A NOTE ON PAPPIAN AFINNE PLANES

Pınar ANAPA* \& İbrahim GÜNALTILI*

Abstract

In (Schmidt and Steinitz,-1996); an affine plane with fixed basis $\left\{t_{1}, t_{2}, 0\right\}$ is coordinated. Then, a ternary operation T on R which is a set of points on l which is dependent on the coordinate system l_{1}, l_{2}, t is defined. In addition, two different binary operation denoted by,$+ \bullet$ on R using ternary operation T. After then, it is showed that $(R,+, \bullet)$ is a division ring. In this paper, first of all we examined the relation between (R, T) ternary ring and Desargues postulate in afine plane. After then, we showed that $(R,+, \bullet)$ is field in case affine plane satisfies Pappus Theorem. This results appeared in the first author's Msc thesis.

Keywords : Afine plane, Desargues Postulat, Pappus Theorem

1. INTRODUCTION

Definition 1.1: [1] An affine space is a quadrupel $A=(P, L, \|, \sim)$ where P is a set, L is a set of nonempty subsets of $P, \|$ is a binary relation on L and \sim is a binary relation on P such that the following conditions are satisfied.
(A1) Line axiom : For all $p, q \in P$ with $p \neq q$ there exists (with respect to set inclusion) a least member of L, denoted by pq , which contains p anb q. Further, for every $l \in L$ and $p \in 1$ there exists a $p \in P \backslash p$ with $l:=p q$.

[^0](A2) Parallel axiom : $\|$ is an equivalence relation on L such that for every pair $(p, l) \in P \times L$ there exists a unique member k of L with $p \in k$ and $k \| l$; we abbreviate $\Pi(p \mid l):=k$. Further; $k \subseteq l$ implies
$\Pi(p \mid k) \subseteq \Pi(p \mid l)$ for all $p \in P$ and $k, l \in L$.
(A3) Triangle axiom : Whenever p, q, r are pairwise different elements of P then $\Pi(a \mid p q)=\Pi(b \mid p q)$ implies $\Pi(a \mid p r) \wedge \Pi(b \mid q r) \neq \varnothing \quad$ for all $a, b \in P$.
(A4) Independence axiom : The relation \sim is antireflexive and symmetric such that for all $p, q, r \in P$ with $p \sim q$ there exists $s \in P$ with $r \sim s$ and $p q \| r s$. Further, $\quad p \sim q$ and $(p q) \cap l:=\{p\}$ implies $\quad p^{\prime} \sim q$ and $\left(p^{\prime} q\right) \cap l:=\left\{p^{\prime}\right\}$ for all $p, p^{\prime}, q \in P$ and $l \in L$ with $p, p^{\prime} \in l$.

An affine space $A=(P, L, \|, \sim)$ is said to be an affine plane if it contains a 3 -element basis, i.e there exist $0, p, q \in P$ with $0 \sim p$ and $0 \sim q$ such that every member k of L has a 1 -element intersection with $0 q$ provided $k \| 0 p$.

In case of A is an afine plane, the above axioms coincide the axioms which is known.

Let $A=(P, L, \|, \sim)$ be an affine space.
(i) The elements of P are called points and the members of L lines. Lines k, l with $k \| l$ are parallel; points p, q with $p \sim q$ are independent.
(ii) For lines k, l of $A, k \subseteq \| l$ provided $\Pi(p \mid k) \subseteq \Pi(p \mid l)$ is satisfied for some (and hence for every) $p \in P$.

If k and l intersect in a unique point r, we show $k \wedge l:=r$, in case $\Pi(p \mid k) \wedge \Pi(p \mid l):=p$ holds for some (and hence for every) $p \in P$. This is denoted by $k \# l$.
(iii) The point at infinity of $k \in L$ is defined as $\Pi \Pi(k):=\{l \in L|l| \| k\}$; the connecting line of a point p and a point at infinity $\Pi(k)$ is given by $p \vee \Pi(p \mid k)$ and it will be reasonable to agree upon $p \sim \Pi(k)$. The set of all points at infinity of A shall be denoted by P_{∞}, the elements of $P \cup P_{\infty}$ are called generalized points.

Definition 1.2 : $[1]$ Let A be an affine space.
(i) Let $a_{0}, a_{1}, \ldots \ldots, a_{n}$ points and let z be a generalized point. We say that an n - tuple $b_{0}, b_{1}, \ldots \ldots, b_{n}$ of points is centrally perspective to $\left(a_{0}, a_{1}, \ldots \ldots, a_{n}\right)$ via z briefly $\left(b_{0}, b_{1}, \ldots \ldots ., b_{n}\right)$ is $C P_{z}$ to $\left(a_{0}, a_{1}, \ldots \ldots, a_{n}\right)$ if $\quad b_{i} \in a_{i} z \quad$ and $\quad b_{i} b_{i+1} \subseteq \| a_{i} a_{i+1} \quad$ for \quad all $\quad i=0,1, \ldots, n$ (where $a_{n+1}=a_{0}, b_{n+1}=b_{0}$.

A satisfies Desargues' postulate for $\left(a_{0}, a_{1}, \ldots ., a_{n}\right)$ via z if all $b_{0} \in a_{0} z$ there exist $b_{0}, b_{1}, \ldots \ldots, b_{n}$ such that $\left(b_{0}, b_{1}, \ldots \ldots ., b_{n}\right)$ is $C P_{z}$ to $\left(a_{0}, a_{1}, \ldots \ldots, a_{n}\right)$.
(ii) For any generalized point z, a triple $\left(a_{0}, a_{1}, a_{2}\right)$ of points with $a_{0} \sim z$ and $a_{0} a_{1} \# a_{1} z, a_{0} a_{2} \# a_{0} z$ will be called a z-triangle.

In the following we will need a special version of Desargues' postulate:
$\left(D_{3}\right)$ Whenever z is a generalized point, then Desargues' postulate is satisfied for every z-triangle via z.

Remark 1.1: Let $\left(a_{0}, a_{1}, a_{2}\right)$ be a z-triangle (where z is a generalized point.)
(i) For every $b_{0} \in a_{0} z$ there exists at most one pair of points b_{1}, b_{2} such that $\left(b_{0}, b_{1}, b_{2}\right)$ is $C P_{z}$ to $\left(a_{0}, a_{1}, a_{2}\right)$. If z is a point at infinity and $\left(b_{0}, b_{1}, b_{2}\right)$ is $C P_{z}$ to $\left(a_{0}, a_{1}, a_{2}\right)$ then $\left(b_{0}, b_{1}, b_{2}\right) \quad$ is also a z-triangle and
$\left(a_{0}, a_{1}, a_{2}\right)$ is $C P_{z}$ to $\left(b_{0}, b_{1}, b_{2}\right)$ hence $a_{i} a_{j} \| b_{i} b_{j}$ for all $i, j \in\{0,1,2\}$ with $i \neq j$.
(ii) For all $b_{i} \in a_{i} z \quad(i=0,1,2)$ with $b_{0} b_{1} \subseteq \| a_{0} a_{1}$ and $b_{0} b_{2} \subseteq \| a_{0} a_{2}$ the condition $\left(D_{3}\right)$ implies $b_{1} b_{2} \subseteq \| a_{1} a_{2}$, i.e $\left(b_{0}, b_{1}, b_{2}\right) C P_{z}$ to $\left(a_{0}, a_{1}, a_{2}\right)$.

Now we give the Pappus Theorem in an affine plane.
Pappus Theorem : [2] Let x, y, z and $x^{\prime}, y^{\prime}, z^{\prime}$ be sets of three distinct collinear points on distinct lines such that no one of these points is on both lines an afine plane A. Then $x y^{\prime} \subseteq \| x^{\prime} y$ and $x z^{\prime} \subseteq \| x^{\prime} z$ implies $y^{\prime} z \subseteq \| y^{\prime} z$.

If A satisfies Pappus Theorem then A is called pappian affine plane. If A satisfies Desargues postulate then, A is called desarguesian affine plane.

Theorem 1.1 : [2] Every pappian affine plane is desarguesian.

In [1], $A=(P, L, \|, \sim)$ which is an affine plane with fixed basis $0, t_{1}, t_{2}$ was coordinatized as following. $l_{i}:=0 t_{i} \quad$ (where $i=1,2$) and for all $p, q \in P$ it was abbreviated $(p, q):=\Pi\left(p \mid l_{2}\right) \wedge \Pi\left(q \mid l_{1}\right)$. Then $t:=\left(t_{1}, t_{2}\right)$ and $l:=0 t$. Therefore; $p_{1}:=(p, 0), p_{2}:=(0, p)$ and $p_{*}:=(t, p)$; hence $(p, q):=\left(p_{1}, p_{2}\right), p_{*}:=\left(t_{1}, p_{2}\right)$ hold for all $p, q \in P$.
l_{1}, l_{2}, t forms a coordinate system of A where l_{i} denotes the i th coordinate line $(i=1,2), 0$ is the orijin, and t is the unit point, the i th coordinate of a point p is given by p_{i}. Furthermore; a ternary operation T is defined on R which is a set of points on l which is dependent on the coordinate system l_{1}, l_{2}, t.

$$
\begin{aligned}
& T:(a, b, c) \rightarrow l \wedge \Pi\left(S(a, b, c) l_{1}\right) \\
& \text { such that } S(a, b, c):=\Pi\left(a \mid l_{2}\right) \wedge \Pi\left(c_{2} \mid 0 b *\right)
\end{aligned}
$$

Then two different binary operation denoted by $+\bullet$ be defined on R as follows.

$$
+:=R \times R ;(a, b) \rightarrow a+b=T(a, t, b)
$$

$\bullet:=R \times R ;(a, b) \rightarrow a \bullet b=T(a, b, 0)$.

Theorem 1.2 : $[1]$ If A satisfies D_{3} then $(R,+, \bullet)$ is a division ring.

2. MAIN RESULT:

Lemma 2.1 : The following statements are equivalent in an afine plane A.
(i) (R, T) is a linear
(ii) $\left(D_{3}\right)$ holds in A, wherever $z=\Pi\left(l_{2}\right), A A^{\prime}=l_{2}$ and $B C \subseteq \| B^{\prime} C^{\prime}$.

Proof : $(i) \Rightarrow(i i)$: Let (R, T) is a linear. Therefore; $T(a, b, c)=a b+c$ for all $a, b, c \in R$. Thus $S(a, b, c)$ and $S(a b, t, c)$ are collinear. $A B C$ is a $\Pi\left(l_{2}\right)$ - triangle for $A=(0, c)=c_{2}, B=S(a b, t, c)$ and $C=S(a, b, c)$. Let $A A^{\prime}=l_{2}, B C \subseteq \| B^{\prime} C^{\prime}$ and $A^{\prime} B^{\prime} C^{\prime}$ be a $\Pi\left(l_{2}\right)$-triangle for $A^{\prime}=(0, b)=b_{2}$, $B^{\prime}=\Pi\left(a b \mid l_{2}\right) \wedge \Pi\left(b_{2} \mid 0 t_{*}\right)=S(a b, t, b)=\Pi\left(b_{2} \mid c_{2} S(a b, t, c)\right)$ and

$$
B^{\prime}=\Pi\left(a \mid l_{2}\right) \wedge \Pi\left(b_{2} \mid 0 b_{*}\right)=S(a, b, b)=\Pi\left(b_{2} \mid c_{2} S(a, b, c)\right)
$$

Thus; $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are $\Pi\left(l_{2}\right)$-triangle. By the remark $1.1(i)$, $A B C C P_{\Pi\left(l_{2}\right)} A^{\prime} B^{\prime} C^{\prime}$.

From the choose of vertex points of this triangles, $c_{2} S(a b, t, c) \subseteq \| b_{2} S(a b, t, b)$ and $c_{2} S(a, b, c) \subseteq \| b_{2} S(a, b, b)$. Since (R, T) is a linear, $\quad T(a b, t, b)=T(a, b, c)$ and $T(a b, t, b)=T(a, b, b)$. Thus $S(a b, t, b)$ and $S(a, b, b)$ are collinear and $S(a b, t, b) S(a, b, b) \subseteq \| S(a b, t, c) S(a, b, c)$.

Hence; (ii) is satisfies.
$(i i) \Rightarrow(i)$:Let A be a given affine plane with fixed basis $\left\{0, t_{1}, t_{2}\right\}$ and $\left\{b_{2}, S(a b, t, b), S(a, b, b)\right\}$ be a $\Pi\left(l_{2}\right)$-triangle in A.
$\left\{c_{2}, S(a b, t, c), S(a, b, c)\right\} \quad$ is a $\quad \Pi\left(l_{2}\right)$-triangle for $c_{2} \circ \Pi\left(b_{2} \mid l_{2}\right), S(a b, t, c) \circ \Pi\left(S(a b, t, b) l_{2}\right)$ and $S(a, b, b) \circ \Pi\left(S(a, b, c) l_{2}\right)$. By the remark 1.1 (i)

$$
\left.\left\{b_{2}, S(a b, t, b), S(a, b, b)\right\} C P_{\Pi(s)}\right)\left\{c_{2}, S(a b, t, c), S(a, b, c)\right\}
$$

Since A satisfies $\quad\left(D_{3}\right), \quad b_{2} S(a b, t, b) \subseteq \| c_{2} S(a b, t, c) \quad$ and $b_{2} S(a, b, b) \subseteq \| b_{2} S(a, b, c) \quad$ implies $S(a b, t, b) S(a, b, b) \subseteq \| S(a b, t, c) S(a, b, c)$. Thus $S(a b, t, c)$ and $S(a, b, c)$ are collinear. Therefore;

$$
\begin{aligned}
& \Pi\left(S(a b, t, c) l_{1}\right)=\Pi\left(S(a, b, c) l_{1}\right) \\
& \left.l \wedge \Pi\left(S(a b, t, c) l_{1}\right)=l \wedge \Pi(S(a, b, c)) l_{1}\right)
\end{aligned}
$$

Since T is a ternary operation on $R, T(a b, t, c)=T(a, b, c)$. Also, by the operation " + ", $T(a b, t, c)=T(a, b, c)$ implies $a b+c=T(a, b, c)$. Finally, (R, T) ternary ring is a linear.

Lemma 2.2 : The following statements are equivalent:
(i) (R, T) is a linear and $(R,+)$ is a associative.
(ii) A satisfies $\left(D_{3}\right)$ for the every $\Pi\left(l_{2}\right)$-triangles.

Proof $(i) \Rightarrow(i i)$: Since (R, T) is a linear, by the lemma 2.1, A satisfies $\left(D_{3}\right)$ for, $\Pi\left(l_{2}\right), A A^{\prime}=l_{2}$ and $B C \subseteq\left\|B^{\prime} C^{\prime} \subseteq\right\|$. Also, T is a associative, $T(a, t, b+c)=T(a+b, t, c)$ for all $a, b, c \in R$. Thus, by the operation " + ", $S(a, t, b+c) S(a+b, t, c) \subseteq \| l_{1}$. Since $\Pi\left(l_{2}\right)^{\sim} b_{2}, b_{2} S(a, t, b) \#\left(S(a, t, b) l_{2}\right)$ and $\quad\left(b_{2}(0+b) \neq \Pi\left(b_{2} \mid l_{2}\right),\left(b_{2}, S(a, t, b), a+b\right)\right.$ is a $\Pi\left(l_{2}\right)$-triangle. Also, $(b+c)_{2} \circ \Pi\left(b_{2} \mid l_{2}\right), \quad S(a, t, b+c) \circ \Pi\left(S(a, t, b) \mid l_{2}\right) \quad$ and $S(a+b, t, c)^{\circ} \Pi\left((a+b)_{2} \mid l_{2}\right)$. In addition; since (R, T) is a linear, $b_{2}(b+c)_{2}=l_{2}, S(a, t, b+c) S(a+b, t, c \subseteq \| S(a, t, b)(a+b))$ and $(b+c)_{2} S(a+b, t, c) \subseteq \| b_{2} t$. Thus;

$$
\left(b_{2} S(a, t, b), a+b\right) C P_{\Pi\left(b_{2}\right)}\left((b+c)_{2}, S(a, t, b+c), S(a+b, t, c)\right) .
$$

Hence A satisfies $\left(D_{3}\right)$.
$(i i) \Rightarrow(i)$: We assume that A satisfies $\left(D_{3}\right) .\left(b_{2}, S(a, t, b), b\right)$ and $\left((b+c)_{2}, S(a, t, b+c), S(b, t, c)\right)$ are $\Pi\left(l_{2}\right)$-triangle. Thus; we obtain $(b+c)_{2} S(a, t, b+c) \subseteq \| b_{2} S(a, t, b)$ and $(b+c)_{2} S(b, t, c) \subseteq \| b_{2} b$
Since A satisfies $\left(D_{3}\right)$, we obtain following result.
$S(a, t, b+c) S(b, t, c) \subseteq \| b S(a, t, b)$ \qquad
Now we consider $(S(a, t, b), b, a+b) \Pi\left(l_{2}\right)$-triangle. By (2.1), $S(a, t, b+c) \circ \Pi\left(S(a, t, b) l_{2}\right) ; S(b, t, c) \circ \Pi\left(b \mid l_{2}\right)$ and $S(a+b, t, c) \circ \Pi\left(a b \mid l_{2}\right)$.Thus; $\quad S(a, t, b+c) S(b, t, c) \subseteq \| S(a, t, b) b \quad$ and $S(b, t, c) S(a+b, t, c) \subseteq \| b(a+b)$. Since A satisfies $\left(D_{3}\right)$,
$S(a, t, b+c) S(a+b, t, c) \subseteq\|S(a, t, b)(a+b) \subseteq\| l_{1}$,
and

$$
\begin{aligned}
& \left.l \wedge \Pi\left(S(a, t, b+c) l_{1}\right)=l \wedge \Pi(S(a+b, t, c)) l_{1}\right) \\
& T(a, t, b+c)=T(a+b, t, c) \\
& a+(b+c)=(a+b)+c
\end{aligned}
$$

Thus, (R, T) is associative.
Now we show that (R, T) is linear. $\left((b+c)_{2}, S(a, t, b+c), S(a+b, t, c)\right) \quad$ and $\quad\left(b_{2}, S(a, t, b), a+b\right)$ are $\Pi\left(l_{2}\right)$-triangle. By the lemma $2.1 \quad b_{2}(b+c):=l_{2}$, $(S(a, t, b+c) S(a+b, t, c)) \subseteq \|(S(a, t, b) t)$ and $\quad\left(D_{3}\right)$ is satisfies, (R, T) is linear.

Theorem 2.1 : If A is a Papian plane then $(R,+, \bullet)$ is a field.

Proof : Let A is a Papian plane. By the Theorem 1.1, A satisfies $\left(D_{3}\right)$. Also, by the Theorem $1.2(R,+, \bullet)$ is a division ring. Since (R, \bullet) is a semigroup,
for every $a \neq 0$ there exist an element a^{-1} of (R, \bullet) such that $a^{-1} a=a a^{-1}=t$. We must show that the operation " \bullet " has a commutative property in order that $(R,+, \bullet)$ is a field. $\Pi\left(a \mid l_{2}\right)$ and $\Pi\left(b \mid l_{2}\right)$ are lines in A such that $a \neq b$ and $a, b \in R . \quad x=S(a, a, 0), y=S(a, b, 0)$ and $z=S(a, a, b)$ are points on $\Pi\left(a \mid l_{2}\right)$. On the otherhand $x^{\prime}=S(b, a, b), y^{\prime}=S\left(b, a, t_{2}\right)$ and $\quad z^{\prime}=S(b, a, 0)$ are points on $\Pi\left(b \mid l_{2}\right)$. Also, $S(a, a, 0)$ and $S(b, a, 0)$ are on $\Pi\left(0 \mid 0 a_{*}\right) . S(a, a, b)$ and $S(b, a, b)$ are on $\Pi\left(b_{2} \mid 0 a_{*}\right)$.

Since $\Pi\left(0 \mid 0 a_{*}\right) \subseteq \| \Pi\left(b_{2} \mid 0 a_{*}\right)$;
$S(a, a, 0) S(b, a, 0) \subseteq \| S(a, a, b) S(b, a, b)$.
We consider, $\{S(b, a, t), S(a, a, t), S(a, a, 0)\}$-triangle and $\{S(b, a, b), S(a, a, b), S(a, b, 0)\}$-triangle. It is trivial that,

$$
\{S(b, a, b), S(a, a, b), S(a, b, 0)\} C P_{\Pi\left(l_{2}\right)}\{S(b, a, t), S(a, a, t), S(a, a, 0)\}
$$

From the theoreml.1 and A is a pappian plane, A satisfies $\left(D_{3}\right)$. Thus

$$
\begin{aligned}
& S(a, b, 0) S(a, a, b) \subseteq \| S(a, a, 0) S(a, a, t) \\
& S(a, a, b) S(b, a, b) \subseteq \| S(a, a, t) S(b, a, t)
\end{aligned}
$$

and

$$
S(a, b, 0) S(b, a, b) \subseteq \| S(a, a, 0) S(b, a, t)
$$

Since A is a Pappian plane;
$S(a, a, 0) S(b, a, 0) \subseteq \| S(a, a, b) S(b, a, b)$,
$S(a, a, 0) S(b, a, t) \subseteq \| S(a, b, 0) S(b, a, b)$
implies $S(a, b, 0) S(b, a, 0) \subseteq \| S(a, a, b) S(b, a, t)$. Thus; it is shown that $S(a, b, 0)$ and $S(b, a, 0)$ are collinear. But we must show that $S(a, b, 0) S(b, a, 0) \subseteq \| l_{1}$.

Now, we consider $\quad\{S(b, a, b), S(a, b, 0), S(b, a, 0)\}$-triangle and $\{S(b, a, t), S(a, a, 0),(b, a a)\}$ - triangle. It is trivial that;
$\{S(b, a, b), S(a, b, 0), S(b, a, 0)\} C P_{\Pi\left(l_{2}\right)}\{S(b, a, t), S(a, a, 0),(b, a a)\}$.
Again from the Theorem 1.1 and A is a pappian plane, A satisfies $\left(D_{3}\right)$. Thus

$$
\begin{align*}
& \quad S(a, a, 0) S(b, a, t) \subseteq \| S(a, b, 0) S(b, a, b) \text {, } \\
& \quad S(b, a, t)(b, a a) \subseteq \| S(b, a, b) S(b, a, 0) \\
& \quad \text { and } \quad S(a, b, 0) S(b, a, 0) \subseteq \| S(a, a, 0)(b, a a) \text {. } \quad \text { Since } \\
& S(a, a, 0)=(a, a a),(a, a a)(b, a a)=S(a, a, 0)(b, a a) \subseteq \| l_{1} \text {.Thus; } \\
& S(a, b, 0) S(b, a, 0) \subseteq \| S(a, a, 0)(b, a a) \ldots \ldots . .(2.4) \\
& S(a, a, 0)(b, a a) \subseteq \| l_{1} \ldots \ldots(2.5) \text {. } \tag{2.4}\\
& \text { From }(2.4) \text { and }(2.5) \text {, we obtain } \tag{2.5}\\
& S(a, b, 0) S(b, a, 0) \subseteq \| l_{1} \text { and } \\
& \text { Thus; } \\
& \left.\left.l \wedge \Pi(S(a, b, 0)) l_{1}\right)=l \wedge \Pi(S(b, a, 0)) l_{1}\right) \\
& T(a, b, 0)=T(b, a, 0) \\
& a \bullet b=b \bullet a \\
& \text { Thus }(R,+, \bullet) \text { is a field. }
\end{align*}
$$

References

[1] Anapa, P. The coordinatization of affine planes and its ternary ring, Fen Bilimleri Enstitüsü ,Msc Thesis, 1998.
[2] Dembowski , P. Finite Geometries, Springer-Verlag New York Inc. 1968.
[3] Stefan E. Schmidt and Ralph Steinitz . The Coordinatization of Affine Planes by Rings, Geo.Ded. 62.299-317, 1996.

Özet

(Schmidt ve Ralph,-1996) da $\left\{0, t_{1}, t_{2}\right\}$ tabanına bağlı olarak bir afin düzlem koordinatlanmuştr. Daha sonra l_{1}, l_{2}, t koordinat sisitemine bağll olarak l doğrusu üzerindeki noktaların kümesi R olmak üzere R kümesi üzerinde bir T üçlü işlem tanmmlanarak, $(R,+, \odot)$ nın bir bölümlü halka olduğu gösterilmiştir. Bu makalede ilk olarak afin düzlemde (R, T) üçlü halkası ile Desargues Postulatı arasındaki ilgi incelendi. Daha sonra, afin düzlemin Pappus Teoremini sağlaması durumunda $(R,+, \bullet)$ nın bir cisim olduğu gösterildi. Bu sonuçlar ilk yazarın Master tezinde görüllebilir.

Anahtar Kelimeler : Afin düzlem, Dezarg Postulath, Pappus Teoremi.

[^0]: * Osmangazi Üniversitesi Fen Edebiyat Fakültesi, Matematik Bölümü, Eskişehir, Türkiye panapa@ogu.edu.tr
 .. Osmangazi Üniversitesi Fen Edebiyat Fakültesi, Matematik Bőlümủ, Eskişehir, Türkiye igünalti@ogu.edu.tr

