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Abstract: In this paper, we consider the qualitative analysis of a liquid mechanical tank system with an
electrical model. In the prototype phase, such models are more flexible like the construction process of the
first nuclear reactors. The mathematical model of this dynamic system is nonlinear and time-varying. Here,
physical principles and engineering specifications will be used to find unique results without any mathematical
approximation. The energy function of the system is constructed with intuitive physical principles. The system
also will be discussed with and without feedback control laws. Global asymptotic controllability of the
equilibrium point of the system will be determined. The literature presents us, the level control works with a
few multi-tanks up to six. We generalize those with z7 — tanks from a different theoretical perspective. The
readymade system and candidate Lyapunov function will not be used here; the study will be conducted by
constructing them. The effectiveness of the control mechanism will be determined by both theoretical analysis
and simulation. According to the proposed algorithm, the measurement of liquid levels in tanks can be made in
volts anywhere in the system, collectively or individually. The algorithm is clear, not large time-consuming
and the solution cost is not expensive. Some simulations are also presented that validate our theoretical
predictions.
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Devre Teorisinden Esinlenerek Dinamik Sistemlerin Niteliksel Davrams1 Uzerine Bir
Paradigma

Oz: Bu makalede, elektriksel bir modele sahip sivi mekanik tank sisteminin nitel analizini ele aliyoruz.
Prototip asamasinda, bu tiir modeller ilk niikleer reaktorlerin insa siireci gibi daha esnektir. Bu dinamik
sistemin matematiksel modeli dogrusal olmayan ve zamanla degisendir. Burada, herhangi bir matematiksel
yaklagim olmaksizin benzersiz sonuglar bulmak i¢in fiziksel ilkeler ve miihendislik 6zellikleri kullanilacaktir.
Sistemin enerji fonksiyonu sezgisel fiziksel ilkelerle olusturulmustur. Sistem ayrica geri bildirim kontrol
yasalariyla ve onlarsiz olarak tartigilacaktir. Sistemin denge noktasinin kiiresel asimptotik kontrol edilebilirligi
belirlenecektir. Literatiir bize seviye kontroliiniin altiya kadar birkag ¢oklu tankla calistigini gostermektedir.
Bunlar1 tanklarla farkli bir teorik bakis agisiyla 72— tank olarak genellestiriyoruz. Hazir sistem ve aday
Lyapunov fonksiyonu burada kullanilmayacak; ¢alisma bunlart insa ederek yiiriitiilecektir. Kontrol
mekanizmasimin etkinligi hem teorik analiz hem de simiilasyonla belirlenecektir. Onerilen algoritmaya gére,
tanklardaki sivi seviyelerinin 6l¢iimil sistemin herhangi bir yerinde, topluca veya ayri ayri volt cinsinden
yapilabilir. Algoritma agiktir, cok zaman alic1 degildir ve ¢dziim maliyeti pahali degildir. Ayrica teorik
tahminlerimizi dogrulayan bazi simiilasyonlar da sunulmustur.
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1. Introduction

In control theory, Lyapunov stability of nonlinear and time-varying systems or machines is an
important area for interested researchers. In this context, we consider the dynamics of the fluid in a
multi-tank mechanical system by analogizing it to an electrical model. That’s why we built the
electrical model of the given mechanical model as shown in Figure 1 to make the qualitative analysis
of the system more flexible. Since the performance of mechanical systems can be predicted by means
of electrical models. This algorithm is preferable in both design and prototype construction. The
electrical models are safe, accurate, inexpensive, and have readily available circuit elements. For
example, the first nuclear reactors were modeled by electrical models (analog computers) before the
reactors themselves were built (Edwards & Penney, 1989). The liquid level determination and the flow
control in tank systems have an important role in many industrial processes such as level control for
flotation circuits (Sbarbaro & Ortega, 2005), the design of level controller for multi-thank system
(Xiuyun, 2015), optimal control of water levels in tanks during distribution (Sankar et al., 2015), PI
control of tank’s liquid level (Singh et al., 2014), water level positions (Basci & Derdiyok, 2016). In
the prototype phase, analyzing the liquid level and controlling the liquid flow in tank systems with a
mechanical model may be difficult, inconvenient, and inaccurate and can even have dangerous
consequences. Nevertheless, with mathematical approximations, many scientists of various disciplines
used mass-balance or Bernoulli equations as a mathematical model of the mechanical tank systems
(Sbarbaro & Ortega, 2005). Nonlinear predictive control is proposed for the stability study of four tank
systems (Raff et al., 2006), SISO and MIMO controllers have been implemented in (Kdmpjirvi &
Jimsa-Jounela, 2003), the issue of the level control two tank system investigated in (Xu et al., 2020),
energy-shaping and integral control have been proposed in (Yu et al., 2013), support vector machine-
based control (Iplikci, 2011) and sliding mode control (Biswas et al., 2009) have been studied. For the
aforementioned works, the mathematical skeleton is roughly similar. We use the Lyapunov function
method (Tung & Ates, 2006; Yang et al., 2013; Zhang & Yu, 2013) in the qualitative analysis of our
study. The system under consideration is passive. Passivity is a basic feature of dissipative dynamical
systems (Willems, 1972; Wang et al. 2017; Wang et al., 2018). Viscoelastic, thermodynamic, and the
circuit systems (Figure 2) are typical examples of dissipative systems. Passive systems are internally
stable. Energy functions of the dissipative systems are bounded (measurable) and decreasing under
operation, while those of non-dissipative systems is constants (Ates, 2021). The upper bound of an
energy or Lyapunov function can be determined with Gronwall inequality (Eduardo, 1998). A detailed
study on dissipative dynamical systems can be found in (Willems, 1972).

This study aims to encourage the development of stability analysis and also by using control
design techniques for complex systems. The main focus of the paper is based on the Lyapunov
stability theory with: (i) the construction of the differential system, (ii) the methodology of the
construction of the energy function by the physical notion of the system, and (iii) result of the time
derivative of this function. These three ingredients furnish the paper and they are unique and not
published before. This study demonstrates a clear perspective of mathematical analysis and the paper
is also welcome in the area of academics in control engineering, automation, robotics, electrical, and
mechanical systems, and neural networks.

The paper is structured as: Section 2 presents the preliminary work that defines the general
form of the system and its energy function. Section 3 involves the main results that deal with
Lyapunov stability, feedback stabilization, linearization, and some simulations. Section 4 closes the
paper with a brief discussion and conclusion.

In the subsequent section, we give some basic statements that will guide us in getting the main
results.

2. Preliminary

In this paper, we regard the following type of equations for the qualitative analysis of the
system theory

v(l) = 1 (£,v(0), 6(0)), (1)
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where /€R, denotes time, veR" is the state vector of the system, & € R" is called the input or the
control function, and f € C'[R, xR xR",R"].In this case O(¢)=0, let /(£,0,0)=0, so that (1)
admits the zero solution w(¢{)=0. For (1) we have the energy function
O(0)=0O(¢,v) e C'[R, xR",R,] and we calculate the time derivative of © (/) along the trajectories
of (1). In this case, @(¢)=0 the isolated equilibrium point 0 of (1) is globally asymptotically

controllable, if there exist a class of C' Lyapunov (energy) function ®. Throughout the paper, the
time derivative of ® (with €(¢)=0) will be in the form of circuit theory

O()=—RI* =-GV*

In the case 8(¢)#0, the directional derivative of the Lyapunov function ® of (1) yields a
passivity result. A detailed analysis of passivity and dissipative systems can be found in (Ates, 2021).

3. Main Results

In this study, we tackle the following mechanical scheme.

ds

1
4

Figure 1. Scheme of interactive #n — dimensional tank system.

The fluid(q,) , height(%,), valve (R;), and translational mass (C;) of the mechanical system are
considered as the current (/,), voltage (v,), resistance (R;), and capacitance (C;) of the electrical
system, (I =1,...,n), respectively. By this connection, the electrical scheme of Figurel (Kampjirvi et
al., 2003) (includes 6 tanks)) is the following:

51

Ri(vy —v3)
v, A

15 6 c ({,):: Ry(vz — v3)
A —

ca(f)T e R = ns1)

""""" Vnt1

Figure 2. The electrical equivalent circuit of Figure 1.
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. 1
where £, () denote time and current, v,(¢), ¢,({) and R (v,—v,,,) =(— represent voltage,
gV = Vi
capacitance, and resistance of the ith section of the above figure. From circuit theory, the relationship
between voltage (v(/)), capacitance (¢ (£)), and charge (g (¢)) of the capacitor of an electrical circuit

is g = cv. Therefore, the current through such a capacitor is

d d ) .
—q(O)=1.(0) = —c()v(l) = c(H)v(l) +c(£)v(() (2)
dl dl
For the Ith (first section) of the network we have

()= (D=6 -y (D) g () +1,(0)]

Thus, the complete differential system is:

{ V= [~em— g (v =) =)+ 1, (0)] o)

‘>i = ci_l [_éivi +8 (Vi—l - Vi)(vi—l - Vi) — & (Vi ~Vin )(V[ “Vin )]

for i>2, ¢, #0, and g;(0)=0. An explicit representation of this situation for » =3 is given as:

v :C;I[_élvl g =), =)+ (D]
v, = cgl[_ézvz (v =) =)= g, (v, =v)(v, — )] 4

vy = Cs_l[_é3V3 + & (v, =), —v;) = g, (v)vy)]

Now, from the above network with the power (£, =v, I, ) energy (©) relationship of the circuit theory

we can construct the energy function ©, (¢) for as:

0,(0=0,(,y (=X [ 1 (n)din[ci (v, ()1}, >0, 5)

Let define

inf,. ,c,(¢/)=C; and sup,.,c,({)=C,"

where C; and C,* are positive constants, then it follows that

o<l <l co,mlSo < ©
i=l1

i=1
(6) implies that ®, () is an energy function. Now, we can state the main results:

Theorem 1 The equilibrium state (v,)", =(0,...,0) of the system (3) is globally asymptotically
controllable if the conditions

(i) Vi =0, v, eR,
1
(ii) g, v, )=——>0 forv,#0 and
R(v,—v,)
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(iii) g, (0)=0,
hold for all i.

Proof. v, is the derivative of the state variable which is constrained by v,,, =0 for all i. The time
derivative of energy function (5) along the trajectories of the system (3) is

n-1

0,(0)==> g —v.) v, =v.,))* + g, Vi 1+ L () v, () 7)

i=1

In the case of the classical Lyapunov method, we set I (¢)= 0. Therefore, we have
Thus, (v,-..,v,)=(0,...,0) is the equilibrium state of (3), ©®,(£)<0 over A, ~ A", 0, (0)=0, and

ZG) (4,v,(£)) —> o as Z"v | oo . Hence, all the motions of (3) are measurable (bounded) as the

i=1
system depicted in Figure 2. The set A where © (¢)=0, is {0}. This implies that {0} is the only

invariant subset of A , and the isolated equilibrium points of (3) are globally asymptotically
controllable. Thus, the proof is completed.

3.1. Associated feedback stabilization

Proportional (P), Proportional-derivative (PD), and proportional-derivative-integral (PDI)
define feedback control laws. The PDI feedback control law cannot be applied to the system since no
inductor exists in the system (Figure 2). If the interaction between the systems produces some

inductance, then it can be applied to the system for n=1. The connection between the units of the
system forces us to do this. Then, the form of PID feedback control law will be

Is(f)=—7T(€)V1(f)—Kvl(f)—5jvl(77)dﬂ ®)

where k and & are positive constants, and 7 >0 is a function of time. Then the resulting closed-
loop equation is obtained when the value of the control (8) is substituted into (4) forn =1, yields

(k+e)V, +[m+ =& (v —g (), +¢v, =0 )
In the case of circuit theory, (9) denotes a series LRC circuit equation. The qualitative analysis of (9)
can be done using the Lyapunov method, for further consideration see (Ates, 2021). The PD control
can be applied to the system for any order n . Now consider system (4) with the feedback control law

1,(6) == (Ow () = v, (0) (10)

Then, the control Lyapunov function will be

0,.() =0, (L.v,())= v [(cl(n)w)vl(n)]dm

o [ (11)
Y[ (77)— ¢,(mv,(midn, £>0

i=2 0

The time derivative of (11) along system (4) with (10) together yields
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®3c (é) = _”(E)VIZ_Z[gi (Vi _Vi+1)(vi _Vi+1)2 + g3(v3)v32] <0. (12)

(12) verified by Lyapunov stability.
3.2. Associated linearization

We approach results regarding a nonlinear system by studying the attitude of a linear one.
Now, we have the Jacobian matrix I, (of (4)) at the equilibrium point (0,0,0) as:

—~(c,+x) (¢, +7x) 0 0
I = 0 00
0 00

Let pick ¢,(£)=1+0.25sin¥, k =4, n({)=0.25cos? .
Then

G+ y 0.5cos’

o +k T11025sint+4
v, (O)=kye " =kje

and

764? 0.25 cos? ;

V1(€)=k0€ o+ =k0€ 1+0.25 sin 4

where ¢>0, k, is an arbitrary constant, and in both case the eigenvalues are negative, that is
V.oV, >0 as £ —>oco. If it is needed in the following procedure, IT denotes the matrix without
control (kK =7 =0) of the above. It is obvious that the given feedback control makes the convergence
rate slow. This claim will be verified below with simulation results.

Remark 1 When it comes to control, the function with index ¢ means with control.

3.3. Simulations

2

Figure 3. Phase portrait of (4) without control. The axes are given in volt.
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4R T T T T T

Vl,V2,V3 2

Figure 6. Solution of (4) with control. ¥,¥,,V, are given in volt, and ¢ in second.
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Figure 7. Time series Solution of v, in (4) without and with control. | is given in volt, and / in
second.

As shown in Figure 3 and Figure 4, the phase platforms have been stabilized. The
convergences are decaying exponentially with oscillation. Figure 5 and Figure 6 give measurements of
liquid levels of tanks in Volts. The topology of the system shows that feedback controllers only effect
v, as shown in Figure 5, Figure 6, and Figure 7. The convergence rate is slow when the machine

operates with controls since the system operates in parallel. In the series case, the convergence rate is
faster.

4. Discussion and Conclusion

In industry, liquid tanks with flotation cells are generally used by mining and chemical
engineers in the process of diverse minerals, sediments, inorganic waste constituents, and waste water.
In nature, physical phenomena can be represented by differential equations. It is very logical to
consider differential equations with the concept of circuit theory and examine electrical models of
mechanical systems. Hence, the qualitative performance of mechanical systems can be measured by
electrical models. Moreover, electrical systems are more efficient, inexpensive, and safe than
mechanical systems. Hence, many technical complications can be avoided. Compared with the
relevant references, the designed dynamic systems, the constructed Lyapunov functions, and the time
derivative of these functions are unique. Related studies cover a small number of tanks, up to six
tanks, but there is no limitation on the number of tanks in this study. Despite this, the proposed
algorithm produces systematic results. In this study, the explicit mathematical expressions come from
the physical principles of the system and engineering specifications without any approximation. In the
future, this work may trigger studies on the stability of dynamic systems, especially Hopfield-type
neural networks and complex dynamical systems.
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