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Abstract: In this paper, we consider the qualitative analysis of a liquid mechanical tank system with an 

electrical model.  In the prototype phase, such models are more flexible like the construction process of the 

first nuclear reactors. The mathematical model of this dynamic system is nonlinear and time-varying. Here, 

physical principles and engineering specifications will be used to find unique results without any mathematical 

approximation. The energy function of the system is constructed with intuitive physical principles. The system 

also will be discussed with and without feedback control laws. Global asymptotic controllability of the 

equilibrium point of the system will be determined. The literature presents us, the level control works with a 

few multi-tanks up to six. We generalize those with n− tanks from a different theoretical perspective. The 

readymade system and candidate Lyapunov function will not be used here; the study will be conducted by 

constructing them. The effectiveness of the control mechanism will be determined by both theoretical analysis 

and simulation. According to the proposed algorithm, the measurement of liquid levels in tanks can be made in 

volts anywhere in the system, collectively or individually. The algorithm is clear, not large time-consuming 

and the solution cost is not expensive. Some simulations are also presented that validate our theoretical 

predictions. 
 

Keywords: Liquid level control, Lyapunov, Passivity, PD control, Stability 
  

  

Devre Teorisinden Esinlenerek Dinamik Sistemlerin Niteliksel Davranışı Üzerine Bir 

Paradigma   

 

Öz: Bu makalede, elektriksel bir modele sahip sıvı mekanik tank sisteminin nitel analizini ele alıyoruz. 

Prototip aşamasında, bu tür modeller ilk nükleer reaktörlerin inşa süreci gibi daha esnektir. Bu dinamik 

sistemin matematiksel modeli doğrusal olmayan ve zamanla değişendir. Burada, herhangi bir matematiksel 

yaklaşım olmaksızın benzersiz sonuçlar bulmak için fiziksel ilkeler ve mühendislik özellikleri kullanılacaktır. 

Sistemin enerji fonksiyonu sezgisel fiziksel ilkelerle oluşturulmuştur. Sistem ayrıca geri bildirim kontrol 

yasalarıyla ve onlarsız olarak tartışılacaktır. Sistemin denge noktasının küresel asimptotik kontrol edilebilirliği 

belirlenecektir. Literatür bize seviye kontrolünün altıya kadar birkaç çoklu tankla çalıştığını göstermektedir. 

Bunları tanklarla farklı bir teorik bakış açısıyla n− tank olarak genelleştiriyoruz. Hazır sistem ve aday 

Lyapunov fonksiyonu burada kullanılmayacak; çalışma bunları inşa ederek yürütülecektir. Kontrol 

mekanizmasının etkinliği hem teorik analiz hem de simülasyonla belirlenecektir. Önerilen algoritmaya göre, 

tanklardaki sıvı seviyelerinin ölçümü sistemin herhangi bir yerinde, topluca veya ayrı ayrı volt cinsinden 

yapılabilir. Algoritma açıktır, çok zaman alıcı değildir ve çözüm maliyeti pahalı değildir. Ayrıca teorik 

tahminlerimizi doğrulayan bazı simülasyonlar da sunulmuştur. 
 

Anahtar Kelimeler: Kararlılık, Lyapunov, Pasiflik, PD kontrol, Sıvı seviye kontrolü 
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1. Introduction  

 

In control theory, Lyapunov stability of nonlinear and time-varying systems or machines is an 

important area for interested researchers. In this context, we consider the dynamics of the fluid in a 

multi-tank mechanical system by analogizing it to an electrical model. That’s why we built the 

electrical model of the given mechanical model as shown in Figure 1 to make the qualitative analysis 

of the system more flexible. Since the performance of mechanical systems can be predicted by means 

of electrical models. This algorithm is preferable in both design and prototype construction. The 

electrical models are safe, accurate, inexpensive, and have readily available circuit elements. For 

example, the first nuclear reactors were modeled by electrical models (analog computers) before the 

reactors themselves were built (Edwards & Penney, 1989). The liquid level determination and the flow 

control in tank systems have an important role in many industrial processes such as level control for 

flotation circuits (Sbarbaro & Ortega, 2005), the design of level controller for multi-thank system 

(Xiuyun, 2015), optimal control of water levels in tanks during distribution (Sankar et al., 2015), PI 

control of tank’s liquid level (Singh et al., 2014), water level positions (Başçi & Derdiyok, 2016). In 

the prototype phase, analyzing the liquid level and controlling the liquid flow in tank systems with a 

mechanical model may be difficult, inconvenient, and inaccurate and can even have dangerous 

consequences. Nevertheless, with mathematical approximations, many scientists of various disciplines 

used mass-balance or Bernoulli equations as a mathematical model of the mechanical tank systems 

(Sbarbaro & Ortega, 2005). Nonlinear predictive control is proposed for the stability study of four tank 

systems (Raff et al., 2006), SISO and MIMO controllers have been implemented in (Kämpjärvi & 

Jämsä-Jounela, 2003), the issue of the level control two tank system investigated in (Xu et al., 2020), 
energy-shaping and integral control have been proposed in (Yu et al., 2013), support vector machine-

based control (Iplikci, 2011) and sliding mode control (Biswas et al., 2009) have been studied. For the 

aforementioned works, the mathematical skeleton is roughly similar. We use the Lyapunov function 

method (Tunç & Ateş, 2006; Yang et al., 2013; Zhang & Yu, 2013) in the qualitative analysis of our 

study. The system under consideration is passive. Passivity is a basic feature of dissipative dynamical 

systems (Willems, 1972; Wang et al. 2017; Wang et al., 2018). Viscoelastic, thermodynamic, and the 

circuit systems (Figure 2) are typical examples of dissipative systems. Passive systems are internally 

stable. Energy functions of the dissipative systems are bounded (measurable) and decreasing under 

operation, while those of non-dissipative systems is constants (Ates, 2021). The upper bound of an 

energy or Lyapunov function can be determined with Gronwall inequality (Eduardo, 1998). A detailed 

study on dissipative dynamical systems can be found in (Willems, 1972). 

This study aims to encourage the development of stability analysis and also by using control 

design techniques for complex systems. The main focus of the paper is based on the Lyapunov 

stability theory with: (i) the construction of the differential system, (ii) the methodology of the 

construction of the energy function by the physical notion of the system, and (iii) result of the time 

derivative of this function. These three ingredients furnish the paper and they are unique and not 

published before. This study demonstrates a clear perspective of mathematical analysis and the paper 

is also welcome in the area of academics in control engineering, automation, robotics, electrical, and 

mechanical systems, and neural networks. 

 The paper is structured as: Section 2 presents the preliminary work that defines the general 

form of the system and its energy function. Section 3 involves the main results that deal with 

Lyapunov stability, feedback stabilization, linearization, and some simulations. Section 4 closes the 

paper with a brief discussion and conclusion.  

In the subsequent section, we give some basic statements that will guide us in getting the main 

results. 

 

2. Preliminary 

 

In this paper, we regard the following type of equations for the qualitative analysis of the 

system theory 

 

( ) ( , ( ), ( )),v f v =  (1) 
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where +  denotes time, nv  is the state vector of the system, 
m  is called the input or the 

control function, and 
1[ , ].n m nf C +     In this case ( ) 0 = , let ( ,0,0) 0f = , so that (1) 

admits the zero solution ( ) 0.v = For (1) we have the energy function 
1( ) ( , ) [ , ]nv C + + =      and we calculate the time derivative of ( )  along the trajectories 

of (1). In this case, ( ) 0 =  the isolated equilibrium point 0 of (1) is globally asymptotically 

controllable, if there exist a class of 
1C  Lyapunov (energy) function .  Throughout the paper, the 

time derivative of   (with ( ) 0 = ) will be in the form of circuit theory 

 
2 2( ) RI Gv = − = −  

 

In the case ( ) 0,   the directional derivative of the Lyapunov function   of (1) yields a 

passivity result. A detailed analysis of passivity and dissipative systems can be found in (Ates, 2021). 
 

3. Main Results  
 

In this study, we tackle the following mechanical scheme.  
 

Figure 1. Scheme of interactive n− dimensional tank system. 

 

The fluid ( )sq , height ( )ih , valve ( )iR , and translational mass ( )iC of the mechanical system are 

considered as the current ( )sI , voltage ( )iv , resistance ( )iR , and capacitance ( )iC  of the electrical 

system, ( 1,..., ),i n=  respectively. By this connection, the electrical scheme of Figure1 (Kämpjärvi et 

al., 2003) (includes 6 tanks)) is the following: 

 

 

Figure 2. The electrical equivalent circuit of Figure 1. 
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where , ( )sI denote time and current, ( ), ( )i iv c  and  1

1

1
( )

( )
i i i

i i i

R v v
g v v

+

+

− =
−

 represent voltage, 

capacitance, and resistance of the ith section of the above figure. From circuit theory, the relationship 

between voltage ( ( ))v , capacitance ( ( ))c , and charge ( ( ))q of the capacitor of an electrical circuit 

is .q cv=
 Therefore, the current through such a capacitor is  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )c

d d
q I c v c v c v

d d
= = = +  (2) 

 

 For the 1th  (first section) of the network we have 

 
1

1 1 1 1 1 1 1( ) ( )[ ( ) ( ) ( ) ( ( )) ( )]sv c c v v g v I−= − − +  

 

Thus, the complete differential system is: 

 
1

1 1 1 1 1 1 2 1 2

1

1 1 1 1 1

[ ( )( ) ( )]

[ ( )( ) ( )( )]

s

i i i i i i i i i i i i i i

v c c v g v v v v I

v c c v g v v v v g v v v v

−

−

− − − + +

 = − − − − +


= − + − − − − −
 (3) 

 

for 2,i  0,ic   and (0) 0.ig =
 An explicit representation of this situation for 3n =  is given as: 

  
1

1 1 1 1 1 1 2 1 2

1

2 2 2 2 1 1 2 1 2 2 2 3 2 3

1

3 3 3 3 2 2 3 2 3 3 3 3

[ ( )( ) ( )]

[ ( )( ) ( )( )]

[ ( )( ) ( ) )]

sv c c v g v v v v I t

v c c v g v v v v g v v v v

v c c v g v v v v g v v

−

−

−

 = − − − − +


= − + − − − − −
 = − + − − −

 (4) 

 

Now, from the above network with the power (
i i ic c cP v I= ) energy ( )  relationship of the circuit theory 

we can construct the energy function ( )n  for as: 

 

0
1

( ) ( , ( ) ) { ( ) [ ( ) ( )]} , 0.
n

n n i i i i

i

d
v v c v d

d
   

=

 = =   (5) 

 

Let define 

 

0inf ( )i ic C −

 =  and 
0sup ( )i ic C +

 =  

where iC
−

 and iC
+

 are positive constants, then it follows that 

 

2 2 2

1 1

1 1

1 1 1
0 ( ) .
2 2 2

n n

i i n i i

i i

C v C v C v− − +

= =

         (6) 

 

(6) implies that ( )n is an energy function. Now, we can state the main results:  

 

Theorem 1 The equilibrium state 1( ) (0,...,0)n

i iv = = of the system (3) is globally asymptotically 

controllable if the conditions 

 

(i) 1 0iv + = , 1iv +  , 

(ii) 1

1

1
( ) 0

( )
i i i

i i i

g v v
R v v

+

+

− = 
−

 for 0iv   and 
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(iii) (0) 0ig = ,  

 

hold for all i . 

 

Proof. iv is the derivative of the state variable which is constrained by 1 0iv + =  for all i . The time 

derivative of energy function (5) along the trajectories of the system (3) is 

 
1

2 2

1 1 1

1

( ) [ ( ) ( ) ( ) ] ( ) ( )
n

n i i i i i n n n s

i

g v v v v g v v I v
−

+ +

=

 = − − − + +  (7) 

 

In the case of the classical Lyapunov method, we set ( ) 0.sI = Therefore, we have 

Thus, 1( ,..., ) (0,...,0)nv v = is the equilibrium state of (3), ( ) 0n   over 
n

+Â ´ Â ,  ( ) 0n  = , and 

1

( , ( ) )
n

n i

i

v
=

 →  as 
1

n

i

i

v
=

→ . Hence, all the motions of (3) are measurable (bounded) as the 

system depicted in Figure 2. The set   where ( ) 0,n t =  is {0} . This implies that {0}  is the only 

invariant subset of  , and the isolated equilibrium points of (3) are globally asymptotically 

controllable. Thus, the proof is completed. 

 

3.1. Associated feedback stabilization 

 

Proportional (P), Proportional-derivative (PD), and proportional-derivative-integral (PDI) 

define feedback control laws. The PDI feedback control law cannot be applied to the system since no 

inductor exists in the system (Figure 2). If the interaction between the systems produces some 

inductance, then it can be applied to the system for 1.n =  The connection between the units of the 

system forces us to do this. Then, the form of PID feedback control law will be  

 

1 1 1

0

( ) ( ) ( ) ( ) ( )sI v v v d    = − − −   (8) 

 

where   and   are positive constants, and 0   is a function of time. Then the resulting closed-

loop equation is obtained when the value of the control (8) is substituted into (4) for 1n = , yields 

 

1 1 1 1 1 1 1 1 1 1 1( ) [ ( ) ( )] 0c v c g v v g v v c v + + + − − + =  (9) 

 

In the case of circuit theory, (9) denotes a series LRC circuit equation. The qualitative analysis of (9) 

can be done using the Lyapunov method, for further consideration see (Ates, 2021). The PD control 

can be applied to the system for any order n . Now consider system (4) with the feedback control law 

 

1 1( ) ( ) ( ) ( )sI v v = − −  (10) 

 

Then, the control Lyapunov function will be 

 

3 3 1 1 1

0

3

0
2

( ) ( , ( ) ) ( ) [( ( ) ) ( )]

{ ( ) [ ( ) ( )]} , 0

c c i

i i i

i

d
v v c v d

d

d
v c v d

d

    


   
=

 = = + +







 

 

(11) 

The time derivative of (11) along system (4) with (10) together yields 
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2
2 2 2

3 1 1 1 3 3 3

1

( ) ( ) [ ( ) ( ) ( ) ] 0.c i i i i i

i

v g v v v v g v v + +

=

 = − − − − +   (12) 

 

(12) verified by Lyapunov stability. 
 

3.2. Associated linearization 
 

We approach results regarding a nonlinear system by studying the attitude of a linear one. 

Now, we have the Jacobian matrix c (of (4)) at the equilibrium point (0,0,0)  as: 

 
1

1 1( ) ( ) 0 0

0 0 0

0 0 0

c

c c − − + +
 

 =  
 
 

 

 

Let pick 1( ) 1 0.25sin , 4, ( ) 0.25cosc  = + = = . 

Then 
 

1

1

0.5 cos

1 0.25 sin 4

1 0 0( )

c

c

cv k e k e





+
− −

+ + += =  

and 

 
1

1

0.25 cos

1 0.25 sin

1 0 0( )

c

cv k e k e
− −

+ += =  

 

where 0 , 0k  is an arbitrary constant, and in both case the eigenvalues are negative, that is 

1 1, 0cv v →  as → . If it is needed in the following procedure,   denotes the matrix without 

control ( 0) = =  of the above. It is obvious that the given feedback control makes the convergence 

rate slow. This claim will be verified below with simulation results. 
 

Remark 1 When it comes to control, the function with index c means with control. 
 

3.3. Simulations 

Figure 3. Phase portrait of (4) without control. The axes are given in volt. 
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Figure 4. Phase portrait of (4) with control. The axes are given in volt. 

Figure 5. Solution of (4) without control. 1 2 3, ,V V V  are given in volt, and in second. 

 

Figure 6. Solution of (4) with control. 1 2 3, ,V V V  are given in volt, and in second. 
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Figure 7. Time series Solution of 1v  in (4) without and with control. 
1V is given in volt, and in 

second.  

 

As shown in Figure 3 and Figure 4, the phase platforms have been stabilized. The 

convergences are decaying exponentially with oscillation. Figure 5 and Figure 6 give measurements of 

liquid levels of tanks in Volts. The topology of the system shows that feedback controllers only effect 

1v as shown in Figure 5, Figure 6, and Figure 7. The convergence rate is slow when the machine 

operates with controls since the system operates in parallel. In the series case, the convergence rate is 

faster. 

 

4. Discussion and Conclusion 

 

In industry, liquid tanks with flotation cells are generally used by mining and chemical 

engineers in the process of diverse minerals, sediments, inorganic waste constituents, and waste water. 

In nature, physical phenomena can be represented by differential equations. It is very logical to 

consider differential equations with the concept of circuit theory and examine electrical models of 

mechanical systems. Hence, the qualitative performance of mechanical systems can be measured by 

electrical models. Moreover, electrical systems are more efficient, inexpensive, and safe than 

mechanical systems. Hence, many technical complications can be avoided. Compared with the 

relevant references, the designed dynamic systems, the constructed Lyapunov functions, and the time 

derivative of these functions are unique. Related studies cover a small number of tanks, up to six 

tanks, but there is no limitation on the number of tanks in this study. Despite this, the proposed 

algorithm produces systematic results. In this study, the explicit mathematical expressions come from 

the physical principles of the system and engineering specifications without any approximation. In the 

future, this work may trigger studies on the stability of dynamic systems, especially Hopfield-type 

neural networks and complex dynamical systems. 
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