

Fen Bilimleri Dergisi

Sayı: 4

Ekim 2003

A NOTE ON PAPPIAN AFINNE PLANES

Pınar ANAPA^{*} & İbrahim GÜNALTILI^{**}

Abstract

In (Schmidt and Steinitz,-1996); an affine plane with fixed basis $\{t_1, t_2, 0\}$ is coordinated. Then, a ternary operation T on R which is a set of points on l which is dependent on the coordinate system l_1, l_2, t is defined. In addition, two different binary operation denoted by $+, \bullet$ on R using ternary operation T. After then, it is showed that $(R,+,\bullet)$ is a division ring. In this paper, first of all we examined the relation between (R,T) ternary ring and Desargues postulate in afine plane. After then, we showed that $(R,+,\bullet)$ is field in case affine plane satisfies Pappus Theorem. This results appeared in the first author's Msc thesis.

Keywords : Afine plane, Desargues Postulat, Pappus Theorem

1. INTRODUCTION

Definition 1.1: [1] An affine space is a quadrupel $A = (P, L, \|, \sim)$ where P is a set, L is a set of nonempty subsets of $P, \|$ is a binary relation on L and \sim is a binary relation on P such that the following conditions are satisfied.

(A1) Line axiom : For all $p, q \in P$ with $p \neq q$ there exists (with respect to set inclusion) a least member of L, denoted by pq, which contains p and q. Further, for every $l \in L$ and $p \in l$ there exists a $p \in P \setminus p$ with l := pq.

^{*} Osmangazi Üniversitesi Fen Edebiyat Fakültesi, Matematik Bölümü, Eskişehir, Türkiye panapa@ogu.edu.tr

Osmangazi Üniversitesi Fen Edebiyat Fakültesi, Matematik Bölümü, Eskişehir, Türkiye igünalti@ogu.edu.tr

(A2) Parallel axiom : $\|$ is an equivalence relation on L such that for every pair $(p,l) \in P \times L$ there exists a unique member k of L with $p \in k$ and

 $k \parallel l$; we abbreviate $\prod (p|l) := k$. Further; $k \subseteq l$ implies

 $\Pi(p|k) \subseteq \Pi(p|l)$ for all $p \in P$ and $k, l \in L$.

(A3) Triangle axiom: Whenever p, q, r are pairwise different elements of P then $\Pi(a|pq) = \Pi(b|pq)$ implies $\Pi(a|pr) \wedge \Pi(b|qr) \neq \emptyset$ for all $a, b \in P$.

(A4) Independence axiom: The relation ~ is antireflexive and symmetric such that for all $p, q, r \in P$ with $p \sim q$ there exists $s \in P$ with $r \sim s$ and $pq \parallel rs$. Further, $p \sim q$ and $(pq) \cap l := \{p\}$ implies $p' \sim q$ and $(p'q) \cap l := \{p'\}$ for all $p, p', q \in P$ and $l \in L$ with $p, p' \in l$.

An affine space $A = (P, L, \|, \sim)$ is said to be an affine plane if it contains a 3-element basis, i.e there exist $0, p, q \in P$ with $0 \sim p$ and $0 \sim q$ such that every member k of L has a 1-element intersection with 0q provided $k \parallel 0p$.

In case of A is an afine plane, the above axioms coincide the axioms which is known.

Let $A \,=\! (P\,,L\,\,,\, \big\|\,\,,\, \sim\,)\,$ be an affine space.

(*i*) The elements of P are called points and the members of L lines. Lines k, l with $k \parallel l$ are parallel; points p, q with $p \sim q$ are independent.

(*ii*) For lines k, l of $A, k \subseteq || l$ provided $\Pi(p|k) \subseteq \Pi(p|l)$ is satisfied for some (and hence for every) $p \in P$.

If k and l intersect in a unique point r, we show $k \wedge l := r$, in case $\Pi(p|k) \wedge \Pi(p|l) := p$ holds for some (and hence for every) $p \in P$. This is denoted by k # l.

P. ANAPA - İ. GÜNALTILI / A NOTE ON PAPPIAN AFINNE PLANES

(*iii*) The point at infinity of $k \in L$ is defined as $\Pi(k) := \{l \in L | l | k \}$; the connecting line of a point p and a point at infinity $\Pi(k)$ is given by $p \vee \Pi(p|k)$ and it will be reasonable to agree upon $p \sim \Pi(k)$. The set of all points at infinity of A shall be denoted by P_{∞} , the elements of $P \cup P_{\infty}$ are called generalized points.

Definition 1.2: [1] Let A be an affine space.

(i) Let a_0, a_1, \ldots, a_n points and let z be a generalized point. We say that an n- tuple b_0, b_1, \ldots, b_n of points is centrally perspective to (a_0, a_1, \ldots, a_n) via z briefly (b_0, b_1, \ldots, b_n) is CP_z to (a_0, a_1, \ldots, a_n) if $b_i \in a_i z$ and $b_i b_{i+1} \subseteq ||a_i a_{i+1}|$ for all $i = 0, 1, \ldots, n$ (where $a_{n+1} = a_0, b_{n+1} = b_0$).

A satisfies Desargues' postulate for (a_0, a_1, \dots, a_n) via z if all $b_0 \in a_0 z$ there exist b_0, b_1, \dots, b_n such that (b_0, b_1, \dots, b_n) is CP_z to (a_0, a_1, \dots, a_n) .

(*ii*) For any generalized point z, a triple (a_0, a_1, a_2) of points with $a_0 \sim z$ and $a_0 a_1 \# a_1 z$, $a_0 a_2 \# a_0 z$ will be called a z-triangle.

In the following we will need a special version of Desargues' postulate:

 (D_3) Whenever z is a generalized point, then Desargues' postulate is satisfied for every z -triangle via z.

Remark 1.1: Let (a_0, a_1, a_2) be a *z*-triangle (where *z* is a generalized point.)

(i) For every $b_0 \in a_0 z$ there exists at most one pair of points b_1, b_2 such that (b_0, b_1, b_2) is CP_z to (a_0, a_1, a_2) . If z is a point at infinity and (b_0, b_1, b_2) is CP_z to (a_0, a_1, a_2) then (b_0, b_1, b_2) is also a z-triangle and

 (a_0, a_1, a_2) is CP_z to (b_0, b_1, b_2) hence $a_i a_j \| b_i b_j$ for all $i, j \in \{0, 1, 2\}$ with $i \neq j$.

(*ii*) For all $b_i \in a_i z$ (i = 0,1,2) with $b_0 b_1 \subseteq ||a_0 a_1$ and $b_0 b_2 \subseteq ||a_0 a_2$ the condition (D_3) implies $b_1 b_2 \subseteq ||a_1 a_2$, i.e (b_0, b_1, b_2) CP_z to (a_0, a_1, a_2) .

Now we give the Pappus Theorem in an affine plane.

Pappus Theorem: [2] Let x, y, z and x', y', z' be sets of three distinct collinear points on distinct lines such that no one of these points is on both lines an afine plane A. Then $xy' \subseteq ||x'y|$ and $xz' \subseteq ||x'z|$ implies $y'z \subseteq ||y'z|$.

If A satisfies Pappus Theorem then A is called pappian affine plane. If A satisfies Desargues postulate then, A is called desarguesian affine plane.

Theorem 1.1 : [2] Every pappian affine plane is desarguesian.

In [1], $A = (P, L, ||, \sim)$ which is an affine plane with fixed basis $0, t_1, t_2$ was coordinatized as following. $l_i := 0t_i$ (where i = 1, 2) and for all $p, q \in P$ it was abbreviated $(p,q) := \Pi(p|l_2) \wedge \Pi(q|l_1)$ Then $t := (t_1, t_2)$ and l := 0t. Therefore; $p_1 := (p,0), p_2 := (0, p)$ and $p_* := (t, p)$; hence $(p,q) := (p_1, p_2), p_* := (t_1, p_2)$ hold for all $p, q \in P$.

 l_1, l_2, t forms a coordinate system of A where l_i denotes the *i* th coordinate line (i = 1, 2), 0 is the origin, and *t* is the unit point, the *i* th coordinate of a point p is given by p_i . Furthermore; a ternary operation T is defined on R which is a set of points on l which is dependent on the coordinate system l_1, l_2, t .

$$T: (a,b,c) \to l \land \Pi(S(a,b,c)|l_1)$$

such that $S(a,b,c) \coloneqq \Pi(a|l_2) \land \Pi(c_2|0b*).$

Then two different binary operation denoted by $+, \bullet$ be defined on R as follows.

$$+ := R \times R; (a,b) \rightarrow a + b = T(a,t,b)$$

• := $R \times R$; $(a,b) \rightarrow a \bullet b = T(a,b,0)$.

Theorem 1.2: [1] If A satisfies D_3 then $(R,+,\bullet)$ is a division ring.

2. MAIN RESULT:

Lemma 2.1 : The following statements are equivalent in an afine plane A.

(i) (R,T) is a linear

 $(ii)(D_3)$ holds in A, wherever $z = \Pi(l_2), AA' = l_2$ and $BC \subseteq ||B'C'|$.

Proof: $(i) \Rightarrow (ii)$: Let (R,T) is a linear. Therefore; T(a,b,c) = ab + cfor all $a,b,c \in R$. Thus S(a,b,c) and S(ab,t,c) are collinear. ABC is a $\Pi(l_2)$ - triangle for $A = (0,c) = c_2$, B = S(ab,t,c) and C = S(a,b,c). Let $AA' = l_2, BC \subseteq ||B'C'|$ and A'B'C' be a $\Pi(l_2)$ - triangle for $A' = (0,b) = b_2$, $B' = \Pi(ab|l_2) \wedge \Pi(b_2|0t_*) = S(ab,t,b) = \Pi(b_2|c_2S(ab,t,c))$ and

$$B' = \Pi(a|l_2) \land \Pi(b_2|0b_*) = S(a,b,b) = \Pi(b_2|c_2S(a,b,c)).$$

Thus; ABC and A'B'C' are $\Pi(l_2)$ -triangle. By the remark 1.1(*i*), $ABC CP_{\Pi(l_2)} A'B'C'$.

From the choose of vertex points of this triangles, $c_2S(ab,t,c) \subseteq ||b_2S(ab,t,b)|$ and $c_2S(a,b,c) \subseteq ||b_2S(a,b,b)|$. Since (R,T)is a linear, T(ab,t,b) = T(a,b,c) and T(ab,t,b) = T(a,b,b). Thus S(ab,t,b) and S(a,b,b) are collinear and $S(ab,t,b)S(a,b,b) \subseteq ||S(ab,t,c)S(a,b,c)|$.

Hence; (ii) is satisfies.

 $(ii) \Rightarrow (i)$: Let A be a given affine plane with fixed basis $\{0, t_1, t_2\}$ and $\{b_2, S(ab, t, b), S(a, b, b)\}$ be a $\Pi(l_2)$ -triangle in A.

 $\begin{cases} c_2, S(ab,t,c), S(a,b,c) \} & \text{is a} & \Pi(l_2) - \text{triangle for} \\ c_2 \circ \Pi(b_2|l_2), S(ab,t,c) \circ \Pi(S(ab,t,b)|l_2) & \text{and } & S(a,b,b) \circ \Pi(S(a,b,c)|l_2) \end{cases}$ By the remark 1.1 (i) $\{ b_2, S(ab,t,b), S(a,b,b) \} CP_{\Pi(l_2)} \{ c_2, S(ab,t,c), S(a,b,c) \}$ Since A satisfies $(D_3), b_2 S(ab,t,b) \subseteq ||c_2 S(ab,t,c)|$ and $b_2 S(a,b,b) \subseteq ||b_2 S(a,b,c)|$ implies $S(ab,t,b) S(a,b,b) \subseteq ||S(ab,t,c) S(a,b,c)|. \text{ Thus } S(ab,t,c) \text{ and } S(a,b,c)$ are collinear. Therefore; $\Pi(S(ab,t,c)|l_1) = \Pi(S(a,b,c)|l_1)$

$$l \wedge \Pi(S(ab,t,c)|l_1) = l \wedge \Pi(S(a,b,c)|l_1)$$

Since T is a ternary operation on R, T(ab,t,c) = T(a,b,c). Also, by the operation "+", T(ab,t,c) = T(a,b,c) implies ab + c = T(a,b,c). Finally, (R,T) ternary ring is a linear.

Lemma 2.2 : The following statements are equivalent:

(i) (R,T) is a linear and (R,+) is a associative.

(*ii*) A satisfies (D_3) for the every $\Pi(l_2)$ -triangles.

Proof $(i) \Rightarrow (ii)$: Since (R,T) is a linear, by the lemma 2.1, A satisfies (D_3) for , $\Pi(l_2)$, $AA' = l_2$ and $BC \subseteq ||B'C' \subseteq ||l$. Also, T is a associative, T(a,t,b+c) = T(a+b,t,c) for all $a,b,c \in R$. Thus, by the operation "+", $S(a,t,b+c)S(a+b,t,c) \subseteq ||l_1$. Since $\Pi(l_2) \sim b_2$, $b_2S(a,t,b)\#(S(a,t,b)|l_2)$ and $(b_2(0+b))\#\Pi(b_2|l_2), (b_2,S(a,t,b),a+b)$ is a $\Pi(l_2)$ -triangle. Also, $(b+c)_2 \circ \Pi(b_2|l_2), S(a,t,b+c) \circ \Pi(S(a,t,b)|l_2)$ and $S(a+b,t,c)^{\circ}\Pi((a+b)_2|l_2)$. In addition; since (R,T) is a linear, $b_2(b+c)_2 = l_2$, $S(a,t,b+c)S(a+b,t,c) \subseteq ||S(a,t,b)(a+b)|$ and $(b+c)_2S(a+b,t,c) \subseteq ||b_2t$. Thus; $(b_2S(a,t,b),a+b)CP_{\Pi(l_2)}((b+c)_2,S(a,t,b+c),S(a+b,t,c))$.

Hence A satisfies (D_3) .

$$\begin{aligned} (ii) &\Rightarrow (i): \text{ We assume that } A \text{ satisfies } (D_3). \ (b_2, S(a, t, b), b) \text{ and} \\ ((b+c)_2, S(a, t, b+c), S(b, t, c)) \text{ are } \Pi(l_2) - \text{triangle. Thus; we obtain} \\ (b+c)_2 S(a, t, b+c) \subseteq \|b_2 S(a, t, b) \text{ and} \\ (b+c)_2 S(b, t, c) \subseteq \|b_2 b \\ \text{Since } A \text{ satisfies } (D_3), \text{ we obtain following result.} \\ S(a, t, b+c) S(b, t, c) \subseteq \|bS(a, t, b).....(2.1) \\ \text{Now we consider } (S(a, t, b), b, a+b) \Pi(l_2) - \text{triangle. By } (2.1), \\ S(a, t, b+c) \circ \Pi(S(a, t, b)|l_2), S(b, t, c) \circ \Pi(b|l_2) \\ \text{sume consider } S(a, t, b+c) S(b, t, c) \subseteq \|S(a, t, b)b \ \text{and} \\ S(b, t, c) \circ \Pi(ab|l_2).\text{Thus; } S(a, t, b+c) S(b, t, c) \subseteq \|S(a, t, b)b \ \text{and} \\ S(a, t, b+c) S(a+b, t, c) \subseteq \|b(a+b) \ \text{Since } A \ \text{satisfies } (D_3), \\ S(a, t, b+c) S(a+b, t, c) \subseteq \|S(a, t, b)(a+b) \subseteq \|l_1, \\ \text{and} \end{aligned}$$

$$l \wedge \Pi (S(a,t,b+c)|l_1) = l \wedge \Pi (S(a+b,t,c)|l_1)$$

$$T(a,t,b+c) = T(a+b,t,c)$$

$$a + (b+c) = (a+b) + c.$$

Thus, (R,T) is associative.

Now we show that (R,T) is linear. $((b+c)_2, S(a,t,b+c), S(a+b,t,c))$ and $(b_2, S(a,t,b), a+b)$ are $\Pi(l_2)$ -triangle. By the lemma 2.1 $b_2(b+c) := l_2$, $(S(a,t,b+c)S(a+b,t,c)) \subseteq ||(S(a,t,b)t)$ and (D_3) is satisfies, (R,T) is linear.

Theorem 2.1: If A is a Papian plane then $(R, +, \bullet)$ is a field.

Proof: Let A is a Papian plane. By the Theorem 1.1, A satisfies (D_3) . Also, by the Theorem 1.2 $(R,+,\bullet)$ is a division ring. Since (R,\bullet) is a semigroup, for every $a \neq 0$ there exist an element a^{-1} of (R, \bullet) such that $a^{-1}a = aa^{-1} = t$. We must show that the operation "•" has a commutative property in order that $(R, +, \bullet)$ is a field. $\Pi(a|l_2)$ and $\Pi(b|l_2)$ are lines in A such that $a \neq b$ and $a, b \in R$. x = S(a, a, 0), y = S(a, b, 0) and z = S(a, a, b) are points on $\Pi(a|l_2)$. On the otherhand $x' = S(b, a, b), y' = S(b, a, t_2)$ and z' = S(b, a, 0) are points on $\Pi(b|l_2)$. Also, S(a, a, 0) and S(b, a, 0) are on $\Pi(0|0a_*)$. S(a, a, b) and S(b, a, b) are on $\Pi(b_2|0a_*)$.

Since
$$\Pi(0|0a_*) \subseteq \|\Pi(b_2|0a_*);$$

 $S(a,a,0)S(b,a,0) \subseteq \|S(a,a,b)S(b,a,b)....(2.2).$
We consider, $\{S(b,a,t), S(a,a,t), S(a,a,0)\}$ -triangle and $\{S(b,a,b), S(a,a,b), S(a,b,0)\}$ -triangle. It is trivial that,

$$\{S(b,a,b), S(a,a,b), S(a,b,0)\}CP_{\Pi(l_2)}\{S(b,a,t), S(a,a,t), S(a,a,0)\}$$

From the theorem 1.1 and A is a pappian plane, A satisfies (D_3) . Thus

$$S(a,b,0)S(a,a,b) \subseteq ||S(a,a,0)S(a,a,t)|$$

$$S(a,a,b)S(b,a,b) \subseteq ||S(a,a,t)S(b,a,t)|$$

and

$$S(a,b,0)S(b,a,b) \subseteq ||S(a,a,0)S(b,a,t)....(2.3).$$

Since A is a Pappian plane; $S(a,a,0)S(b,a,0) \subseteq ||S(a,a,b)S(b,a,b),$ $S(a,a,0)S(b,a,t) \subseteq ||S(a,b,0)S(b,a,b)$ implies

 $S(a,b,0)S(b,a,0) \subseteq ||S(a,a,b)S(b,a,t)|$. Thus; it is shown that S(a,b,0)and S(b,a,0) are collinear. But we must show that $S(a,b,0)S(b,a,0) \subseteq ||l_1|$.

Now, we consider $\{S(b, a, b), S(a, b, 0), S(b, a, 0)\}$ -triangle and $\{S(b, a, t), S(a, a, 0), (b, aa)\}$ -triangle. It is trivial that; $\{S(b, a, b), S(a, b, 0), S(b, a, 0)\}$ CP $_{\Pi(l_2)}$ $\{S(b, a, t), S(a, a, 0), (b, aa)\}$.

Again from the Theorem 1.1 and A is a pappian plane, A satisfies (D_3) . Thus

P. ANAPA – İ. GÜNALTILI / A NOTE ON PAPPIAN AFINNE PLANES

$$S(a, a, 0)S(b, a, t) \subseteq ||S(a, b, 0)S(b, a, b),$$

$$S(b, a, t)(b, aa) \subseteq ||S(b, a, b)S(b, a, 0)$$

and $S(a, b, 0)S(b, a, 0) \subseteq ||S(a, a, 0)(b, aa).$ Since

$$S(a, a, 0) = (a, aa), (a, aa)(b, aa) = S(a, a, 0)(b, aa) \subseteq ||l_1. \text{Thus};$$

$$S(a, b, 0)S(b, a, 0) \subseteq ||S(a, a, 0)(b, aa).....(2.4)$$

$$S(a, a, 0)(b, aa) \subseteq ||l_1....(2.5).$$

From (2.4) and (2.5) , we obtain

$$S(a, b, 0)S(b, a, 0) \subseteq ||l_1 \text{ and}$$

Thus;

$$l \land \Pi(S(a, b, 0)|l_1) = l \land \Pi(S(b, a, 0)|l_1)$$

$$T(a, b, 0) = T(b, a, 0)$$

$$a \bullet b = b \bullet a$$

Thus $(R,+,\bullet)$ is a field.

References

- [1] Anapa, P. The coordinatization of affine planes and its ternary ring, Fen Bilimleri Enstitüsü ,Msc Thesis, 1998.
- [2] Dembowski, P. Finite Geometries, Springer-Verlag New York Inc. 1968.
- [3] Stefan E. Schmidt and Ralph Steinitz . The Coordinatization of Affine Planes by Rings, Geo.Ded. 62.299-317, 1996.

Özet

(Schmidt ve Ralph,-1996) da $\{0, t_1, t_2\}$ tabanına bağlı olarak bir afin düzlem koordinatlanmıştır. Daha sonra l_1, l_2, t koordinat sisitemine bağlı olarak l doğrusu üzerindeki noktaların kümesi R olmak üzere R kümesi üzerinde bir T üçlü işlem tanımlanarak, $(R,+,\bullet)$ nın bir bölümlü halka olduğu gösterilmiştir. Bu makalede ilk olarak afin düzlemde (R,T) üçlü halkası ile Desargues Postulatı arasındaki ilgi incelendi. Daha sonra, afin düzlemin Pappus Teoremini sağlaması durumunda $(R,+,\bullet)$ nın bir cisim olduğu gösterildi. Bu sonuçlar ilk yazarın Master tezinde görülebilir.

Anahtar Kelimeler : Afin düzlem, Dezarg Postulatı, Pappus Teoremi.