

 F **<u>Fen Bilimleri Dergisi</u>**

Dumlupınar Üniversitesi

Sayı: 4

Ekim 2003

ON FINITE $\{s-1, s\}$ -SEMIAFFINE LINEAR SPACES

A. KURTULUŞ*

Abstract

In this paper, We investigate $\{s-1, s\}$ -semiaffine linear spaces with *constant point degree. Using only combinatorial techniques we obtaine some results.*

1.Introduction

The subject of finite semiaffine linear spaces has been studied and nice combinatorial corollaries ([1], [2], [3], [4], [5], [6]) have been obtained on this subject. In this paper, We investigate $\{s-1, s\}$ -semiaffine linear spaces with constant point degree. A finite linear space is a pair $S = (P, L)$ consisting of a finite set *P* of elements called points and a finite set *L* of distinguished subsets of points, called lines satisfying the following axioms.

(LI) Any two distinct points of *S* belong to exactly one line of *S .*

(L2) Any line of *S* has at least two points of *S .*

(L3) There are three points of *S* not on a common line.

The degree $[p]$ of a point p is the number of lines through p. If $n+1 = \max\{[p], p \in P\}$, then *n* is called the order of the space $S = (P, L)$. We use ν and \dot{b} to denote respectively the number of points and of lines of \dot{S} .

Osmangazi Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Eskişehir.Türkiye, agunavdi@ogu.edu.tr

The terms i-point and i-line may also be used to refer respectively to a point and a line of degree i.

An affine plane is a linear space *A* which satisfies the following axiom.

(A)If the point p is not on the line l , then there is a unique line on p missing l .

A projective plane is a linear space satisfying the following axioms. (PI) Any two distinct lines have a point in common.

(P2) There are four points, no three of which are on a same line.

A linear space with ν points in which any line has just two points is a complete graph and is often denoted by K_{ν} .

Let $v \ge 3$ be an i*nteger. A near-pencil on v points is the linear space having one $(\nu - 1)$ -line and $\nu - 1$ 2-lines.

Nwankpa-Shrikhandeplane is a linear space on 12 points and 19 lines with constant point size 5, each point being on one 4-line and four 3-lines.

If *q* consists of a single point $q = \{q\}$, we often write $S - q$ instead of $S - \{q\}$, and we say that *S* is punctured.

Suppose that we remove a set X of a projective plane P of order n . Then we obtain a linear space $P - X$ having certain parameters (i.e., the number of points, the number of lines , the point-and line-degrees). We call any linear space which has the same parameters as $P - X$ a pseudo-complement of X in P. A pseudo-complement of one line is a linear space with n^2 points, $n^2 + n$ lines in which any point has degree $n+1$ and any line has degree n. We know that this is an affine plane, which is a structure embedded into a projective plane of order *ⁿ* . A pseudo-complement of two lines in a projective plane of order *n* is a linear space having $n^2 - n$ points, $n^2 + n - 1$ lines in which any point has degree $n + 1$ and any line has degree $n-1$ or n .

Let H be a set of non-negative integers. A linear space S is called an H semiaffine plane if for any non-incident point-line pair (p, l) the number of lines through p disjoint to l belongs to H .

Suppose v, k, μ are integers with $2 \le k \le v-2$. A $2-(v, k, \mu)$ blockdesign is an incidence structure with ν points in which every line has degree k and any two distinct points are contained in exactly μ lines. The designs

A. KURTULUŞ / ON FINITE $\{s-1, s\}$ -SEMIAFFINE LINEAR SPACES

 $2-(v,3,1)$ were much studied by J. Steiner, 1796-1863, and we shall refer to them as Steiner triple systems. The notation $S(2,3, v)$ in also used in this case.

Define $S_{s,t}$ to be the unique linear space with $t+3$ points and exactly one line of degree $t - s + 2$, while every other line has two points. Then $S_{s,t}$ is $\{s,t\}$. affine of order $t + 1$, and with point degree $s + 2$ and $t + 2$.

Kuiper-Dembowski Theorem: If S is a finite $\{0,1\}$ -semiaffine linear space, then it is one of the following:

(a) a near-pencil,

(b) a projective or affine plane,

(c) a punctured projective plane,

(d) an affine plane with one point at infinity.

2. {5-1,5} -SEMIAFFINE LINEAR SPACES

We give $\{s-1, s\}$ -semiaffine linear spaces with constant point degree. Note that $s = 1$ is the Kuiper Dembowski case. We therefore suppose $s \geq 2$.

Clearly, each line has either $n+1-s$ or $n+2-s$ points, and each point is on the same number of $(n+1-s)$ - and of $(n+2-s)$ -lines.

Let σ be the number of $(n+1-s)$ -lines on any point, and let $b = b_{n+1-s}$ be total number of $(n+1-s)$ -lines. We obtained the following equations.

$$
\nu - 1 = \sigma(n - s) + (n + 1 - \sigma)(n + 1 - s)
$$
 (1)

$$
b^{(n+1-s)} = v\sigma = [(n+1)(n+1-s) - \sigma + 1]\sigma
$$
 (2)

 $(b - b)(n + 2 - s) = v(n + 1 - \sigma)$

$$
= [(n+1)(n+1-s)-\sigma+1](n+1-\sigma) \quad (3)
$$

Equations $(1,2)$ and (3) implies the existence if integers x (non-negative) and *y* such that

$$
(n+1-s)x = \sigma(\sigma-1)
$$
 (4)

¹ ⁴ ⁵

$$
(n+2-s)y = (\sigma + s - 2)(\sigma + 1 - s)
$$
 (5)

Then (4) and (5) together give

$$
y + (n+1-s)y = (n+2-s)y = (\sigma - 1 + s - 1)(\sigma + 1 - s)
$$

= $(n+1-s)x - (s-1)(s+2)$ (6)

or

$$
(n+1-s)(x-y) = y + (s-1)(s-2) \tag{7}
$$

It follows from equation (7) that $(n+1-s)y+(s-1)(s-2)$.

Proposition 1. We have $y + (s-1)(s-2) \ge 0$. Equality holds if and only if $s = 2$ and *S* is an affine plane or a punctured affine plane. **Proof:** Assume $y + (s-1)(s-2) < 0$. Then

$$
(n+2-s)y < -(n+2-s)(s-1)(s-2).
$$

Equations (6) implies

$$
(n+1-s)x - (s-1)(s-2) < -(n+2-s)(s-1)(s-2).
$$

So

$$
(n+1-s)(x+(s-1)(s-2)) < 0.
$$

Since $n+1-s>0$, we get $0 > x + (s-1)(s-2) \geq 0$,

a contradiction..

Suppose, then, that $y + (s-1)(s-2) = 0$. From equations (7), we get $x = y \ge 0$; subsequently $x = 0 = y$ and $s = 2$. In view of equation (4) now, $\sigma = 0$ or 1. If $\sigma = 0$, then *S* is an affine plane of order *n*. If $\sigma = 1$, equations (1), (2) and (3) imply $v = n^2 - 1$, $b' = n + 1$ and $b = n^2 + n$. Moreover, the $(n+1-s)$ – lines partition the points. Adjoining a point at infinity corresponding to this partition yields an affine plane of order n . Thus, S is a punctured affine plane of order n .

A. KURTULUŞ / ON FINITE $\{s-1, s\}$ -SEMIAFFINE LINEAR SPACES

For the remainder of the section, we assume $y + (s-1)(s-2) > 0$.

Proposition 2. Either $n \leq s^2 - 1$ or σ satisfies

$$
\sigma^2 - \sigma - (s-1)(s-2) - (n+2-s)(n-(s-1)^2) = 0
$$
 (8)

In the later case, we get in particular: If $s = 2$, then S is the pseudocomplement of two lines in a projective plane of order *n*; if $s = 3$, then $\sigma = n - 2$ and *S* is the pseudo-complement of a triangle in a projective plane of order *n* if $s \ge 4$, then $n \le (s^4 - 6s^3 + 13s^2 - 8s - 1)$ /4.

Proof: Since $y + (s-1)(s-2) > 0$, we can use equation (7) to write

$$
(n+1-s)z = y + (s-1)(s-2) \ge 2
$$
\n(9)

Suppose first of all that $z \ge 2$. Since $\sigma \le n+1$ equationon (5) implies

$$
(n+2-s)y \leq (\sigma + s - 2)(n+2-s),
$$

and hence $y \leq \sigma + s - 2$. Therefore,

$$
2(n+1-s) \le y + (s-1)(s-2) \le \sigma + s - 2 + (s-1)(s-2)
$$

$$
\le n+1+s-2+(s-1)(s-2)
$$
 (10)

from which obtain $n \leq s^2 - 1$..

Now suppose $z = 1$, and so $y = n - (s - 1)^2$. Substituting in equation (5) gives

$$
(n+2-s)(n-(s-1)^2) = \sigma^2 - \sigma - (s-1)(s-2).
$$

Solving this quadratic in σ we get as discriminant

$$
\Delta = 1 + 4(n^2 - s^2n + sn + n + s^3 - 3s^2 + 2s).
$$

If $s = 2$ this equation reduces to $\Delta = 1 + 4(n^2 - n)(2n - 1)^2$. So $\sigma = (1 \pm (2n-1))$ /2. The non-negative solution is $\sigma = n$. Using equations (1), (2) and (3) we obtain $v = n^2 - n$, $b' = n^2$, $b = n^2 + n + 1 - 2$, and so S is the pseudo-complement of two lines in a projective plane of order n .

If $s = 3, \Delta = (2n - 5)^2$, implying $\sigma = n - 2$. Consequently, by equations $(1), (2)$ and $(3), v = (n-1)^2, b = (n-1)^2$ and $b = (n-1)^2 + 3(n-1)$. So *S* is the pseudo-complement of a triangle in a projective plane of order n . Finally, if *s>4,*

$$
\Delta < (2n - s^2 + s + 1)^2. \tag{11}
$$

If $2n-s$ + $s+1 \le 0$, then $n < s^2-1$. On the other hand, if $2n - s^2 + s + 1 > 0$, then equation (11) implies $\Delta \leq (2n - s^2 + s)^2$, which reduces to $4n \leq s^4 - 6s^3 + 13s^2 - 8s - 1$.

Corollary 1. $\{2,3\}$ – semiaffine linear space of order $n, n \ge 4$ and $\sigma = n - 2$, is the pseudo-complement of a triangle in a projective plane of order *n.*

Proof: In $\{2,3\}$ – semiaffine linear space of order $n, n \ge 4$ and $\sigma = (n-2)$, the number of points

$$
v = (n-2)(n-3) + (n+1-n+2)(n-2) + 1
$$

= $n^2 - 2n + 1$.

In addition, by equations (2) and (3), $b = n^2 - 2n + 1$, $b = n^2 + n - 2$. These parameters are the same parameters as the pseudo-complement of a triangle in a projective plane order *n*. Therefore $\{2,3\}$ – semiaffine linear space of order $n, n \geq 4$ and $\sigma = n-2$, is the pseudo-complement of a triangle in a projective plane of order *n.*

Corollary 2. $\{1,2\}$ – semiaffine linear space of order *n, n* \geq 3 and $\sigma = n$, is the pseudo-complement of two lines in a projective plane of order *n.*

<u>Proof:</u> In {1,2} – semiaffine linear space of order $n, n \ge 3$ and $\sigma = n$, the number of points

$$
v = n(n-2) + (n+1-n)(n-1) + 1
$$

= $n^2 - n$

In addition, by equations (2) and (3) , $b' = n^2 - 2n + 1$, $b = n^2 + n - 2$. These parameters are the same parameters as the pseudo-complement of two lines in a projective plane of order . Therefore ${1,2}$ – semiaffine linear space of order $n, n \geq 3$ and $\sigma = n$ is the pseudocomplement of two lines in a projective plane of order *n.*

Proposition 3. (a) A $\{1,2\}$ – semiaffine linear space of order 3 is $S_{1,2}$, K_5 or can be obtained from an affine plane of order 3 by removing nothing, a single point, or all points of a line along with the line.

(b) A {2,3} — semiaffine linear space of order *ⁿ* is the pseudo-complement of a triangle, a block design $2 - (46,6,1)$ or $S - (2,3,13)$ or K_6 .

Proof: (a) Since any point is incident with at most four lines, any line has only to tree points.

From equation (5): $3y = \sigma(\sigma - 1)$. Hence $y \ge 0$. Proposition 1 handled the case $y = 0$, so we assume $y > 0$. If $z \ge 2$, then by equation (9),

$$
4 = 2(n+1-s) \le y \le \sigma \le n+1 = 4.
$$

So $\sigma = n+1$ and consequently all lines are 2-lines. Therefore, *S* is K_5 . If $z = 1$, then by Proposition 2, S is the complement of a line in an affine plane of order 3.

(b) By Proposition 2, we have $n \leq 3^2 - 1 = 8$. In case $n = 8$, it is obtained by equation (10)

$$
12 = 2(n+1-s) \le y + (s-1)(s-2) \le \sigma + s - 2 + (s-1)(s-2)
$$

$$
\le n+1+s-2 + (s-1)(s-2) = 12.
$$

Therefore, we have $\sigma = n+1$; so S is a block design in which any line has $n+1-s=6$ points. Hence $(n+1)(n-2)+1=46$.

In any case, equations (4) and (5) read

$$
(n-2)x = \sigma(\sigma - 1) \qquad (n-1)y = (\sigma + 1)(\sigma - 2).
$$

If $4 \le n \le 7$, we have only the following possibilities: $n = 4$ and $\sigma = 2$ or 5; $n = 5$ and $\sigma = 3$ or 6; $n = 6$ and $\sigma = 4$; $n = 7$ and $\sigma = 5$ If $n = 4$ and $\sigma = 5$, then any line is a 2-line and $S = K_6$. If $n = 5$ and $\sigma = 6, S$ is an

 $S(2,3,13)$. In all other cases, S is the pseudo-complement of a triangle in a projective plane of order *n.*

REFERENCES

- [1] L. M. Batten, *Combinatorics o f finite Geometries* , Cambridge University Press. (1986).
- [2] A. Beutelspacher, A. Kersten, *Finite semiaffine linear spaces,* Arch. Math. 44 (1984), 557-568.
- [3] A. Beutelspacher, J. Meinhardt, *On finite h-semiaffme planes,* Europ. J. Comb. 5 (1984), 113-122.
- [4] P. Dembowski, *Semiaffine Ebenen*, Arch. Math. 13 (1962), 120-131.
- [5] P. Dembowski, *Finite Geometries,* Springer-Verlag New York Inc. (1968).
- [6] M.Lo Re, D. Olanda, *On [0,2]-semiaffine planes,* Simon Stevin 60 (1986), 157-182.

$SONLU$ $\{s-1, s\}$ -YARIAFİN LİNEER UZAYLAR

A. KURTULUŞ

Özet

Bıı makalede, sabit nokta dereceli {s — 1, *S^-yarıafin lineer uzayları inceledik. Sadece kombinatoryel özellikleri kullanarak bazı sonuçlar elde ettik.*

Anahtar Kelimeler: Afin Düzlem H-yarıafın Lineer Uzay, Lineer Uzay, Projektif Düzlem.