stability areas were found
using the stability boundary locus method.

The design of robust PI controllers and the identification
of robust stability areas should take into account robust
stability margins as well as design elements like gain
margins (GM) and phase margins (PM) that guarantee the
robust dynamic performance of the interval LFC-DR system.
The consideration of GPM in frequency design features such
as damping, transcendental, and settling times, which is the
second contribution of this study to the literature, also allows
us to select several PI controller parameters for frequency
responses. A gain-phase margin tester (GPMT) was
incorporated into the time-delayed LFC system model in this
work as a “virtual compensator” to the forward transfer
direction [36, 37].

The following are some of the significant contributions
this study made to the literature. A single-area interval LFC-
DR system was preferred in the study to demonstrate the
effectiveness of the proposed robust controller design at a
fundamental level. These contributions focus on gain and
phase margin (GPM) based robust stability areas of a time-
delayed single-area load frequency control (LFC) system
that includes demand response (DR) and fractional order
proportional integral (FOPI) controller:

* The robust stability areas of the interval LFC-DR
system with a FOPI controller were determined under
parametric uncertainties using the Kharitonov theorem and
the SBL approach.

 After studying how the fractional value affected the
integral controller's robust stability areas, it was found that
utilizing a FOPI controller expanded those regions.

* A load change scenario was created, and through time-
domain simulations, the robust stability areas’ performances
were examined [38].

* Finally, using FOPI controllers chosen from the
regions, the performance of the system was evaluated along
with the impact of GPMs on robust stability areas. GPMs
have been seen to enhance the system's performance.

This article consists of five parts. A model of a time-
delayed single-area interval LFC-DR system with a GPMT-
attached FOPI controller is shown in Section 2. In Section 3,
the application of the Kharitonov theorem and the SBL
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method for calculating the robust stability areas is presented
in detail. In Section 4, the proposed method is applied to a
single-area interval LFC-DR control system, the robust
stability areas based on the FOPI controller and GPMs are
calculated, and the results of time domain simulations are
presented. The conclusion of the article is presented in
Section 5.

2 Model of single area a time-delayed LFC-DR system

Power systems are large-scale systems represented by
nonlinear dynamics. Figure 1 shows the model of a single
area interval LFC-DR system with a time delay and added
GPMT and, the FOPI controller is used as load frequency
controller. Furthermore, on the DR side, a proportional-
integral type controller (PI) is used [15]. The model of
interval LFC-DR consists of a load, a generator and
governor, a thermal turbine, and droop characteristics. The
system model’s parameter nomenclature is given. With the
addition of the DR to the LFC system, the required control
effort is denoted by Q, showing the sharing between the DR
and conventional generation units [39]:

AF;(s) = apf |
BPor(s) = a2 @
The sharing factor of the conventional turbine-generator
system is a, and the DR control loop is a4, and their sum is
equal to one. Also, 4, K;, and K} refer to the fractional-order
value of the integral controller and the FOPI controller gain
values. To perform various control functions in the system,
it is necessary to consider the measurement and
communication time delays between the classical production
unit and the central controller. The total amount of
communication delay is z, represented by the expression e ~*
in the LFC system.
G(s) = Af Gr(s)Gg(s)GL(s)

AXe 14 Gpr(s)GL(s) + Gr(s)Ge(s)GL(s)/R

2

where
* The governor dynamics are as follows:

6oy a_ 1
ST ax, T 14T,

3)

* The turbine dynamics are as follows:
AP, 1+sET,

Gr(9) = % = TFsTH + 5T

g

“

* The power system (load and generator) dynamics are as
follows:

G.(s) = a __1 5
LS =P, T D+ sM )

* The demand response dynamics are as follows:

Af KI DR)
Gpr(s) = —5— = Kppr) + ¢ (6)
* G¢(s) is FOPI controller as follows:
K

Ge(s) =Kp + ™

where / is the fractional order of the integral controller and
its value is chosen from 0<A<2 [40]. To calculate the robust
stability regions and apply Kharitonov’s theorem to the time-
delayed interval LFC-DR system with a FOPI controller, the
transfer function of the interval LFC-DR system can be
represented as follows using Equations (3)-(6):

N(s) b,s? + b;s

G(s) = =
) D(s) ass’+ass*+azs®+ays?+as+ag

®)

where the coefficients of N(s) and D(s) polynomials, a;(i =
0,1,2,3,4,5) and b;(i = 1,2), are given as Equation (26) in
Appendix A in terms of interval LFC-DR system parameters.

Secondary
Frequency
Control

Freq

YFOPI Controller Governor

Primary

Control

uency

(K Kr) . 1 |ax, [1+sF,1, [AR[ 1 AP+ |y
= PY— =S £
¥ s*) e m 1+STg 1+STr 1+STC D+sM
Ge(s) G,(s) Gy (s) o+ G,(5)
/
( K; \ | APor /
‘ (DR)
r""jKP(DR)Jr = f————
\
Gre(s)
DR Control

Thermal Turbine System

AP
_ Generator and Load

Figure 1. Block diagram of LFC-DR system with an additional GPMT and FOPI controller
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3 Calculation of the robust stability regions

3.1 Kharitonov’s theorem

In control systems, uncertainties in system parameters,
changes in load, and errors in modeling the system could
reduce system performance and cause system instability.
Kharitonov’s theorem is a graphical technique used to
examine the interval polynomials’ stability, whose complex
or real coefficients vary within a certain interval [41, 42].
According to this theorem, four vertex polynomials are
obtained by utilizing the maximum and minimum values of
the given coefficient range from an interval polynomial
whose coefficients vary within a certain range. The
polynomials are considered stable if all four of them are
Routh Hurwitz stable. Kharitonov polynomials are as shown
in Equation (9) and (10).

Ni(s) = bys + b,s?
N,(s) = bys + b,s?

9
N3(s) = bys + bys® ©)
N,(s) = bys + b,s?
Di(s) = ag + ays + @ps? + azs® + ays* + ags®
D,(8) = ag + a;s + azs? + azs® + ays* + ags®
_ _ _ (10)

D3(s) = @y + @15 + aps% + a3s® + agst + ags®

Dy(S) = @y + a1s + as? + azs® + azst + ags®

where N,(s) and D;(s) (k,1=1,23,4) are vertex
polynomials of G(s) given in Equation (8). The coefficient
of vertex polynomials a;<a;<a; (a;a;#0,i=
0,1,2,3,4,5) and b; < b; < b; (b;, b; # 0,i = 1,2) represent
the minimum and maximum value of perturbed system
parameters of the interval LFC-DR system. The values of the
interval coefficients given by Equations (9) and (10) are
given as Equation (27) in Appendix A. Using Equations (9)
and (10), the set of sixteen transfer functions for the interval
model of the LFC-DR system including FOPI given in
Equation (8) can be formed as,

_ Ni(s)
D,(s) (11)
k=12,3,4, 1 =1,2,3,4.

Gi(s)
i=1,23...,16,

3.2 Identification of fractional order PI controller for
interval LFC-DR system

This section suggests a procedure for designing the FOPI
controller in the time-delayed single-area interval LFC-DR
system using a GPMT. In this technique, the GPMT
C(A, ¢) = Ae /% is introduced to the feed-forward loop of
the interval LFC-DR system as shown in Figure 1. Here, 4
and ¢ represent gain margin and phase margin. The GPMT
does not exist in the physical system; it is merely a virtual
compensator to specify the desired frequency parameters.

The system's overall closed-loop transfer function is as
follows:

G(s)C(Ae ) Ge(s)Bage ™

1+ G(5)C(Ae19)Go(s)Bage (12)

The following form should be used to indicate the entire
system’s characteristics equation:

A(s, 4, 7) = P(s,2) + Q(s, V) e~ 6T+i®) (13)

P(S, /1) — p555+/1 + p4s4+l + p3s3+/1 +
p252+l + P151+A + 1705/1 (14)
Qs A) = qss™M? + 5™t + qis% + qoS

where p and ¢ coefficients depending on the parameters of
the interval LFC-DR system are given as Equation (28) in
the Appendix A. To identify the stability regions, first
substitute s=jow with w>0 in Equation (14), we get,

A(jw, 2,7) = ps(jw)5** + py(jw)*+* +
ps(jw)3* + p,(jw)?+ +
P ) + po(jw)* + (15)
Ko (@4 + gh(ja) e/ oro) 4
K (g1 w)? + qf (jw))e /@) = 0

It is to be noted that q¢" and q"’ coefficients in Equation
(15) do not contain K, and K;. These coefficients are given
as Equation (28) in the Appendix A depending on the interval
LFC-DR system parameters. Solving Equation (15) using the
mathematical identities,

e J(wTttd) — cos(wt + @) — jsin(wt + ¢)

2 A . Am (16)
jt = 005(7) +]sm(7)

Substituting Equation (16) into Equation (15), we can
obtain the equation separating the imaginary and real parts
as:

T T
5+41cos(5 + A)E + jsin(5 + ) ={ +

2

Vs A

4+ cos(4 + A)E + jsin(4 + 1) E} +
T

2+

T T

24 {cos(2 + ) 5 +jsin(2 + ) S+

psw {
Psw {
s
pyw3tt {cos(3 +2) >+ jsin(3 + 1)
pow { 2
T s
prwt*t {cos(l + 1) ol jsin(1 + A) 55t

/1{ Am s /'ln} +
pow” jcos —-+ jsin—-
cos(wt + ¢) —
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T

cos(2+ 1) > +

KP(qé(UZH1 T +

jsin(2 + 1) 5
i1

cos(1 +/1)§+ 17)

)+

jsin(wt + ¢) 1
qéw1+l -
jsin(1 + A) 5

K (—qi 0* + jqg w)
=0

2w, 2,7) =R(4(w,1,1)) +
Jj3(A(Gw,4,1)) =0
A(w, A4, 1) = KpA;(w) + K;B;(w) + C;(w) +

JIKpAz (@) + KBy (w) + Co(w)] =0
where A;, B;, and C; (i = 1,2) polynomials expressions are:

(18)

A, (@) = ghw?(cos (T + $)(cos (2 + A) g) +
sin (w7 + ¢)(sin (2 + 2) g)) +
Qw2 (cos (w + ¢)(cos (2 + 1) g) +

sin (wt + ¢)(sin (2 + 1) g));

Bi(w) = —qf w? cos(wt + ¢) +
qo w sin(wt + ¢);

s
C1(w) = psw®** cos(5 + 1) 5 +
s T
paw*** cos(4 + 1) 5 + p3w3*tt cos(3 + 1) 3 +
s s
prw?* cos(2 + 1) 5 + piw'*Acos(1 + 1) 5 +

PRSNRCLY
Pow”cos—;

2 . (19)
Ay () = ghw?*(—sin (wT + ¢)(cos (2 + 1) )

+cos (@7 + ¢)(sin (2 + A) %)) +
qhw?**(—=sin (wt + $)(cos (2 + 1) %) +

cos (ot + ¢)(sin (2 + 1) g));

By(w) = qf w? sin(wt + ¢) +
qo w cos(wt + @) ;

T
Cy(w) = psw>**sin(5 + 1) o
i1 s
paw*** sin(4 + 1) R p3w3*ttsin(3 + 1) R
T T
p2w?*sin(2 + 1) 5 +piw'*sin(1 + 1) 5
An

sin—
2

Pow/1

Setting both the imaginary and real parts equating to 0,
we obtain:

KPA]_((U) + KIBl(w) + Cl((,()) = O
(20)
KpAz((l)) + KIBz((U) + Cz((l)) = 0
Depending on w crossing frequency, Equation (20)
solved for (Kp, K;) to achieve the stability boundary locus
£(Kp, K;, w) in the (Kp, K;) plane shown as:

_ Bi(w)C;(w) = By(w)Cy (w)

o A;(w)B,(w) — Az(w)By(w) 1)
_ Ay ()€ (w) — A1 ()6 (w)

T A1 (w)B3(w) — Az(w)By (w)

For a fixed 7 and 4, the solution to these two equations in
Equation (21) is referred to as the interval LFC-DR system's
complex root boundaries (CRBs). In addition to these
stability boundaries, for w=0 from Equation (20) such a
stability change occurs only for K; = 0 and is called the real
root boundary (RRB) of the stability region. Consequently,
the RRB and CRB locus divide the (Kp,K;) —plane into
stable and unstable regions. The PI controller values to
stabilize each Kharitonov polynomial are calculated by
following the steps shown in Equations (13)-(21). Sixteen
stability regions are calculated in the PI controller parameter
space defined as A4,(s,A4,7) with each Kharitonov
polynomial n=1,2,...,16. The intersection of these sixteen
stability areas, which is described as follows, indicates a
region with robust PI controller gains that ensure the interval
LFC-DR system remains stable despite uncertainties in the
interval LFC-DR system parameters:

'BJ(KP:KI:(U) = n%ﬁ:p £, (Kp, K;, w) (22)

4 Results

This section presents the robust stability region results
for the time-delayed single-area interval LFC-DR system
with FOPI and GPM specifications. The Kharitonov theorem
is primarily applicable to interval polynomial systems and
cannot be directly applied to time-delay or non-polynomial
systems. Similarly, the SBL method may become
computationally intensive for high-order systems and, due to
the discrete nature of frequency sweeping, may only provide
approximate stability boundaries. Following this analysis,
verification studies are carried out under large disturbance
events involving load fluctuations. The parameters of the
interval LFC-DR system are provided in Table 1.

Table 1. LFC-DR system parameters [43]

Parameters M D Fp R fg T, T. T
88 1 1/6 1/11 21 02 03 12

The steps of applying the Kharitonov theorem to the
interval LFC-DR system are given as follows:

Step 1: In the interval LFC-DR system, 0=+10%
parametric uncertainty is assumed the time delay value is
7=Is and the controller parameters DR participation
Kppry = 0.5 and K;pgy = 0.7 are selected based on their
frequent use in the literature as reference parameters for
analyzing system performance under various conditions [44,
45]. In addition, the participation factors of the classical
production unit and DR group are determined as ay, = 0.6
and a; = 0.4 [15], the fractional order degree is A=0.8, and
it is assumed that the system is without GPM specifications
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(A =1,¢ = 0°). The minimum and maximum values of the
system parameters are calculated as follows:

M € [7.92;9.68],D € [0.9;1.1],
Fp € [0.15;0.1833], R € [0.0818;0.1],
T, € [0.18;0.22], T, € [0.27;0.33], T, € [10.8;13.2]

(23)

Step 2: The upper and lower limit values of the transfer
function G(s) and coefficients are obtained as follows:

[ Bofs?+ [ B
[as @s|s5+[as Gu]st+[as az]s3+ (29

02 @]s?+[a @s+[a0 G

G(s) =

ao € [20 @] =1[0.0229 0.028];
a; € [a1 @] =[1.3477 1.515];
a, € [z az] =[3.3930 5.3808];
as € [a3 @3] =[7.7438 14.2901];
a, € [as @y =[3.2280 7.2225];
as € [as  as] =[0.3401 0.9277];
bye[b bi|=110309 126];

(25)

by €[b, by|=[16701 3.0492].

Step 3: Sixteen characteristic equations are obtained by
substituting in Equation (13) the lower and upper limit values
of the characteristic equation coefficients found in Step 2.
Then, with the help of the SBL method given in Equations
(16) - (21), the stability region for each vertex polynomial of
the system is obtained. Finally, the robust stability region
represented by the shaded area in Figure 2 is produced by the
intersection of the sixteen stability areas obtained using
vertex polynomials.

Figure 2. The stability regions and robust stability region
obtained from vertex polynomials for 1=0.8 and 7=1s

Moreover, to investigate the impact of fractional-order
parameters on the robust stability regions four different
fractional-order parameters are selected, i.e., A=0.6, 1=0.8,
A=1 and A=1.2, whereas A = 1,¢ = 0°, the time delay is
fixed at t=Is, participation factors a_0=0.6 and a_1=0.4,
uncertainty of 8=+10%. As may be seen in Figure 3 the size

of robust stability regions increases when the fractional-
order parameter value is smaller than one (4</) and the size
of robust stability regions decreases when the fractional-
order parameter value is bigger than one (41>/).To examine
the interval LFC-DR system's frequency response, a load
change scenario graph is created and applied to the system
as shown in Figure 4. The system's frequency response under
the effect of load disturbance is shown in Figure 5 at the
robust PI parameter (Kp = 0.5, K; = 0.13) indicated with *’
selected over the robust stability regions obtained by using
different fraction order values from Figure 3. Table 2
illustrates how the system performs better when the
frequency response A</, and a significant decrease in peak
overshoots of frequency deviation. In addition, for all
fractional-order values, it is seen that the oscillations in the
frequency response of the system are damped in a short time
and the system reaches stability.

Figure 3. Robust stability regions for different fractional
order values

AR (pu)

1 I j
1} 50 100 150 200 280
Time (s)

Figure 4. Load variation graph applied to the interval
LFC-DR system

N

Teme (s)

Figure 5. Different fractional order values on the system’s
frequency response
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Table 2. Frequency response performance metrics for
different A values

Avalue Rise Time(s)  Settling Time (s) Overshoot (Hz)
0.6 5.0 65 0.1742
0.8 5.5 67 0.1772
1.0 6.2 69 0.1798
1.2 7.0 72 0.1803

Also, the change of the robust stability regions for
parametric uncertainties of d=+0%,0=+5%,+8%,+11%,and
+74% are obtained. For this case, the time delay, fractional-
order value, and GPM specifications are chosen as 7=2s,
A=0.8 and A = 1, ¢ = 0° and the robust stability regions are
displayed in Figure 6. As seen in Figure 6, as the rate of
change in the system parameters, that is, the uncertainty in
the interval LFC-DR system parameters, increases, the
robust stability regions become smaller. Moreover, the
effects of gain and/or phase margins on the robust stability
regions are investigated and the time delay, variations in
system parameters, fractional order degree, and the crossing
frequency range are selected as t=1Is, 0=+10%, A=0.8 and
w€[0,1.1], respectively. Firstly, a specific PM is chosen as
¢ = 20° (A=1) and the robust stability region is calculated
using Equations (15)-(22) and shown in Figure 7. Similarly,
Kharitonov theorem Equations (15)-(22) is employed to
identify the robust stability region for specific GM as 4=1.5
(¢ = 0°) and is depicted in Figure 7. As can be seen from
Figure 7 the robust stability region for ¢ = 20° (4=1) is
much smaller as compared with the robust region for A =
1.5 (¢ = 0°). Itis seen that the gain margin is more effective
on the robust stability regions than the phase margin. Finally,
using Equations (15)—(22), the robust stability region not
having GPM specification (A = 1, ¢ = 0°) is calculated and
displayed in Figure 7. When compared to specific PM and
GM, the robust regions without GPM specification are
significantly larger. Finally, the PI controller gains selected
from the robust stability regions shown with “** in Figure 7
and the test scenario in Figure 4 are applied to the interval
LFC-DR system and the frequency responses are examined
within t=250s. These PI controller gains are (Kp = 0.3, K, =
0.05) in ¢ =20° (A =1), Kp = 0.1944,K; = 0.1226) in
A =15 (¢ =0°) and (Kp = 0.0927,K; = 0.2401) in 4 =
1,¢ = 0°, respectively. The robust frequency responses of
the interval LFC-DR in this case are shown in Figure 8 for
three robust controller parameters. As illustrated in Figure &,
it is seen that for all three robust PI controller parameters, the
oscillations in the frequency response of the system are
damped in a short time and the system reaches stability.
Preliminary analyses revealed that altering either Kp or K;
while holding the other constant results in comparable
system dynamics and performance characteristics.
Consequently, consistent with established practices in the
literature and to facilitate a clearer comparative evaluation,
Kp was fixed while K; is systematically varied throughout
the study [46]. Additionally, Table 3 shows that the system's
performance characteristics, such as settling time, overshoot,
and rising time, are improved by gain and/or phase margin

specifications as compared to the dynamical response in the
absence of GPMs (A = 1,¢ = 0°).
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Figure 6. Robust stability regions at different rates of
change of system parameters
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Figure 8. Frequency responses for robust PI parameters
selected from robust stability regions

Table 3. Frequency response performance metrics for
different control parameter values

Parameter Rise Time (s) Settling Time Overshoot
Values (s) (Hz)
Kp=0.0927, 3.8 22 0.18
Ki=0.2401
Kp=0.1226, 42 25 0.19
Ki=0.1944
Kp=0.3, 5.5 15 0.17
Ki=0.05

5 Conclusion

In conclusion, using Kharitonov's theorem, this study has
demonstrated the impact of GPMs and the fractional order PI
controller on robust stability regions of the time-delayed
interval LFC-DR system. Using this technique, the robust PI
values are calculated, which ensures the robust stability and

1249



NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1243-1252
D. Katipoglu

performance of the interval LFC-DR system. The findings
indicate that when Z is smaller than 1, robust stability regions
widen, enhancing the system's robustness margin compared
to the PI controller. Additionally, it has been noted that the
robust PI values chosen from the robust stability regions
based on GPMs exhibit better dynamic performance, as seen
by reduced settling times and fast damping. Lastly, the
impact of the uncertainty ratio on the system parameters on
the robust stability regions is investigated and it is found that
the robust stability regions shrink with increasing
uncertainty. Future work will focus on the computation of
stability regions of multi-area LFC-DR systems with FOPI
controllers including incommensurate time delays.

Appendix A

Coefficients of N(s) and D(s) expressed in Equation (8)
are as follows:

as = MRT,T,T,;a, = MRT,(T, + T,) +
MRT,T,+ DRT,T, T, +a; RKp oy T, T, To;
as = MR(T, + T.) + MRT, +
DRT,(T; + T.) + DRT,T. + &y RKp(pry T+ (Ty + T,) +
@, RKp pryTyTe + a1 RK oy Ty T, T,
a = MR + DRT, + DR(T; + T..) + (26)
a1 RKppry(Ty + T2) + a1 RK; oy Ty Te +
. RK oy T (T, + T.) + Fo Ty +
a1 RKp pryT5;
a; =1+ DR + a;RKppr) + @1 RK; (g T +
a1 RK;(pry(Tg + T.); ag = a1 RK;(pR);
b, = RFpT,; b, = R.

The minimum and maximum value of G(s) in Equation
(9) and (10) are:

as = MRT T T;; as = MRT,T.T,;
ay = MR’I}(Tg + Tc) + MRTg’chJ"
DR’Ijg’Ijr’ch +alRKP(DR)7jg7jr7jc;

@, = MRT,(T, + T,) + MRT,T,

az = MR(T; +T;) + MRTT
+DRT,(T, +T,) + DRT,T, +
alRKP(DR)’I}(’Ijg + Tc) + a1RKP(DR)7_'g7_'c +
@ RK op Ty Ty T @ = MR(T; + T;) +
DRT,(T, + T.) + DRT,T, +
alﬁKP(DR)ﬁ(YZ + Tc) + QIRKP(DR)’IZ’ITC
+a1EKI(DR)YZﬁﬁ; a, = MR + DRT,
+DR(Ty + Tc) + a1 RKppry(Ty + Tc) +

alRKI(DR)’Ingc + alRKl(DR)’Ijr(’Ijg +T)+

FpT, + a;RKpppyTy; @ = MR + DRT, +
ER(’I:; +Tp) + a1RKP(DR)(7Z +To)
+a;RK; (pryTyTe + a4 RK; (ppy T (T, + T,) +
FpTy + a1 RKpppyTr; @1 = 1+ DR + a3 RKp(pr)
+a;RK;(pry Ty + alRKI(DR)(’Ijg + 7}:); 27)
@; =1+ DR+ ayRKp(pgy + a1 RK; oy Ty +
a1 RK; pry(Ty + T0); ag = a1 RK;pr)y;
ay = alﬁKI(DR); b, = REP’Ijr;b_Z = RFpT;
b} =R;b, =R

Coefficients of P(s,4) and Q(s,4) expressed in Equation (14)
are as follows:

Ps = As; Py = Qy;P3 = A3;P2 = A2;P1 = Ay,

Do = Qo;
qz = AaoBKpby; q; = AagSKpby;
g1 = AaoBK;by; qo = AaySK by (28)
q3 = Aagfby; q; = Aaofby; qi' = Aagfby;
q0 = Aaofb;.
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