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Bir 𝐺 = (𝑉, 𝐸) çizgesinin triyametresi tr(𝐺) ile gösterilir ve her 𝑢, 𝑣, 𝑤 ∈ 𝑉 için  𝑑(𝑢, 𝑣) +
𝑑(𝑣, 𝑤) + 𝑑(𝑤, 𝑢) toplamının maksimumu olarak tanımlanır. Bu çalışmanın ilk iki bölümünde 

triyameter tanımı yapılmış ve kısaca bu kavramın tarihsel gelişimine değinilmiştir. Üçüncü 

bölümde bir çizgenin düğüm sayısı 𝑛 ve minmum derece 𝛿 cinsinden triameter için geliştirilmiş 

üst sınırlar elde edilmiştir.  𝐺, mininmum derecesi 𝛿 ≥ 3 ve 𝑔𝑖𝑟𝑡ℎ(𝐺) ≥ 5 olan 𝑛 köşeli bir 

çizge olmak üzere 𝑡𝑟(𝐺) ≤
3(𝑛−2)

𝛿−1
≤

6𝑛

𝑛+1
 olduğu gösterilmiştir. Ayrıca,  𝐺,  𝑔𝑖𝑟𝑡ℎ(𝐺) = 4 olan 

𝑛 mertebeli bir kübik Cayley çizgesi iken 𝑡𝑟(𝐺) ≤ 𝑛 <
6𝑛

𝛿+1
 ve 𝐺, minimal bağlantılı bir çizge 

iken  𝑟(𝐺) ≤
6𝑛

𝛿+1
 eşitsizlikleri elde edilmiştir.  Çalışmanın dördüncü bölümünde triyametresi 

4, 5 ve 2𝑛 − 3’e eşit olan 𝑛 köşel tüm çizgeler için tam bir karaterizasyon elde edilmiştir.  Son 

olarak çalışmanın altıncı bölümünde gelecek araştırmalar için çeşitli açık problemler ortaya 

konmuştur. 
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The triameter of a graph 𝐺 = (𝑉, 𝐸)is denoted by tr(𝐺)and defined as the maximum value of 

𝑑(𝑢, 𝑣) + 𝑑(𝑣, 𝑤) + 𝑑(𝑤, 𝑢)over all 𝑢, 𝑣, 𝑤 ∈ 𝑉. In the first two chapter the concept of 

triameter is first defined, and its historical development is briefly discussed in the first section. 

In the third section, improved upper bounds for the triameter of a graph are derived in terms of 

its order 𝑛 and 𝛿. If 𝐺 is a graph with 𝛿 ≥ 3 and girth(𝐺) ≥ 5, then tr(𝐺) ≤
3(𝑛−2)

𝛿−1
≤

6𝑛

𝛿+1
 was obtained. Furthermore, when 𝐺 is a cubic Cayley graph of order 𝑛 with girth(𝐺) =

4, tr(𝐺) ≤ 𝑛 <
6𝑛

𝛿+1
 holds, and for minimally connected graph 𝐺, it is shown that tr(𝐺) ≤

6𝑛

𝛿+1
. 

The fourth section, a characterization is provided for all graphs having triameter 4, 5, or 2𝑛 −
3. Finally, in the sixth section, several open problems are proposed for future research. 
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INTRODUCTION 

The concept of the triameter for connected graphs was originally investigated in [1], where it was 

identified as a significant distance parameter providing a lower bound for the radio chromatic number. 

Among various findings, [1] established certain bounds relative to the graph's order and its connected 

domination number. Furthermore, Das [1] proposed four open problems regarding the triameter; 

notably, questions 1, 3, and 4 have subsequently been addressed by Hak, Kozerenko, and Oliynyk in 

[2]. These open inquiries can be restated as follows: 

1. The currently known bound for 𝑡𝑟(𝑇) is not tight. Is it possible to determine a sharp lower 

bound for 𝑡𝑟(𝑇) given specific values for 𝑛 (vertex count) and 𝑙 (leaf count)? 

2. Can alternative lower bounds for 𝑡𝑟(𝐺) be established for all connected graphs using 

parameters beyond girth, potentially incorporating the minimum degree 𝛿(𝐺) or 

maximum degree 𝛥(𝐺)? 

3. Does every set of three vertices defining the triameter in a tree necessarily include a pair 

that defines the diameter? 

4. Can every diametral pair within a tree be augmented to form a triametral triple? 

To comprehend the structural nuances of graphs, researchers heavily rely on distance-related 

metrics such as radius, average distance, and diameter ([3,4]). Within this scope, the triameter-

introduced in [1]-is distinguished by its focus on the aggregate distances between vertex triplets rather 

than pairs. Mathematically, for a connected graph 𝐺 =  (𝑉, 𝐸), the triameter, denoted as 𝑡𝑟(𝐺), is 

defined as the maximum value of the sum 𝑑(𝑢, 𝑣)  +  𝑑(𝑣, 𝑤)  +  𝑑(𝑤, 𝑢) for any vertices 𝑢, 𝑣, 𝑤 

belonging to 𝑉. 

While initially introduced as a distance parameter, the triameter has since revealed intriguing 

connections to various areas in combinatorics and graph labeling, particularly in establishing lower 

bounds for different chromatic numbers. Moreover, through its behavior in special classes of graphs-

such as Cayley graphs and Hamiltonian graphs-the triameter also intersects with algebraic graph theory, 

where group-theoretic structures influence graph parameters. 

In his seminal work, Das presented several bounds on the triameter in terms of basic graph 

invariants and posed a set of open problems, many of which were subsequently addressed by (Hak, 

Kozerenko, and Oliynyk, [2]). These developments underscore the triameter’s potential as a rich subject 

of algebraic and combinatorial investigation. In particular, bounding triameter using parameters like 

graph order, minimum degree, or domination number remains an active area of research. 

In this paper, we contribute to this growing body of knowledge by establishing new bounds and 

structural characterizations related to the triameter. Our main results include: 

• A refined upper bound on triameter in terms of the order and minimum degree of the 

graph. 

• A complete characterization of all graphs with triameter 4, 5, and 2𝑛 −  3, where 𝑛 is the 

number of vertices. 

• A classification of graphs 𝐺 for which 𝑡𝑟(𝐺) = 𝑡𝑟(𝐺𝑐), and a proof that this equality fails 

for certain triameter values. 

• A discussion of the effect of edge and vertex deletions on triameter, along with related 

open problems and conjectures. 
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PRELIMINARIES 

In this section, we outline the fundamental concepts and notations of graph theory employed 

throughout this work. For any graph-theoretical terms not explicitly defined here, the reader is directed 

to [5] for a comprehensive overview. 

A graph 𝐺 is defined by the pair (𝑉, 𝐸), comprising a vertex set 𝑉(𝐺) and an edge set 𝐸(𝐺). 

Within such a graph, a cycle refers to a closed path that traverses from a starting point back to itself 

without repeating any vertices. Regarding connectivity, 𝐺 is classified as connected if a path exists 

between every pair of distinct vertices. Conversely, if every pair of distinct vertices is directly joined by 

an edge, the graph is termed complete and is symbolized as 𝐾𝑛 for a graph with 𝑛 vertices. Furthermore, 

a graph is deemed planar if its representation on a 2D plane involves no edge crossings other than at the 

endpoints. 

An acyclic connected graph is known as a tree; essentially, this implies that a unique path links 

any two vertices. A spanning tree for a graph with 𝑛 vertices is defined as a subgraph containing 𝑛 −  1 

edges that maintains connectivity. The notation 𝑢 ~ 𝑣 indicates adjacency between vertices 𝑢 and 𝑣. The 

diameter of 𝐺, denoted by 𝑑𝑖𝑎𝑚(𝐺), represents the supremum of the shortest path distances 𝑑(𝑎, 𝑏) 

between vertex pairs; this value is considered infinite (∞) for disconnected graphs. The length of the 

shortest cycle within 𝐺 constitutes its girth, 𝑔𝑖𝑟𝑡ℎ(𝐺), which is set to ∞ if the graph is acyclic. Vertices 

separated by a distance equal to the diameter are termed antipodal, and they are connected by a 

diametrical path. 

A vertex possessing a degree of exactly one is called a pendant vertex, and its incident edge is a 

pendant edge. The 𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑒(𝑣) corresponds to the maximum distance from a specific vertex 𝑣 to 

any other node in 𝐺. Consequently, the graph’s radius, 𝑟𝑎𝑑(𝐺), is the minimum value among these 

eccentricities. In terms of Ramsey theory, the Ramsey number 𝑟 =  𝑅(𝑚, 𝑛) is defined as the smallest 

integer 𝑟 ensuring that every simple undirected graph of that order contains either a clique of size 𝑚 or 

an independent set of size 𝑛. 

Let 𝔾 represent a group and 𝑆 be an inverse-closed subset of 𝔾 (where 𝑥 ∈  𝑆 implies 𝑥⁻¹ ∈  𝑆) 

excluding the identity element. The Cayley graph of 𝔾 relative to S is constructed with the vertex set 𝔾, 

where distinct elements 𝑥, 𝑦 are adjacent if 𝑥𝑦⁻¹ ∈  𝑆. A set of edges sharing no common vertices 

constitutes a matching. The complement graph 𝐺ᶜ shares the vertex set of 𝐺 but connects two vertices 

𝑥, 𝑦 if and only if they are non-adjacent in 𝐺. A cubic graph is characterized by a regular degree of three 

for all vertices. The bull graph is a specific planar structure with 5 vertices and 5 edges, resembling a 

triangle with two disjoint pendant edges. Finally, a graph is said to be Hamiltonian if it contains a cycle 

that visits every vertex exactly once. 

UPPER BOUNDS RELATING TO GRAPH ORDER AND MINIMUM DEGREE 

This section focuses on establishing refined upper bounds for the triameter of a graph, specifically 

utilizing the graph's order and its minimum degree as key parameters. Previously, Erdös et al. [6] 

determined an upper limit for the diameter of a graph based on these exact characteristics. 

Theorem 3.1 [6] Consider a connected graph 𝐺 possessing n vertices and a minimum degree δ ≥

2. The diameter satisfies the inequality: 𝑑𝑖𝑎𝑚(𝐺) ≤ 3𝑛/(δ + 1). 

Given the inequality 𝑡𝑟(𝐺) ≤ 3 ⋅ 𝑑𝑖𝑎𝑚(𝐺) a direct consequence is the bound t 𝑡𝑟(𝐺) ≤

9𝑛/(δ + 1). Can we tighten this obvious bound? Based on several observations, we strongly suspect 

that 𝑡𝑟(𝐺) ≤ 6𝑛/(δ + 1). Clearly, this holds for δ = 1 and 2, as 𝑡𝑟(𝐺) ≤ 2𝑛 − 2 by [1, Theorem 3.7]. 

Therefore, we may proceed without loss of generality by assuming 𝛿 ≥  3, which implies the existence 

of a cycle within the graph. Hence the graph contains a cycle. Our initial demonstration verifies this 
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result for graphs exhibiting a girth of at least 5. 

Theorem 3.2 Let 𝐺 be a connected graph on 𝑛 vertices with δ ≥ 3 and 𝑔𝑖𝑟𝑡ℎ(𝐺) ≥ 5. Then 

tr(𝐺) ≤
3(𝑛 − 2)

𝛿 − 1
≤

6𝑛

𝛿 + 1
⋅ 

Proof: Let 𝑃: 𝑢 = 𝑢0 ∼ 𝑢1 ∼ 𝑢2 ∼ ⋯ ∼ 𝑢𝑑𝑖𝑎𝑚(𝐺) = 𝑣 be a diametrical path in 𝐺. As 𝑃 is a 

diametrical path and 𝑔𝑖𝑟𝑡ℎ(𝐺) ≥ 5, 𝑢 and 𝑣, each have at least δ − 1 distinct neighbours and each 

internal vertex of 𝑃 has at least δ − 2 distinct neighbours (not lying on 𝑃) in 𝐺. Thus, counting these 

distinct neighbours (not on 𝑃) and the vertices on the path, we get 

2(δ − 1) + (𝑑𝑖𝑎𝑚(𝐺) − 1)(δ − 2) + (𝑑𝑖𝑎𝑚(𝐺) + 1) ≤ 𝑛, i.e., 𝑑𝑖𝑎𝑚(𝐺) + 1 ≤
(𝑛 − 2)

𝛿 − 1
⋅ 

Now, as 𝑡𝑟(𝐺) ≤ 3 ⋅ 𝑑𝑖𝑎𝑚(𝐺) we have  

𝑡𝑟(𝐺) < 𝑡𝑟(𝐺) + 3 ≤ 3 ⋅ 𝑑𝑖𝑎𝑚(𝐺) + 3 ≤
3(𝑛 − 2)

𝛿 − 1
⋅ 

Again as δ ≥ 3, we have (𝑛 + 2)δ ≥ 3𝑛 − 2, i.e., (𝑛 − 2)(δ + 1) ≤ 2𝑛(δ − 1), i.e., 

3(𝑛 − 2)

𝛿 − 1
≤

6𝑛

𝛿 + 1
⋅ 

To illustrate the aforementioned theorem, the Petersen graph serves as a pertinent model. This 

well-established cubic graph consists of 10 vertices and possesses a girth of 5, while its triameter is 

calculated as 6. In this specific instance, the inequality calculation yields 12, which is strictly greater 

than 6, thereby validating the theorem. 

Thus, to prove the conjecture, we need to focus on the case 𝑔𝑖𝑟𝑡ℎ(𝐺) = 3 or 𝑔𝑖𝑟𝑡ℎ(𝐺) = 4. A 

partial answer to the case 𝑔𝑖𝑟𝑡ℎ(𝐺) = 4 holds in a particular case. 

Lemma 3.1 [7] Every cubic Cayley graph characterized by a girth of four possesses a Hamiltonian 

cycle. 

Proposition 3.1 Let 𝐺 represent a cubic Cayley graph with a girth of 4 and order 𝑛. Under these 

conditions 𝑡𝑟(𝐺) ≤ 𝑛 <
6𝑛

δ+1
⋅ 

Proof: It follows from Lemma 3.1 and for an 𝑛 vertex Hamiltonian graph 𝐺, 𝑡𝑟(𝐺) ≤ 𝑛 <
6𝑛

3+1
⋅ 

The complete bipartite graph 𝐾3,3, which has a triameter of 3 against an upper bound of 9, stands 

as a prime example of this scenario. Analogously, this conclusion extends to any Hamiltonian graph 

where 𝛿 ≤  5. 

Another partial result can be derived regarding minimally connected graphs. We classify a graph 

𝐺 = (𝑉, 𝐸) as minimally r-connected (or simply minimally connected) when specific conditions are met: 

its vertex connectivity is κ(𝐺) = 𝑟 and for any edge 𝑒 ∈ 𝐸 reduces this connectivity to κ(𝐺 − 𝑒) = 𝑟 −

1. Furthermore, the vertex connectivity κ(𝐺) is defined as the minimum cardinality of a vertex cut; that 

is, a subset 𝑆 ⊆ 𝑉(𝐺) whose removal renders 𝐺 disconnected or reduces it to a single vertex. 

Lemma 3.2 [5, Proposition 3.14] Consider a graph G comprising n vertices with a vertex 

connectivity of κ. The following bound applies: 𝑡𝑟(𝐺) ≤
3(𝑛−2)

κ
+ 3. 

Proposition 3.2 Let 𝐺 be identified as a minimally connected graph with 𝑛 vertices. Then, 

𝑡𝑟(𝐺) ≤
6𝑛

𝛿+1
⋅ 
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Proof: It is a standard graph-theoretical fact that for any connected graph 𝐺, the vertex 

connectivity satisfies κ(𝐺) ≤ δ(𝐺). As established by Halin in [8], for a minimally connected graph, 

this equality holds strictly as κ(𝐺) = δ(𝐺). Therefore, by applying Lemma 3.2, we obtain 𝑡𝑟(𝐺) ≤
3(𝑛−2)

𝜅
+ 3 =

3(𝑛−2)

𝛿
+ 3 ≤

6𝑛

𝛿+1
⋅ 

As any tree is minimally connected, any tree is an example to justify the above proposition. 

GRAPHS WITH TRIAMETER 4, 5, AND 𝟐𝒏 − 𝟑 

It is trivially observed that complete graphs represent the sole class of graphs possessing a 

triameter of 3. In a parallel vein, previous findings in [1] established the upper bound 𝑡𝑟(𝐺) ≤ 2𝑛 − 2 

identifying that the only 𝑛-vertex graphs with 𝑡𝑟(𝐺) = 2𝑛 − 2 achieving this limit are trees 

characterized by having either 2 or 3 leaves. The primary objective of this section is to provide a 

characterization for graphs exhibiting triameters of 4, 5, and 2𝑛 − 3. 

Theorem 4.1 Consider an 𝑛 vertex graph 𝐺. The condition 𝑡𝑟(𝐺) = 4 holds if and only if 𝐺 is 

isomorphic to 𝐾𝑛 ∖ 𝑀 where 𝑀 represents a non-empty matching within 𝐾𝑛. 

Proof: Let us begin with the complete graph 𝐾𝑛 composed of 𝑛 vertices.  The removal of any 

single edge 𝑒 results in 𝑡𝑟(𝐾𝑛 − 𝑒) = 4. Suppose we select a second edge 𝑒′ from the graph 𝐾𝑛 − 𝑒. 

Should 𝑒 and 𝑒′ share a common vertex (i.e., they are incident), the triameter increases to 

𝑡𝑟(𝐾𝑛 ∖ {𝑒, 𝑒′}) = 5.  Conversely, if the edges are disjoint (non-incident), the triameter remains stable 

at 𝑡𝑟(𝐾𝑛 ∖ {𝑒, 𝑒′}) = 4. By extending this logic, it becomes evident that removing a set of disjoint edges-

specifically, a matching 𝑀 of 𝐾𝑛- results in 𝑡𝑟(𝐾𝑛 ∖ 𝑀) = 4 

For the converse argument, assume we have a graph 𝐺 with 𝑛 vertices where 𝑡𝑟(𝐺) = 4. 

Structurally, 𝐺 must be derived from 𝐾𝑛 through the deletion of a specific set of edges. However, as 

previously demonstrated, the removal of any pair of incident edges elevates the triameter beyond 4. 

Consequently, to maintain the triameter at 4, the deleted edges must be mutually non-incident, thereby 

forming a matching. This concludes the proof. 

Theorem 4.2 Let 𝐺 = (𝑉, 𝐸) be a graph on 𝑛 vertices. The equality 𝑡𝑟(𝐺) = 5 is valid if and only 

if the diameter is 2 and the graph can be expressed as 𝐺 = 𝐾𝑛 ∖ 𝑇. Here 𝑇 ⊆ 𝐸(𝐾𝑛) represents an edge 

subset that includes at least two incident edges but is devoid of any triangles. 

Proof: Let 𝐺 be a graph on 𝑛 vertices with 𝑑𝑖𝑎𝑚(𝐺) = 2 and 𝐺 = 𝐾𝑛 ∖ 𝑇, for some 𝑇 ⊆ 𝐸(𝐾𝑛) 

such that 𝑇 contains at least two incident edges and 𝑇 does not contain any triangle. Since 𝑑𝑖𝑎𝑚(𝐺) =

2, then 𝑡𝑟(𝐺) = 4,5   or 6. As 𝑇 contains at least two incident edges, 𝑡𝑟(𝐺) ≠ 4. If 𝑡𝑟(𝐺) = 6, then 

there exist three vertices 𝑢, 𝑣, 𝑤 such that 𝑑(𝑢, 𝑣) = 𝑑(𝑣, 𝑤) = 𝑑(𝑤, 𝑢) = 2. (Note that 𝑑(𝑢, 𝑣) +

𝑑(𝑣, 𝑤) + 𝑑(𝑤, 𝑢) = 3 + 2 + 1 is not possible, as 𝑑𝑖𝑎𝑚(𝐺) = 2). Thus 𝐺 contains three vertices which 

are mutually non-adjacent, i.e., 𝑇 contains a triangle, a contradiction. Thus 𝑡𝑟(𝐺) = 5. 

Conversely, let 𝑡𝑟(𝐺) = 5. Then 𝑑𝑖𝑎𝑚(𝐺) = 2 and 𝐺 can be obtained by removing some suitable 

edges 𝑇 from 𝐾𝑛. If 𝑇 does not contain any incident edges, then 𝑇 is a matching and hence 𝑡𝑟(𝐺) = 4, 

a contradiction. If 𝑇 contains a triangle, then 𝑡𝑟(𝐺) ≥ 6, a contradiction. Hence 𝑇 contains at least two 

incident edges and 𝑇 does not contain any triangle. 

Corollary 4.1 Let 𝐺 = (𝑉, 𝐸) be a graph on 𝑛 vertices such that 𝑡𝑟(𝐺) = 6 and 𝑑𝑖𝑎𝑚(𝐺) = 2. 

Then 𝐺 = 𝐾𝑛 ∖  𝑇 , for some 𝑇 ⊆ 𝐸(𝐾𝑛) such that 𝑇 contains at least a triangle. 

Theorem 4.3 Let 𝐺 = (𝑉, 𝐸) be a graph on 𝑛 ≥  3 vertices. Then 𝑡𝑟(𝐺) = 2𝑛 − 3 if and only if 

𝐺 is either 𝐾3 or isomorphic to a graph formed by joining 3 paths to the three vertices of a 𝐾3. 

Proof: Clearly, if  𝐺 is either 𝐾3 or isomorphic to a graph formed by joining 3 paths to the three 
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vertices of a 𝐾3, then 𝑡𝑟(𝐺) = 2𝑛 − 3. 

Conversely, let 𝑡𝑟(𝐺) = 2𝑛 − 3. Then for any spanning tree 𝑇 of 𝐺, we have 𝑡𝑟(𝑇)\𝑔𝑒𝑞 𝑡𝑟(𝐺) =

2𝑛 − 3. Since 𝑇 is bipartite, 𝑡𝑟(𝑇) can not be odd. Thus 𝑡𝑟(𝑇) = 2𝑛 − 2 for all spanning trees 𝑇 of 𝐺 

and any spanning tree is either with 2 or 3 leaves. We claim that Δ(𝐺) < 4. Because, for every connected 

graph 𝐺, there exists a spanning tree 𝑇 of 𝐺 such that Δ(𝐺) = Δ(𝑇) and any tree 𝑇 has at least Δ(𝑇) 

leaves. Thus Δ(𝐺) = 2 or 3. 

If Δ(𝐺) = 2, then any spanning tree of 𝐺 can not have 3 leaves. Thus 𝑃𝑛 is the only spanning tree 

of 𝐺 and 𝑡𝑟(𝑃_𝑛) = 2𝑛 − 2 > 𝑡𝑟(𝐺). Thus 𝐺 has at least one edge more than 𝑃𝑛. However, joining any 

edge between the internal vertices of 𝑃𝑛 creates a vertex of degree more than 2 in 𝐺. Thus, only the 

leaves of 𝑃𝑛 can be joined by an edge. But, in that case 𝐺 = 𝐶𝑛 and 𝑡𝑟(𝐺) = 𝑛 = 2𝑛 − 3. This implies 

that 𝑛 = 3, i.e., 𝐺 = 𝐾3. 

If Δ(𝐺) = 3, let 𝑇 be a spanning tree of 𝐺 and Δ(𝑇) = 3. Then, we have 𝛾𝑐(𝐺) = 𝛾𝑐(𝑇) = 𝑛 −

3 = 𝑛 − Δ. By [9], this implies that 𝑇 has exactly one vertex of degree 3 , say 𝑢. Let 𝑢1, 𝑢2, 𝑢3 be the 

three neighbours of 𝑢 in 𝑇. Now, 𝑡𝑟(𝑇) = 2𝑛 − 2 > 𝑡𝑟(𝐺). Thus 𝐺 has at least one edge more than 𝑇. 

Clearly, no edge in 𝐺, apart from 𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3, can be incident to 𝑢, as that would violate Δ(𝐺) = 3. 

Joining any two of 𝑢𝑖 and 𝑢𝑗 by an edge in 𝑇 yields a graph with triameter 2𝑛 − 3. However adding any 

other edges in 𝑇 yields a graph with triameter smaller than 2𝑛 − 3. Hence the theorem holds. 

Corollary 4.2 Let 𝐺 be a graph on 𝑛 vertices such that 𝑡𝑟(𝐺) = 2𝑛 − 3 and 𝐺𝑐 is connected. 

Then 

𝑡𝑟(𝐺𝑐) = {
7,               𝑖𝑓 𝐺 ≅ 𝐵𝑢𝑙𝑙 𝑔𝑟𝑎𝑝ℎ,
6,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Proof: It follows from the characterization of graphs with 𝑡𝑟(𝐺) = 2𝑛 − 3 in Theorem 4.3. 

CHARACTERIZING GRAPHS WITH 𝒕𝒓(𝑮)= 𝒕𝒓(𝑮𝒄) 

Lemma 5.1 [1, Lemma 5.2] Let 𝐺 = (𝑉; 𝐸) be a graph such that 𝐺 and 𝐺𝑐 are connected. If 

𝑡𝑟(𝐺) > 9, then 𝑡𝑟(𝐺𝑐) ≤ 6. 

In the light of Lemma 5.1 if for a graph 𝐺, 𝑡𝑟(𝐺) = 𝑡𝑟(𝐺𝑐) holds, then 𝑡𝑟(𝐺) = 𝑡𝑟(𝐺𝑐) ∈

{3,4,5,6,7,8,9}. Then the natural question to ask is to characterize those graphs. 

Proposition 5.1 Let There does not exist any graph 𝐺, such that 𝐺 and 𝐺𝑐  are connected and 

𝑡𝑟(𝐺) = 𝑡𝑟(𝐺𝑐) ∈ {3,4,9}.  

Proof: The only graphs 𝐺 with 𝑡𝑟(𝐺) = 3 are 𝐾𝑛. As complement of 𝐾𝑛 is disconnected, there 

does not exist any graph 𝐺 such that 𝑡𝑟(𝐺) = 𝑡𝑟(𝐺𝑐) = 3. 

Let, if possible, 𝐺 be a graph such that 𝑡𝑟(𝐺) = 𝑡𝑟(𝐺𝑐) = 4. As 2 ⋅ 𝑑𝑖𝑎𝑚(𝐺) ≤ 𝑡𝑟(𝐺)\𝑙𝑒𝑞3 ⋅

𝑑𝑖𝑎𝑚(𝐺), we have 𝑑𝑖𝑎𝑚(𝐺) = 𝑑𝑖𝑎𝑚(𝐺𝑐) = 2. Let 𝑢, 𝑣, 𝑤 be the vertices in 𝐺 for which the triameter 

is attained. Then, without loss of generality, let 4 = 𝑡𝑟(𝐺) = 𝑑𝐺(𝑢, 𝑣) + 𝑑𝐺(𝑣, 𝑤) + 𝑑𝐺(𝑤, 𝑢) = 1 +

1 + 2. This means (𝑢, 𝑣), (𝑣, 𝑤) ∈ 𝐸(𝐺), i.e., (𝑢, 𝑣), (𝑣, 𝑤) ∉ 𝐸(𝐺𝑐). Hence 𝑑𝐺𝑐(𝑢, 𝑣) + 𝑑𝐺𝑐(𝑣, 𝑤) +

𝑑𝐺𝑐(𝑤, 𝑢) = 2 + 2 + 1 = 5 > 𝑡𝑟(𝐺𝑐), a contradiction. Thus, there does not exist any graph 𝐺 such that 

𝑡𝑟(𝐺) = 𝑡𝑟(𝐺𝑐) = 4. 

Let, if possible, 𝐺 be a graph such that 𝑡𝑟(𝐺) = 𝑡𝑟(𝐺𝑐) = 9. Thus 𝑑𝑖𝑎𝑚(𝐺), 𝑑𝑖𝑎𝑚(𝐺𝑐) ∈ {3,4}. 

However, as 𝑑𝑖𝑎𝑚(𝐺𝑐) > 3 implies 𝑑𝑖𝑎𝑚(𝐺) < 3, we have 𝑑𝑖𝑎𝑚(𝐺) = 𝑑𝑖𝑎𝑚(𝐺𝑐) = 3. By [10, 

Corollary 2.4 (v)], this implies 𝑟𝑎𝑑(𝐺) = 𝑟𝑎𝑑(𝐺𝑐) = 2. As 𝑟𝑎𝑑(𝐺) < 𝑑𝑖𝑎𝑚(𝐺), this means that 𝐺 is 

not self-centered. Then, by [10, Corollary 2.5], 𝐺 has two adjacent vertices 𝑥 and 𝑦 such that 𝑁𝐺(𝑥) ∪

𝑁𝐺(𝑦) = 𝑉(𝐺). However, this means for any three vertices 𝑢, 𝑣, 𝑤, 𝑑𝐺(𝑢, 𝑣) + 𝑑𝐺(𝑣, 𝑤) + 𝑑𝐺(𝑤, 𝑢) ≤
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8, a contradiction. Hence, there does not exist any graph 𝐺 such that 𝑡𝑟(𝐺) = 𝑡𝑟(𝐺𝑐) = 9. 

Theorem 5.1 If 𝐺 is a graph such that 𝑡𝑟(𝐺) = 𝑡𝑟(𝐺𝑐) = 5, then 𝐺 ≅ 𝐶5. 

Proof: Let 𝐺 be a graph on 𝑛 vertices such that 𝑡𝑟(𝐺) = 𝑡𝑟(𝐺𝑐) = 5. By Theorem 4.2, we have 

𝐺 = 𝐾𝑛 ∖  𝑇, for some$𝑇 ⊆  𝐸(𝐾𝑛) such that 𝑇 contain at least two incident edges and 𝑇 does not 

contain any triangle. Now, as 𝐺 = 𝐾𝑛 ∖ 𝑇, we have 𝐺𝑐 = 𝑇 and all the 𝑛 vertices of 𝐺𝑐 are incident to 

one or more edges in 𝑇. Again as 𝑡𝑟(𝐺𝑐) = 5, by Theorem 4.2, 𝐾𝑛 ∖  𝑇 does not contain any triangle. 

Thus both 𝐺 and 𝐺𝑐 is triangle-free, i.e., 𝐺 neither contains a clique of size 3 nor an independent set of 

size 3. Thus 𝑛 < 𝑅(3,3) = 6, where 𝑅(𝑎, 𝑏) denotes the Ramsey number. Hence 𝑛 ≤ 5. As 𝐺 and 𝐺𝑐 

are both connected, we have 𝑛 ≥ 4. However, the only connected graph on 4 vertices whose 

complement is also connected is 𝑃4 and 𝑡𝑟(𝑃4) = 6. Thus the only option left is 𝑛 = 5. An exhaustive 

search on connected graphs 𝐺 on 5 vertices such that its complement is connected and 𝑡𝑟(𝐺) =

𝑡𝑟(𝐺𝑐) = 5 gives 𝐺 ≅ 𝐶5. 

CONCLUSION AND OPEN PROBLEMS 

In this final section, we outline potential avenues for future inquiry and present several open 

problems derived from our findings. 

• (Characterizing graphs 𝑮 with 𝒕𝒓(𝑮) = 𝒕𝒓(𝑮𝒄) ∈ {𝟔, 𝟕, 𝟖}) 

• It was shown that 𝑡𝑟(𝐺) = 𝑡𝑟(𝐺𝑐) ∈ {3,4,9} can not hold and 𝑡𝑟(𝐺) = 𝑡𝑟(𝐺𝑐) = 5 

implies 𝐺 ≅ 𝐺𝑐 ≅  𝐶5.  Thus characterizing the class of graphs 𝐺 with 𝑡𝑟(𝐺) = 𝑡𝑟(𝐺𝑐) ∈

{6,7,8} can be an interesting topic of research. See Figure 1 which shows that each of 

these classes are non-empty. 

• (Effect of vertex and edge removal on triameter) 

Proposition 6.1  Consider a connected graph G and a vertex subset 𝐴 ⊆ 𝑉(𝐺). Suppose that for 

every element 𝑎 ∈ 𝐴 be the subgraph 𝐺 − 𝑎 remains connected but exhibits a strictly smaller triameter, 

i.e., 𝑡𝑟(𝐺 − 𝑎) < 𝑡𝑟(𝐺). Under these constraints, the cardinality of 𝐴 satisfies|𝐴| ≤ 3. 

Proof: Let 𝑡𝑟(𝐺) = 𝑑(𝑢, 𝑣, 𝑤). Let 𝑥 ∈ 𝑉(𝐺) ∖ {𝑢, 𝑣, 𝑤} such that 𝐺′ = 𝐺 − 𝑥 is connected. 

Then 𝑡𝑟(𝐺′) ≥ 𝑑𝐺′(𝑢, 𝑣, 𝑤) ≥  𝑑𝐺(𝑢, 𝑣, 𝑤) = 𝑡𝑟(𝐺). Thus 𝑥 ∉ 𝐴, i.e., 𝐴 ⊆ {𝑢, 𝑣, 𝑤}, i.e., |𝐴| ≤ 3. 

This can be a starting point for studying triameter vertex-critical graphs. 

• (Conjecture: 𝑡𝑟(𝐺) ≤
6𝑛

𝛿+1
) In Theorem 3.2, Proposition 3.1 and Proposition 3.2, it was 

proved that 𝑡𝑟(𝐺) ≤
6𝑛

𝛿+1
 for certain families of graphs. However, we strongly suspect 

that the result is true for any connected graph 𝐺 and the bound is assymptotically tight. 

To settle this, one need to prove the result for connected graphs 𝐺 with girth 3 and 4 and 

𝛿(𝐺) ≥ 3. 

 

Figure 1 

Some graphs with 𝑡𝑟(𝐺) = 𝑡𝑟(𝐺𝑐). 
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