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Abstract: Asynchronous motors have a wide range of industrial applications due to their 

robust structure, low maintenance costs, and high reliability. However, these motors can be 

exposed to electrical and mechanical faults caused by environmental and operational 

conditions. Among the types of faults are problems such as bearing failures, stator winding 

faults, and rotor bar breakages, with mechanical imbalance faults standing out as a critical 

issue that adversely affects motor performance. This study aims to compare the performance 

of surrogate models (RBF and KRG) and deep learning models (RNN, GRU, LSTM), which 

represent a novel approach for diagnosing imbalance faults in asynchronous motors. For this 

purpose, experimentally collected current (Ia, Ib, Ic) and vibration (X, Y, Z) signals were 

analyzed in the frequency domain, and the features obtained via FFT were used in 

classification processes for three classes (Healthy, DA_1, DA_2). According to the results, 

the RBF model exhibited the best performance with an accuracy of 97.78% and a precision 

of 97.64%, while the KRG model showed remarkable success with an accuracy of 93.89% 

and a precision of 93.71%. In contrast, the deep learning models with the highest accuracy, 

RNN and LSTM, demonstrated lower performance with an accuracy of 87.22% and a 

precision of 87.23%. Compared to the RNN model, which is the most accurate deep learning 

model, the RBF model achieved an improvement of 12.11% in accuracy and 11.93% in 

precision, proving to be a superior tool in diagnosing imbalance faults. Notably, it achieved 

100% accuracy in the DA_2 class and distinguished itself from other classes with its distinct 

features. These findings show that surrogate models offer an effective solution in 

asynchronous motor fault diagnosis by providing high accuracy and precision rates along 

with limited data requirements and low computational cost. 

 

 

Asenkron Motor Dengesizlik Arızalarının Vekil Modellerle Tanımlanması ve Teşhisi 
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Öz: Asenkron motorlar, sağlam yapıları, düşük bakım maliyetleri ve yüksek güvenilirlikleri 

ile endüstride geniş bir kullanım alanına sahiptir. Ancak, bu motorlar çevresel ve operasyonel 

koşullardan kaynaklanan elektriksel ve mekanik arızalara maruz kalabilmektedir. Arıza 

türleri arasında rulman problemleri, stator sargı hataları ve rotor çubuğu kırılmaları gibi 

sorunlar yer almakta, özellikle mekanik dengesizlik arızaları motor performansını olumsuz 

etkileyen kritik bir sorun olarak öne çıkmaktadır. Bu çalışma, asenkron motorlarda 

dengesizlik arızalarının teşhis edilmesine yönelik yeni bir yaklaşım olan vekil modeller (RBF 

ve KRG) ile derin öğrenme modellerinin (RNN, GRU, LSTM) performansını karşılaştırmayı 

amaçlamaktadır. Bu amaçla, deneysel olarak toplanan akım (Ia, Ib, Ic) ve titreşim (X, Y, Z) 

sinyalleri, frekans alanında analiz edilmiş ve FFT ile elde edilen özellikler, üç sınıf (Sağlıklı, 

DA_1, DA_2) için sınıflandırma süreçlerinde kullanılmıştır. Sonuçlara göre, RBF modeli, 

%97.78 doğruluk ve %97.64 keskinlik oranı ile en iyi performansı sergilemiş, KRG modeli 

ise %93.89 doğruluk ve %93.71 keskinlik oranı ile dikkate değer bir başarı göstermiştir. Buna 

karşılık, derin öğrenme modellerinden en yüksek doğruluk oranına sahip olan RNN ve LSTM 
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%87.22 doğruluk ve %87.23 keskinlik oranı ile daha düşük bir performans göstermiştir. RBF 

modeli, en yüksek doğruluklu derin öğrenme modeli olan RNN’e göre doğruluk oranında 

%12.11, keskinlik oranında ise %11.93'lük bir artış sağlamış, bu da dengesizlik arızalarının 

teşhisinde üstün bir araç olduğunu kanıtlamıştır. Özellikle DA_2 sınıfında %100 doğruluk 

oranına ulaşarak, belirgin özellikleri sayesinde diğer sınıflardan ayrışmıştır. Bu bulgular, 

vekil modellerin sınırlı veri gereksinimi ve düşük hesaplama maliyetiyle birlikte yüksek 

doğruluk ve keskinlik oranları sunarak, asenkron motor arıza teşhisinde etkili bir çözüm 

sunduğunu göstermektedir. 

 

1. INTRODUCTION 

 

Induction motors (IMs) are electric motors widely used in 

many sectors such as petroleum, automotive, and similar 

industries. The fact that they constitute 80% of alternating 

current motors in industry reveals how critically 

important these motors are [1, 2, 3]. Thanks to their robust 

structure, low maintenance requirements, and high 

reliability, induction motors are preferred over other types 

of motors. Therefore, ensuring the smooth operation of 

induction motors is of vital importance for the continuity 

of industrial processes. This is because failures in these 

motors can lead to serious problems such as production 

line stoppages, environmental damage, loss of life, and 

operational disruptions [4, 5, 6]. In order to prevent such 

negative outcomes, it is crucial to detect motor faults at an 

early stage. In this way, unplanned downtimes can be 

prevented and costly losses can be avoided [7-9]. 

 

Asynchronous motors are exposed to electrical and 

mechanical faults due to environmental conditions [10, 

11]. Electrical faults involve the rotor and stator, while 

mechanical faults include bearing problems, eccentricity, 

and misalignment issues. 41% of motor faults originate 

from bearings, 36% from stators, 9% from rotors, and the 

remaining 14% from other causes [12]. 

 

Although rotor damages constitute a small portion of 

motor faults, they can lead to serious secondary problems. 

Rotor faults cause an increase in vibration, paving the way 

for bearing damage, air gap eccentricity, and winding 

problems. Therefore, early detection of rotor faults is 

critically important to prevent other faults in the motor 

[13, 14]. For this reason, various diagnostic techniques 

have been developed to detect faults [15-17]. 

 

Modern diagnostic methods for IM faults are generally 

based on mathematical modeling. However, these 

approaches are limited because full access to the system 

model is restricted [18]. Therefore, data-driven methods 

have gained popularity recently. These methods, which do 

not require analytical models, offer a significant 

advantage by eliminating the need to model complex 

industrial processes [19-20]. 

 

Motor faults are detected using variables such as 

vibration, temperature, current, and acoustics through 

signal processing methods. These methods include time, 

frequency, and time-frequency domain approaches [21-

26]. The increasing amount of data has made artificial 

intelligence methods that provide automatic diagnosis 

more important. Techniques such as Artificial Neural 

Networks (ANN), Support Vector Machines (SVM), and 

k-Nearest Neighbor (k-NN), along with feature-extracted 

data, perform fault detection with high accuracy [17, 24, 

27, 28]. While asynchronous motor fault diagnosis faces 

challenges such as limited datasets and varying operating 

conditions, deep learning offers an effective solution to 

overcome these problems. In particular, pre-trained 

models perform well with limited data, reducing 

overfitting and balancing data inconsistencies under 

different conditions. Next-generation learning approaches 

enable the development of more general and adaptable 

models in this field, while also shortening training times 

and accelerating the process [29, 30]. 

 

Traditional fault diagnosis methods have long provided a 

reliable foundation for detecting and analyzing faults in 

asynchronous motors. However, in the era of Industry 4.0, 

where digitalization is accelerating, these methods are 

gradually being replaced by more innovative and flexible 

approaches. In this context, surrogate models emerge as 

an important part of this transformation [31, 32]. Also 

known as meta-models or response surfaces, surrogate 

models represent the behavior of complex physical 

systems using simplified mathematical or artificial 

intelligence-based methods and are highly advantageous 

in scenarios with limited data and restricted 

computational resources [33]. This method aims to mimic 

the behavior of physical systems or complex simulation 

models as accurately as possible. The structure of 

surrogate model types is shown in Figure 1. Surrogate 

models are generally divided into two main categories: 

analytical surrogate models and learned surrogate models 

[34]. 

  
Figure 1. Surrogate Modeling Methods 

 

Analytical models simplify complex functions using 

mathematical methods and typically utilize interpolation 

and regression techniques. While interpolation provides 

highly accurate predictions between data points, 

regression methods model the relationship between inputs 

and outputs to minimize the error rate. Additionally, 

hybrid approaches are also used. Learned models, on the 

other hand, operate in a data-driven manner and benefit 
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from large datasets. These models employ machine 

learning techniques such as supervised, unsupervised, and 

reinforcement learning, and achieve high accuracy by 

incorporating physical knowledge [32]. Especially for the 

simulation and analysis of various fault conditions in 

asynchronous motors, surrogate models offer a powerful 

tool, reducing training time and enabling the development 

of systems that can easily adapt to different operating 

conditions. 

 

For example, Lu et al. (2019) developed a Kriging (KRG)-

based surrogate model using FEM-based analysis and 

super-harmonic components to determine the location and 

depth of breathing cracks in rotating rotors. The method, 

optimized with particle swarm optimization (PSO), 

achieved over 95% accuracy with limited data and was 

also effective on noisy data. The study made a significant 

contribution to crack diagnosis by providing high 

accuracy at low cost [35]. 

 

Chevalier-Jabet et al. (2024) developed an ANN-based 

surrogate model to detect fuel rod defects in pressurized 

water reactors. The model, trained on 2,000 scenarios 

simulated with a physical model, predicted defects with a 

2.6% error rate. RNN, GRU, and LSTM autoencoder 

models used for anomaly detection achieved 100% 

accuracy, with LSTM showing superior performance 

especially in long data sequences. This approach 

contributed to real-time applications by reducing 

computational costs through the fast and accurate 

detection of fuel defects [36]. 

 

Han et al. (2013) developed a method combining a KRG 

surrogate model and a DE algorithm to determine bearing 

parameters and imbalances in rotor-bearing systems. By 

using a surrogate model instead of FEM, computational 

costs were reduced, and an error below 1% was achieved 

in stiffness coefficients using the differential evolution 

(DE) algorithm. The method provided reliable parameter 

identification by delivering faster and more accurate 

results compared to PSO and GA [37]. 

 

Yang et al. (2024) developed a surrogate model based on 

Radial Basis Functions (RBF), optimized with PSO, to 

optimize the vibration performance of tracked vehicles. 

The PSO–RBF model predicted vertical vibration 

acceleration with a 0.67% error using suspension 

parameters and reduced the simulation time from 670 

seconds to 107 seconds. This method offers a fast and 

accurate solution in parameter optimization [38]. An 

overview of these studies is presented in Table 1. 

 

 
Table 1. An Overview of Surrogate Model Studies 

Study 
Method 

Used 
Input 

Output – Predicted 

Parameters 

Output – Additional Performance 

Indicators 

Lu ve ark. (2019) 

[35] 

KRG   

PSO, FEM 

Sensor data 

Finite Element Method (FEM) 

Crack parameters (location 

and depth) 

Diagnosis accuracy (95%) 

High accuracy with limited data 

(95%), high performance even with 

noisy data 

Chevalier-Jabet ve 

ark. (2024) [36] 

RNN, GRU 

LSTM 

Autoencoder 

Simulation and sensor data, 

2000 scenario data 

Activity in the coolant 

(2.6% error) 

Detection of defective fuel 

rods 

2.6% error with ANN, 100% accuracy 

with LSTM, real-time detection 

Han ve ark. (2013) 

[37] 

KRG 

DE, FEM 
Sensor data 

Stiffness coefficients (1% 

error) 

Damping coefficients 

%1 error 

Yang ve ark. (2024) 

[38] 

RBF 

PSO 

Vehicle suspension parameters, 

vibration acceleration sensor 

data 

RMS value of vibration 

acceleration (0.67% error) 

Optimization of suspension 

parameters 

0.67% error rate 

 

When the studies presented in Table 1 are examined, it is 

observed that KRG and RBF models are generally used 

for surrogate modeling. The main feature of these models 

is their ability to predict function values at new locations 

to be tested. KRG was developed based on the studies of 

mining engineer D.G. Krige in 1951 and holds a 

significant place in the field of surrogate model-based 

optimization. This method uses the Gaussian process to 

model the observed data points, enabling the prediction of 

complex systems and aiming to minimize the error rate 

[39]. The Radial Basis Function (RBF) was developed by 

Hardy in 1971 and later improved by Dyn and colleagues 

[40]. This method models the function values based on the 

positions of the input data and is widely used in Sequential 

Global Optimization (SGO) algorithms and engineering 

applications [41]. The RBF model is particularly 

successful in capturing the details of nonlinear and 

complex functions. KRG, on the other hand, is a powerful 

tool for representing both local and global trends and is 

comparable to RBF in terms of accuracy [42]. In addition, 

Cheng and colleagues (2024) conducted a comprehensive 

review of data-driven surrogate model techniques 

developed to reduce the computational burden 

encountered in the design optimization process of electric 

motors. In the study, the performance, advantages, and 

limitations of statistical models (RSM, Kriging), machine 

learning models (SVM, RF, ANNs), and deep learning 

models (CNN, GAN, DNN) were evaluated. It was 

particularly emphasized that Kriging models can make 

performance predictions with high accuracy, while DL-

based models stand out in handling high-dimensional 

design variables. This review reveals that data-based 

surrogate models have become not only complements to 

traditional analysis methods but also essential 

components that accelerate the design process [43].  

 

These innovative methods have introduced a new 

dimension to engineering applications by increasing 
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accuracy while reducing computational costs. The 

approaches examined in the literature review will be used 

in the next section to develop real-time fault diagnosis 

methods for asynchronous motors. 

 

This study emerged from the need to provide more 

accurate, faster, and cost-effective solutions against the 

limitations of existing methods used in the diagnosis of 

imbalance faults occurring in asynchronous motors. 

Considering the importance of real-time diagnosis in 

industrial fields, there is an increasing demand for 

approaches that can operate with limited data while 

offering high accuracy. In this context, the main 

motivation of the study is to investigate the applicability 

of surrogate modeling methods in diagnosing motor faults 

and to compare these methods with deep learning models. 

Furthermore, identifying models that can perform 

effectively even in cases where class separation is 

challenging will contribute to the development of decision 

support systems applicable in the field. 
 

2. METHODOLOGY 

 

2.1. Data Collection 

 

Electrical (current signals) and mechanical (vibration 

velocities) performance data of the motor under different 

speeds and rotor fault levels were collected using the 

experimental setup shown in Figure 2. 

  

 
Figure 2. Experimental Setup 

 

The dataset was obtained using a 0.37 kW asynchronous 

motor with the parameters specified in Table 2. The motor 

was examined by recording current and vibration signals 

for 60 seconds at different operating frequencies. 

Electrical fault was modeled by creating an imbalance 

with a disk attached to the rotor. 

 

In the first stage, the motor was operated without any 

imbalance, and a dataset representing the "healthy" 

condition was collected. Subsequently, a screw was 

placed in one of the holes on the disk, and to increase 

vibration amplitude, a second screw was added to another 

hole. Using this method, a three-class dataset (Healthy, 

DA_1, DA_2) was created. 

 

Table 2. Asynchronous Motor Parameters 

Parametre Değer 

Power 0.37 Kw 

Full Load Current 1.2 A 

Supply Frequency 50 Hz 

Number of Poles 4 

Full Load Speed 1390 Rpm 

Supply Voltage 380 V 

 

The dataset consists of phase currents Ia, Ib, and Ic 

obtained from the asynchronous motor, along with 

vibration signals from the X, Y, and Z axes collected via 

a vibration sensor. To enable the motor to operate at 

different speeds and to acquire various current and 

vibration signals, a Delta VFD007EL21A, EL-

0.75kW/220V AC Motor Driver was used. The vibration 

signals were collected using the STEVAL-PROTEUS1 

data processing card. Both current and vibration signals 

were recorded at a sampling frequency of 10 kHz. This 

dataset serves as a fundamental resource for analyzing and 

classifying different operating conditions of the motor, 

representing a significant cornerstone for analyses 

focused on asynchronous motor fault diagnosis. 

 

2.1. Feature Extraction 

 

The dataset includes electrical and mechanical signals for 

two different fault classes and one healthy class. It was 

created under three different load conditions, each lasting 

60 seconds. The sampling frequency for vibration signals 

was set to 10,000 Hz, while the sampling frequency for 

electrical signals was 55,611 Hz. Differences in the 

number of samples between current and vibration signals 

must be synchronized to ensure accurate and reliable 

classification. In the literature, methods such as 

Windowing, Fourier Transform (FFT), Wavelet 

Transform, and Resampling are commonly used to align 

these two time series. In this study, as shown in Figure 3, 

the raw data (both current and vibration signals) were first 

subjected to data segmentation. Then, they were 

transformed into the frequency domain using Fourier 

Transform (FFT), followed by band power analysis to 

extract meaningful and compact features. 
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Figure 3. Signal processing, feature extraction, and classification stages 

 

Figure 4 illustrates the signals obtained after the FFT 

process for current and vibration data corresponding to 

each output class. The visuals only display the 

transformations of the Ia current and vibration signals in 

the X direction. Additionally, all current and vibration 

signals have been subjected to the same processing. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4. FFT transformation of Ia and X signals for all classes a) Healthy    b) Imbalance Fault 1 (DA_1)  c) Imbalance Fault 2 (DA_2) 

 

The time series data were divided into predefined segment 

sizes, and FFT was applied to each segment. This 

segmentation ensured uniform processing of the data and 

enabled the analysis of frequency components over 

specific time intervals. The power spectral density (PSD) 

obtained through FFT was divided into specific frequency 

bands, summarizing the energy only within the relevant 

bands. This approach facilitated the extraction of 

meaningful features by reducing high-dimensional and 

noisy data. For instance, fault-specific characteristic 

frequencies stood out with high energy levels in the 

relevant bands. Figure 5 presents the band power 

transformations of current and vibration data for each 

class label. 
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(a) 

 
(b) 

  

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5. Combined band power transformations for all output classes a) Ia Signal        b) Ib Signal        c) Ic Signal        d) X Signal        e) Y Signal        
f) Z Signal 

 

The dataset includes band power information of the 

current signals Ia, Ib, Ic and vibration signals X, Y, Z, as 

well as data related to the fault class labels. This dataset 

will later be used for the development of individual deep 

learning and surrogate model studies. 

 

2.3. Classification Algorithms 

 

2.3.1. Individual deep learning models: RNN, GRU ve 

LSTM 

 

RNNs are models designed to learn dependencies in 

sequential data and are widely used in areas such as time 

series analysis and signal processing. However, issues 

such as vanishing gradients may arise when learning long-

term dependencies [44, 45]. GRU, developed to overcome 

this problem, controls the flow of information through 

gates to provide more efficient learning and stands out 

with its low computational cost [46, 47]. GRU is a variant 

of RNN developed by Chung et al. (2014) and contains 

gate mechanisms similar to LSTM but requires fewer 

parameters, making it more advantageous in terms of 

training time. GRU is particularly preferred in time series 

data due to its ability to provide high accuracy with low 

computational cost [48]. LSTM successfully learns long-

term dependencies through its forget and output gates, 

although it requires a higher computational cost [49, 50]. 

LSTM, developed by Hochreiter and Schmidhuber 

(1997), is widely used in time series analysis due to its 

ability to learn long-term dependencies [51]. 

 

The success of LSTM- and GRU-based methods in fault 

diagnosis of motors has been strongly emphasized in 

recent studies. Lale and Yüksek (2024) compared GRU- 

and LSTM-based models for diagnosing short-circuit and 

demagnetization faults occurring in permanent magnet 

synchronous motors (PMSM) and showed that the GRU 

model achieved 98.72% accuracy, while the LSTM model 

achieved 98.23% accuracy. In this study, systems 

modeled under different fault levels and multiple 

operating conditions were fed with time series-based 

input data, and the classification performance was found 

to be high. This indicates that RNN-based deep learning 

methods such as GRU and LSTM stand out as prominent 

alternatives in fault classification [52]. In this study, these 

three models were preferred for motor fault detection due 

to their ability to learn long-term dependencies. 

 

2.3.2. Surrogate learning models: RBF ve KRG 

 

In this study, the Python-based Surrogate Modeling 

Toolbox (SMT) library was used to develop surrogate 

models, which are widely employed in the analysis of 

complex problems with high computational cost [53]. 

SMT provides a powerful and flexible framework for 

easily applying various surrogate modeling methods and 

conducting detailed analyses. Within the scope of the 

study, particularly the RBF and KRG methods were tested 

and their model performances were compared. 

 

3. EXPERIMANTAL STUDIES 

 

The experimental studies were conducted using a high-

computing-capacity infrastructure to effectively handle 

data processing, model training, and performance 

evaluation processes. This infrastructure included a 

computer with 64 GB RAM and an NVIDIA RTX A5000 

GPU with 45 GB VRAM capacity. MATLAB was 

Healthy DA_1 DA_2 
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employed for data collection, while Python programming 

language was utilized for implementing deep learning and 

surrogate models. Python libraries, in particular, were 

used to accelerate and enhance the development of deep 

learning algorithms. This setup significantly improved 

efficiency and computational speed during model 

development. 

 

For solving the classification problem, input data 

consisted of current signals (Ia, Ib, Ic) and vibration 

signals (X, Y, Z). Correspondingly, the output classes 

were categorized into three groups: "healthy" and 

imbalance faults (DA_1, DA_2). At the initial stage of 

classification, RNN, GRU, and LSTM models were 

individually evaluated. During model training, 90% of the 

dataset was allocated for training, while the remaining 

10% was used for validation and testing. To ensure 

reproducibility and comparability of results, the 

random_state parameter was fixed at 42 across all models. 

The Adam algorithm, a commonly used optimization 

method, was chosen for training, and the learning process 

was limited to 50 epochs. The architecture and 

hyperparameters used for RNN, GRU, and LSTM models 

were structured consistently to ensure uniformity. Figure 

6 provides detailed information about the architecture and 

hyperparameters of the RNN model, which were applied 

similarly to GRU and LSTM models. This methodology 

facilitated the investigation of classification performance 

and ensured the comparability of results. 

 

 
Figure  6. RNN Deep Learning Model Architecture and Hyperparameters 

 

In the second phase of the experimental studies, RBF and 

KRG models were trained using the Python SMT library 

with appropriate parameters for each method, optimized 

to accurately represent the input-output relationships in 

the dataset. During model training, SMT's optimization 

tools were utilized to automatically determine each 

model's hyperparameters (e.g., correlation functions and 

kernel parameters). The trained models were evaluated on 

the test dataset, and their accuracy performances were 

analyzed in detail. 

 

In this study, the "One-vs-Rest (OvR)" approach was 

preferred to solve the multi-class classification problem. 

This strategy creates a separate binary classifier for each 

class: each model considers one class as "positive" and all 

other classes as "negative." A total of three different 

models were trained for the three classes (Healthy, DA_1, 

DA_2). When a new data sample is received, each model 

generates a probability output for that sample, and the 

class with the highest probability is predicted. This 

structure is illustrated in the schematic diagram below. 

The classification strategy related to this process is shown 

in Figure 7. 

 

 

 
Figure 7. Modeling Classes with the One-vs-Rest Strategy 
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According to the strategy, each class is treated as the 

"positive" class, while the remaining classes are 

considered "negative." Since there are three classes in the 

study, three separate binary classifiers (models) will be 

created. Each model treats only one class as positive and 

the other two classes as negative. The implementation of 

the One-vs-Rest strategy is as follows: 

 

Model 1: Healthy (Positive) vs. Others (DA_1, DA_2) : 

This model considers Healthy as positive based on the Ia, 

Ib, Ic, X, Y, Z inputs, and all remaining inputs as negative. 

 

Model 2: DA_1 (Positive) vs. Others (Healthy, DA_2) : 

This model considers DA_1 as positive based on the Ia, 

Ib, Ic, X, Y, Z inputs, and all remaining inputs as negative. 

 

Model 3: DA_2 (Positive) vs. Others (Healthy, DA_1):  

This model considers DA_2 as positive based on the Ia, 

Ib, Ic, X, Y, Z inputs, and all remaining inputs as negative. 

 

When a new data sample arrives, each model predicts the 

class membership of the sample. The class with the 

highest probability among the predictions determines the 

predicted class of the sample. For instance: 

 

Model 1 predicts the sample belongs to the Healthy class 

with an 80% probability. 

 

Model 2 predicts the sample belongs to the DA_1 class 

with a 90% probability. 

 

Model 3 predicts the sample belongs to the DA_2 class 

with a 55% probability. 

 

The class with the highest probability is predicted by 

Model 2, indicating that the sample belongs to the DA_1 

class. 

 

4. FINDINGS 

 

Each of the three distinct individual deep learning models 

aimed to approach the classification problem in the 

dataset from different perspectives, ensuring accurate and 

reliable predictions of the motor's health status. The 

performance results of the models are presented in Table 

3. 

 
Table 3. Performance Results of Individual Deep Learning Models 

Model Accuracy Precision Recall F1-score 

RNN 0.8722 0.8723 0.8722 0.8722 

GRU 0.8611 0.8656 0.8611 0.8603 

LSTM 0.8722 0.8727 0.8722 0.8721 

 

According to the results presented in Table 3, the 

performance of three different deep learning models 

(RNN, LSTM, and GRU) in addressing the motor health 

classification problem was evaluated. Both the RNN and 

LSTM models achieved almost identical results in terms 

of Accuracy, Precision, Recall, and F1-Score metrics, 

with each demonstrating a successful performance at an 

accuracy rate of 87.22%. This indicates that both models 

effectively captured the time-series dynamics of the 

dataset. On the other hand, the GRU model performed 

slightly lower, with an accuracy rate of 86.11%, compared 

to RNN and LSTM. The GRU model's lower values 

across other metrics suggest that it was not as well-suited 

to the characteristics of the dataset or did not contribute as 

robustly to solving the classification problem as the other 

two models. Overall, RNN and LSTM models appear to 

provide more consistent and reliable results for this type 

of classification problem compared to the GRU model. 

Table 4 presents the accuracy and loss graphs, confusion 

matrices, and t-SNE visualizations for the models. 

 

 

 

 

 

 
Table 4. Accuracy and Loss Graphs 
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According to the confusion matrices, it is observed that all 

models particularly struggled to distinguish between the 

Healthy and DA_1 classes. The RNN model achieved an 

accuracy of 81.67% in the Healthy class, with 18.33% 

misclassification, and an accuracy of 80% in the DA_1 

class, with 20% misclassification. Similarly, the LSTM 

model classified the Healthy group with 78.33% accuracy 

and 21.67% misclassification, while achieving 83.33% 

accuracy and 16.67% misclassification for the DA_1 

class. The GRU model, on the other hand, demonstrated 

better performance for the Healthy class with 86.67% 

accuracy and 13.33% misclassification, but its accuracy 

decreased for the DA_1 class, achieving 71.67% accuracy 

and 28.33% misclassification. This indicates that the 

Healthy and DA_1 classes have similar characteristics, 

making their separation more challenging. In contrast, all 

models achieved error-free results for the DA_2 class, 

suggesting that this class has more distinct features 

compared to the others. 

 

Additionally, the t-SNE visualization results presented in 

Table 4 show that the DA_2 class is clearly separated 

from other classes across all models. However, no clear 

distinction was observed between the Healthy and DA_1 

classes, as their samples are positioned in close proximity 

to each other. When comparing the RNN, GRU, and 

LSTM models, it is noted that although all models 

exhibited similar distributions, the GRU and LSTM 

models displayed more overlap between the Healthy and 

DA_1 class clusters. This further highlights the difficulty 

in separating the Healthy and DA_1 classes, which 

impacts model performance. Notably, the clear distinction 

of the DA_2 class from other classes confirms that it 

possesses more distinct features. 

 

In the second phase, the results of the surrogate model 

approach were examined. Accordingly, Table 5 lists the 

performance results of the surrogate models created using 

the RBF and KRG methods. 

 
Table 5. Surrogate Model Performance Results 

Model Accuracy Precision Recall F1-score 

RBF 0.9778 0.9764 0.9776 0.9768 

KRG 0.9389 0.9371 0.9352 0.9360 

 

According to the data in Table 5, the RBF and KRG 

models demonstrate impressive results, with performance 

exceeding 93%, establishing themselves as highly 

effective surrogate learning methods. The RBF model, in 

particular, stands out as a highly reliable and successful 

prediction tool due to its high metric values. Although the 

KRG model shows slightly lower results compared to the 

RBF model, it is similarly successful, and both models 

can be considered to provide consistent and accurate 

results. Table 6 presents the OvR accuracy and loss 

graphs, the confusion matrix, and the t-SNE visualizations 

for the surrogate models. 
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Table 6. Accuracy/Loss Graphs, Confusion Matrix, and t-SNE Visualizations for Surrogate Models 
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When Table 6 is examined, the accuracy and loss values 

for the RBF and KRG models are visualized by class. In 

both models, the accuracy values on a class basis are quite 

high, indicating the success of the classification models. 

The loss values are relatively low (0.01%-0.035%), which 

reflects that the models were well-trained during the 

optimization process. 

 

Looking at the confusion matrices, the RBF model 

exhibits a notably high performance in the Healthy class, 

achieving an accuracy rate of 97.96%. Misclassifications 

in this class constitute 2.04%, which are shifted to the 

DA_1 class. For the DA_1 class, an accuracy rate of 

95.31% was achieved, with misclassifications of 3.12% 

into the Healthy class and 1.56% into the DA_2 class. In 

the DA_2 class, a perfect accuracy rate of 100% was 

achieved, with no misclassifications. Overall, the RBF 

model demonstrates high performance across all classes, 

although slightly more misclassifications are observed in 

the DA_1 class compared to other classes. 

 

For the KRG model, the accuracy in the Healthy class 

drops to 89.83%, with misclassifications of 5.93% into the 

DA_1 class and 4.24% into the DA_2 class. The DA_1 

class achieved 90.74% accuracy, with misclassifications 

of 9.26% into the Healthy class. Similar to the RBF 

model, the DA_2 class achieved a perfect accuracy rate of 

100%, with no misclassifications. The KRG model, 

however, exhibits lower accuracy rates in the Healthy and 

DA_1 classes compared to the RBF model, while both 

models perform perfectly in the DA_2 class. 

 

Additionally, the table includes a visualization of class 

separability using t-SNE, showing that the DA_2 and 

Healthy classes are distinctly observed as separate groups. 

Figure 8 presents a collective overview of the 
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performance results for individual deep learning and 

surrogate models. 

 

 
Figure  8. Performance results for all models 

 

In Figure 8, a significant distinction is observed between 

surrogate models and individual deep learning models. 

When evaluated based on metrics such as Accuracy and 

Precision, the results clearly reveal the strengths and 

weaknesses of the models. Surrogate models (RBF and 

KRG) generally provide higher accuracy and precision 

values compared to other methods.In particular, the RBF 

model demonstrated the highest performance among all 

examined models, with an accuracy of 97.78% and a 

precision of 97.64%. The KRG model followed closely, 

achieving an accuracy of 93.71% and a precision of 

93.89%. These findings support the capability of 

surrogate models to deliver high classification 

performance and accuracy on large datasets. Moreover, 

the advantages of surrogate models, such as fast 

computation capacity and low resource requirements, 

highlight their effectiveness as a dynamic alternative for 

use in evolving datasets. 

 

5. RESULTS  

 

This study revealed that, as a result of performance 

analysis of different classification models for the 

diagnosis of imbalance faults in asynchronous motors, 

surrogate learning models (RBF and KRG) achieved 

superior success compared to deep learning models 

(RNN, GRU, LSTM). The RBF model exhibited the 

highest performance with an accuracy of 97.78% and a 

precision of 97.64%, showing an increase of 12.11% in 

accuracy and 11.93% in precision compared to deep 

learning models. Similarly, the KRG model achieved 

notable success with an accuracy of 93.89% and a 

precision of 93.71%, increasing the accuracy by 6.67% 

and the precision by 7.44%. 

 

In particular, the RBF model reached 100% accuracy in 

the DA_2 class, enabling a clear separation of this class 

from the others. This proves the RBF model’s success in 

reducing ambiguity between classes. In contrast, deep 

learning models made less distinct separations between 

the Healthy and DA_1 classes, and the highest-

performing models, RNN and LSTM, showed lower 

performance with 87.22% accuracy and 87.23% 

precision. The GRU model, with an accuracy rate of 

86.11%, produced weaker results compared to the other 

models. 

 

This study provides a comprehensive evaluation not only 

in terms of classification performance but also regarding 

practical parameters such as computational cost, data 

requirement, and model generalizability. The ability of 

surrogate models to provide high accuracy even in cases 

of class ambiguity increases their potential for use in 

industrial environments. However, the sensitivity of deep 

learning models to data volume and their tendency for 

weak separation among complex classes make it 

necessary to support these models with hybrid structures. 

In future studies, it is planned to test the proposed methods 

on different motor types (e.g., squirrel cage motors, 

synchronous motors) and adapt them to the diagnosis of 

different fault types (e.g., bearing fault, misalignment, 

eccentricity). Furthermore, real-time tests will be 

conducted under field conditions to evaluate the 

operational agility and reliability levels of these models. 

It is also aimed to further improve classification 

performance and reduce training time by testing hybrid 

models (e.g., GRU + RBF).  
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