

Fen Bilimleri Dergisi

Dumlupınar Üniversitesi

Sayı: 4

Ekim 2003

ON FINITE {s-1, s}-SEMIAFFINE LINEAR SPACES

A. KURTULUŞ^{*}

Abstract

In this paper, We investigate $\{s-1, s\}$ -semiaffine linear spaces with constant point degree. Using only combinatorial techniques we obtain some results.

1.Introduction

The subject of finite semiaffine linear spaces has been studied and nice combinatorial corollaries ([1], [2], [3], [4], [5], [6]) have been obtained on this subject. In this paper, We investigate $\{s-1,s\}$ -semiaffine linear spaces with constant point degree. A finite linear space is a pair S = (P, L) consisting of a finite set P of elements called points and a finite set L of distinguished subsets of points, called lines satisfying the following axioms.

(L1) Any two distinct points of S belong to exactly one line of S.

(L2) Any line of S has at least two points of S.

(L3) There are three points of S not on a common line.

The degree [p] of a point p is the number of lines through p. If $n+1 = \max\{[p], p \in P\}$, then n is called the order of the space S = (P, L). We use v and b to denote respectively the number of points and of lines of S.

Osmangazi Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Eskişehir, Türkiye, agunaydi@ogu.edu.tr

The terms i-point and i-line may also be used to refer respectively to a point and a line of degree i.

An affine plane is a linear space A which satisfies the following axiom.

(A) If the point p is not on the line l, then there is a unique line on p missing l.

A projective plane is a linear space satisfying the following axioms. (P1) Any two distinct lines have a point in common.

(P2) There are four points, no three of which are on a same line.

A linear space with v points in which any line has just two points is a complete graph and is often denoted by K_{v} .

Let $v \ge 3$ be an i*nteger. A near-pencil on v points is the linear space having one (v-1)-line and v-1 2-lines.

Nwankpa-Shrikhandeplane is a linear space on 12 points and 19 lines with constant point size 5, each point being on one 4-line and four 3-lines.

If q consists of a single point $q = \{q\}$, we often write S - q instead of $S - \{q\}$, and we say that S is punctured.

Suppose that we remove a set X of a projective plane P of order n. Then we obtain a linear space P-X having certain parameters (i.e., the number of points, the number of lines, the point-and line-degrees). We call any linear space which has the same parameters as P-X a pseudo-complement of X in P. A pseudo-complement of one line is a linear space with n^2 points, $n^2 + n$ lines in which any point has degree n+1 and any line has degree n. We know that this is an affine plane, which is a structure embedded into a projective plane of order n. A pseudo-complement of two lines in a projective plane of order n is a linear space having $n^2 - n$ points, $n^2 + n - 1$ lines in which any point has degree n+1 and any line has degree n-1 or n.

Let H be a set of non-negative integers. A linear space S is called an H-semiaffine plane if for any non-incident point-line pair (p, l) the number of lines through p disjoint to l belongs to H.

Suppose v, k, μ are integers with $2 \le k \le v-2$. A $2-(v, k, \mu)$ blockdesign is an incidence structure with v points in which every line has degree k and any two distinct points are contained in exactly μ lines. The designs

A. KURTULUŞ / ON FINITE $\{s-1, s\}$ -SEMIAFFINE LINEAR SPACES

 $2 - (\nu, 3, 1)$ were much studied by J. Steiner, 1796-1863, and we shall refer to them as Steiner triple systems. The notation $S(2,3,\nu)$ in also used in this case.

Define $S_{s,t}$ to be the unique linear space with t+3 points and exactly one line of degree t-s+2, while every other line has two points. Then $S_{s,t}$ is $\{s,t\}$ affine of order t+1, and with point degree s+2 and t+2.

Kuiper-Dembowski Theorem: If S is a finite $\{0,1\}$ -semiaffine linear space, then it is one of the following:

(a) a near-pencil,

(b) a projective or affine plane,

(c) a punctured projective plane,

(d) an affine plane with one point at infinity.

2. $\{s-1, s\}$ -SEMIAFFINE LINEAR SPACES

We give $\{s-1, s\}$ -semiaffine linear spaces with constant point degree. Note that s = 1 is the Kuiper Dembowski case. We therefore suppose $s \ge 2$.

Clearly, each line has either n+1-s or n+2-s points, and each point is on the same number of (n+1-s)- and of (n+2-s)-lines.

Let σ be the number of (n+1-s)-lines on any point, and let $b' = b_{n+1-s}$ be total number of (n+1-s)-lines. We obtained the following equations.

$$v - 1 = \sigma(n - s) + (n + 1 - \sigma)(n + 1 - s)$$
⁽¹⁾

$$b'(n+1-s) = v\sigma = [(n+1)(n+1-s) - \sigma + 1]\sigma$$
 (2)

 $(b-b')(n+2-s) = v(n+1-\sigma)$

$$= [(n+1)(n+1-s) - \sigma + 1](n+1-\sigma) \quad (3)$$

Equations (1,2) and (3) implies the existence if integers x (non-negative) and y such that

$$(n+1-s)x = \sigma(\sigma-1) \tag{4}$$

$$(n+2-s)y = (\sigma + s - 2)(\sigma + 1 - s)$$
(5)

Then (4) and (5) together give

$$y + (n+1-s)y = (n+2-s)y = (\sigma - 1 + s - 1)(\sigma + 1 - s)$$
$$= (n+1-s)x - (s-1)(s+2)$$
(6)

or

$$(n+1-s)(x-y) = y + (s-1)(s-2)$$
(7)

It follows from equation (7) that (n+1-s)y + (s-1)(s-2).

Proposition 1. We have $y + (s-1)(s-2) \ge 0$. Equality holds if and only if s = 2 and S is an affine plane or a punctured affine plane. **Proof:** Assume y + (s-1)(s-2) < 0. Then

$$(n+2-s)y < -(n+2-s)(s-1)(s-2).$$

Equations (6) implies

$$(n+1-s)x - (s-1)(s-2) < -(n+2-s)(s-1)(s-2).$$

So

$$(n+1-s)(x+(s-1)(s-2)) < 0.$$

Since n+1-s > 0, we get $0 > x + (s-1)(s-2) \ge 0$,

a contradiction ..

Suppose, then, that y + (s-1)(s-2) = 0. From equations (7), we get $x = y \ge 0$; subsequently x = 0 = y and s = 2. In view of equation (4) now, $\sigma = 0$ or 1. If $\sigma = 0$, then S is an affine plane of order n. If $\sigma = 1$, equations (1), (2) and (3) imply $v = n^2 - 1$, b' = n+1 and $b = n^2 + n$. Moreover, the (n+1-s) – lines partition the points. Adjoining a point at infinity corresponding to this partition yields an affine plane of order n. Thus, S is a punctured affine plane of order n.

A. KURTULUŞ / ON FINITE $\{s-1, s\}$ -Semiaffine linear spaces

For the remainder of the section, we assume y + (s-1)(s-2) > 0.

<u>Proposition 2.</u> Either $n \le s^2 - 1$ or σ satisfies

$$\sigma^{2} - \sigma - (s-1)(s-2) - (n+2-s)(n-(s-1)^{2}) = 0$$
(8)

In the later case, we get in particular: If s = 2, then S is the pseudocomplement of two lines in a projective plane of order n; if s = 3, then $\sigma = n-2$ and S is the pseudo-complement of a triangle in a projective plane of order n if $s \ge 4$, then $n \le (s^4 - 6s^3 + 13s^2 - 8s - 1)/4$.

Proof: Since y + (s-1)(s-2) > 0, we can use equation (7) to write

$$(n+1-s)z = y + (s-1)(s-2) \ge 2$$
(9)

Suppose first of all that $z \ge 2$. Since $\sigma \le n+1$ equationon (5) implies

$$(n+2-s)y \le (\sigma+s-2)(n+2-s),$$

and hence $y \le \sigma + s - 2$. Therefore,

$$2(n+1-s) \le y + (s-1)(s-2) \le \sigma + s - 2 + (s-1)(s-2)$$

$$\le n+1+s-2 + (s-1)(s-2)$$
(10)

from which obtain $n \le s^2 - 1$..

Now suppose z = 1, and so $y = n - (s - 1)^2$. Substituting in equation (5) gives

$$(n+2-s)(n-(s-1)^2) = \sigma^2 - \sigma - (s-1)(s-2).$$

Solving this quadratic in σ we get as discriminant

$$\Delta = 1 + 4(n^2 - s^2n + sn + n + s^3 - 3s^2 + 2s).$$

If s = 2 this equation reduces to $\Delta = 1 + 4(n^2 - n)(2n-1)^2$. So $\sigma = (1 \pm (2n-1))/2$. The non-negative solution is $\sigma = n$. Using equations (1), (2) and (3) we obtain $v = n^2 - n$, $b' = n^2$, $b = n^2 + n + 1 - 2$, and so S is the pseudo-complement of two lines in a projective plane of order n.

If s = 3, $\Delta = (2n-5)^2$, implying $\sigma = n-2$. Consequently, by equations (1), (2) and (3), $v = (n-1)^2$, $b' = (n-1)^2$ and $b = (n-1)^2 + 3(n-1)$. So S is the pseudo-complement of a triangle in a projective plane of order n. Finally, if $s \ge 4$,

$$\Delta < (2n - s^2 + s + 1)^2. \tag{11}$$

If $2n-s + s + 1 \le 0$, then $n < s^2 - 1$. On the other hand, if $2n-s^2 + s + 1 > 0$, then equation (11) implies $\Delta \le (2n-s^2 + s)^2$, which reduces to $4n \le s^4 - 6s^3 + 13s^2 - 8s - 1$.

<u>Corollary 1.</u> $\{2,3\}$ - semiaffine linear space of order $n, n \ge 4$ and $\sigma = n-2$, is the pseudo-complement of a triangle in a projective plane of order n.

<u>**Proof:**</u> In $\{2,3\}$ - semiaffine linear space of order $n, n \ge 4$ and $\sigma = (n-2)$, the number of points

$$v = (n-2)(n-3) + (n+1-n+2)(n-2) + 1$$

= $n^2 - 2n + 1$.

In addition, by equations (2) and (3), $b' = n^2 - 2n + 1$, $b = n^2 + n - 2$. These parameters are the same parameters as the pseudo-complement of a triangle in a projective plane order n. Therefore $\{2,3\}$ -semiaffine linear space of order $n, n \ge 4$ and $\sigma = n - 2$, is the pseudo-complement of a triangle in a projective plane of order n.

<u>Corollary 2.</u> $\{1,2\}$ – semiaffine linear space of order $n, n \ge 3$ and $\sigma = n$, is the pseudo-complement of two lines in a projective plane of order n.

<u>Proof:</u> In $\{1,2\}$ – semiaffine linear space of order $n, n \ge 3$ and $\sigma = n$, the number of points

$$v = n(n-2) + (n+1-n)(n-1) + 1$$

= $n^2 - n$

In addition, by equations (2) and (3), $b' = n^2 - 2n + 1$, $b = n^2 + n - 2$. These parameters are the same parameters as the pseudo-complement of two lines in a projective plane of order. Therefore $\{1,2\}$ - semiaffine linear space of order $n, n \ge 3$ and $\sigma = n$ is the pseudo-complement of two lines in a projective plane of order n.

A. KURTULUŞ / ON FINITE $\{s-1, s\}$ -SEMIAFFINE LINEAR SPACES

Proposition 3. (a) A $\{1,2\}$ - semiaffine linear space of order 3 is $S_{1,2}$, K_5 or can be obtained from an affine plane of order 3 by removing nothing, a single point, or all points of a line along with the line.

(b) A $\{2,3\}$ - semiaffine linear space of order n is the pseudo-complement of a triangle, a block design 2 - (46,6,1) or S - (2,3,13) or K_6 .

<u>**Proof:**</u> (a) Since any point is incident with at most four lines, any line has only to tree points.

From equation (5): $3y = \sigma(\sigma - 1)$. Hence $y \ge 0$. Proposition 1 handled the case y = 0, so we assume y > 0. If $z \ge 2$, then by equation (9),

4 =
$$2(n+1-s) \le y \le \sigma \le n+1=4$$
.

So $\sigma = n+1$ and consequently all lines are 2-lines. Therefore, S is K_5 . If z = 1, then by Proposition 2, S is the complement of a line in an affine plane of order 3.

(b) By Proposition 2, we have $n \le 3^2 - 1 = 8$. In case n = 8, it is obtained by equation (10)

$$12 = 2(n+1-s) \le y + (s-1)(s-2) \le \sigma + s - 2 + (s-1)(s-2)$$
$$\le n+1+s-2 + (s-1)(s-2) = 12.$$

Therefore, we have $\sigma = n+1$; so S is a block design in which any line has n+1-s=6 points. Hence (n+1)(n-2)+1=46.

In any case, equations (4) and (5) read

$$(n-2)x = \sigma(\sigma-1) \qquad (n-1)y = (\sigma+1)(\sigma-2).$$

If $4 \le n \le 7$, we have only the following possibilities: n = 4 and $\sigma = 2$ or 5; n = 5 and $\sigma = 3$ or 6; n = 6 and $\sigma = 4; n = 7$ and $\sigma = 5$ If n = 4 and $\sigma = 5$, then any line is a 2-line and $S = K_6$. If n = 5 and $\sigma = 6, S$ is an

S(2,3,13). In all other cases, S is the pseudo-complement of a triangle in a projective plane of order n.

REFERENCES

- [1] L. M. Batten, *Combinatorics of finite Geometries*, Cambridge University Press. (1986).
- [2] A. Beutelspacher, A. Kersten, *Finite semiaffine linear spaces*, Arch. Math. 44 (1984), 557-568.
- [3] A. Beutelspacher, J. Meinhardt, On finite h-semiaffine planes, Europ. J. Comb. 5 (1984), 113-122.
- [4] P. Dembowski, Semiaffine Ebenen, Arch. Math. 13 (1962), 120-131.
- [5] P. Dembowski, *Finite Geometries*, Springer-Verlag New York Inc. (1968).
- [6] M.Lo Re, D. Olanda, On [0,2]-semiaffine planes, Simon Stevin 60 (1986), 157-182.

SONLU {s-1, s}-YARIAFİN LİNEER UZAYLAR

A. KURTULUŞ

Özet

Bu makalede, sabit nokta dereceli $\{s-1, s\}$ -yarıafin lineer uzayları inceledik. Sadece kombinatoryel özellikleri kullanarak bazı sonuçlar elde ettik.

Anahtar Kelimeler: Afin Düzlem H-yarıafin Lineer Uzay, Lineer Uzay, Projektif Düzlem.