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Bir G = (V, E) gizgesinin triyametresi tr(G) ile gosterilir ve her u,v,w €V igin d(u,v) +
d(v,w) + d(w,u) toplaminin maksimumu olarak tanimlanir. Bu ¢aligmanin ilk iki boliimiinde
triyameter tanimi yapilmis ve kisaca bu kavramin tarihsel gelisimine deginilmistir. Uciincii
boliimde bir ¢izgenin diigiim sayisi n ve minmum derece § cinsinden triameter i¢in gelistirilmis

ist sinirlar elde edilmistir. G, mininmum derecesi 6 = 3 ve girth(G) =5 olan n koseli bir

3(n 2)
5-1

n mertebeli bir kiibik Cayley ¢izgesi 1ken tr(G) <n< m ve G, minimal baglantil bir ¢izge

¢izge olmak tizere tr(G) < oldugu gosterllmlstlr Ayrica, G, girth(G) = 4 olan

iken r(G) < % esitsizlikleri elde edilmigtir. Caligmanm dérdiincii boliimiinde triyametresi
4,5 ve 2n — 3’e esit olan n kosel tiim ¢gizgeler i¢in tam bir karaterizasyon elde edilmistir. Son
olarak galigmanin altmecr boliimiinde gelecek arastirmalar icin gesitli agik problemler ortaya
konmustur.
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The triameter of a graph G = (V, E)is denoted by tr(G)and defined as the maximum value of
d(u,v) +d(v,w) +d(w,u)over all u,v,w € V.In the first two chapter the concept of
triameter is first defined, and its historical development is briefly discussed in the first section.
In the third section, improved upper bounds for the triameter of a graph are derived in terms of

its order nand §. If Gis a graph with § > 3 and girth(G) =5, then tr(G) < —— 3(n 2) <

To1 Was obtalned Furthermore, when G is a cubic Cayley graph of order n with glrth(G) =

4,tr(G) <n <sa holds and for minimally connected graph G, it is shown that tr(G) < oL

The fourth sectlon a characterization is provided for all graphs having triameter 4, 5, or 2n —
3. Finally, in the sixth section, several open problems are proposed for future research.
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INTRODUCTION

The concept of the triameter for connected graphs was originally investigated in [1], where it was
identified as a significant distance parameter providing a lower bound for the radio chromatic number.
Among various findings, [1] established certain bounds relative to the graph's order and its connected
domination number. Furthermore, Das [1] proposed four open problems regarding the triameter;
notably, questions 1, 3, and 4 have subsequently been addressed by Hak, Kozerenko, and Oliynyk in
[2]. These open inquiries can be restated as follows:

1. The currently known bound for tr(T) is not tight. Is it possible to determine a sharp lower
bound for tr(T) given specific values for n (vertex count) and [ (leaf count)?

2. Can alternative lower bounds for tr(G) be established for all connected graphs using
parameters beyond girth, potentially incorporating the minimum degree &6(G) or
maximum degree 4(G)?

3. Does every set of three vertices defining the triameter in a tree necessarily include a pair
that defines the diameter?

4. Can every diametral pair within a tree be augmented to form a triametral triple?

To comprehend the structural nuances of graphs, researchers heavily rely on distance-related
metrics such as radius, average distance, and diameter ([3,4]). Within this scope, the triameter-
introduced in [1]-is distinguished by its focus on the aggregate distances between vertex triplets rather
than pairs. Mathematically, for a connected graph G = (V,E), the triameter, denoted as tr(G), is
defined as the maximum value of the sum d(u,v) + d(v,w) + d(w,u) for any vertices u,v,w
belonging to V.

While initially introduced as a distance parameter, the triameter has since revealed intriguing
connections to various areas in combinatorics and graph labeling, particularly in establishing lower
bounds for different chromatic numbers. Moreover, through its behavior in special classes of graphs-
such as Cayley graphs and Hamiltonian graphs-the triameter also intersects with algebraic graph theory,
where group-theoretic structures influence graph parameters.

In his seminal work, Das presented several bounds on the triameter in terms of basic graph
invariants and posed a set of open problems, many of which were subsequently addressed by (Hak,
Kozerenko, and Oliynyk, [2]). These developments underscore the triameter’s potential as a rich subject
of algebraic and combinatorial investigation. In particular, bounding triameter using parameters like
graph order, minimum degree, or domination number remains an active area of research.

In this paper, we contribute to this growing body of knowledge by establishing new bounds and
structural characterizations related to the triameter. Our main results include:

e A refined upper bound on triameter in terms of the order and minimum degree of the
graph.

e A complete characterization of all graphs with triameter 4, 5, and 2n — 3, where n is the
number of vertices.

e A classification of graphs G for which tr(G) = tr(G¢), and a proof that this equality fails
for certain triameter values.

e A discussion of the effect of edge and vertex deletions on triameter, along with related
open problems and conjectures.
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PRELIMINARIES

In this section, we outline the fundamental concepts and notations of graph theory employed
throughout this work. For any graph-theoretical terms not explicitly defined here, the reader is directed
to [5] for a comprehensive overview.

A graph G is defined by the pair (V, E), comprising a vertex set V(G) and an edge set E(G).
Within such a graph, a cycle refers to a closed path that traverses from a starting point back to itself
without repeating any vertices. Regarding connectivity, G is classified as connected if a path exists
between every pair of distinct vertices. Conversely, if every pair of distinct vertices is directly joined by
an edge, the graph is termed complete and is symbolized as K,, for a graph with n vertices. Furthermore,
a graph is deemed planar if its representation on a 2D plane involves no edge crossings other than at the
endpoints.

An acyclic connected graph is known as a tree; essentially, this implies that a unique path links
any two vertices. A spanning tree for a graph with n vertices is defined as a subgraph containingn — 1
edges that maintains connectivity. The notation u ~ v indicates adjacency between vertices u and v. The
diameter of G, denoted by diam(G), represents the supremum of the shortest path distances d(a, b)
between vertex pairs; this value is considered infinite (o) for disconnected graphs. The length of the
shortest cycle within G constitutes its girth, girth(G), which is set to oo if the graph is acyclic. Vertices
separated by a distance equal to the diameter are termed antipodal, and they are connected by a
diametrical path.

A vertex possessing a degree of exactly one is called a pendant vertex, and its incident edge is a
pendant edge. The eccentricity e(v) corresponds to the maximum distance from a specific vertex v to
any other node in G. Consequently, the graph’s radius, rad(G), is the minimum value among these
eccentricities. In terms of Ramsey theory, the Ramsey number v = R(im,n) is defined as the smallest
integer r ensuring that every simple undirected graph of that order contains either a clique of size m or
an independent set of size n.

Let G represent a group and S be an inverse-closed subset of G (where x € S implies x™* € 5)
excluding the identity element. The Cayley graph of G relative to S is constructed with the vertex set G,
where distinct elements x,y are adjacent if xy™* € S. A set of edges sharing no common vertices
constitutes a matching. The complement graph G shares the vertex set of G but connects two vertices
x,y if and only if they are non-adjacent in G. A cubic graph is characterized by a regular degree of three
for all vertices. The bull graph is a specific planar structure with 5 vertices and 5 edges, resembling a
triangle with two disjoint pendant edges. Finally, a graph is said to be Hamiltonian if it contains a cycle
that visits every vertex exactly once.

UPPER BOUNDS RELATING TO GRAPH ORDER AND MINIMUM DEGREE

This section focuses on establishing refined upper bounds for the triameter of a graph, specifically
utilizing the graph's order and its minimum degree as key parameters. Previously, Erdos et al. [6]
determined an upper limit for the diameter of a graph based on these exact characteristics.

Theorem 3.1 [6] Consider a connected graph G possessing n vertices and a minimum degree § =
2. The diameter satisfies the inequality: diam(G) < 3n/(6 + 1).

Given the inequality tr(G) < 3-diam(G) a direct consequence is the bound t tr(G) <
9n/(8 + 1). Can we tighten this obvious bound? Based on several observations, we strongly suspect
that tr(G) < 6n/(8 + 1). Clearly, this holds for § = 1 and 2, as tr(G) < 2n — 2 by [1, Theorem 3.7].
Therefore, we may proceed without loss of generality by assuming § = 3, which implies the existence
of a cycle within the graph. Hence the graph contains a cycle. Our initial demonstration verifies this
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result for graphs exhibiting a girth of at least 5.

Theorem 3.2 Let G be a connected graph on n vertices with § > 3 and girth(G) = 5. Then
3(n—2) 6n
S .
6—-1 6+1

Proof: Let P:u =uy ~uy ~ Uy ~ - ~ Ugigm(c) = V be a diametrical path in G. As P is a

tr(G) <

diametrical path and girth(G) = 5, u and v, each have at least § — 1 distinct neighbours and each
internal vertex of P has at least § — 2 distinct neighbours (not lying on P) in G. Thus, counting these
distinct neighbours (not on P) and the vertices on the path, we get

n—2

26 — 1) + (diam(G) — 1)(6 — 2) + (diam(G) + 1) < n,ie., diam(G) + 1 < (5 — 1) .
Now, as tr(G) < 3 - diam(G) we have

. 3(n—2)

tr(G) <tr(G) +3 <3 -diam(G) +3 < -1
Again as 6>3, we have (n+2)6§=>3n—-2, ie, (n—2)(6+1)<2n(6-1), ie.,
3(n—2) 6n
< .
6—1 ~6+1

To illustrate the aforementioned theorem, the Petersen graph serves as a pertinent model. This
well-established cubic graph consists of 10 vertices and possesses a girth of 5, while its triameter is
calculated as 6. In this specific instance, the inequality calculation yields 12, which is strictly greater
than 6, thereby validating the theorem.

Thus, to prove the conjecture, we need to focus on the case girth(G) = 3 or girth(G) = 4. A
partial answer to the case girth(G) = 4 holds in a particular case.

Lemma 3.1 [7] Every cubic Cayley graph characterized by a girth of four possesses a Hamiltonian
cycle.

Proposition 3.1 Let G represent a cubic Cayley graph with a girth of 4 and order n. Under these

o, . 6
conditions tr(G) < n < — -
5+1

Proof: It follows from Lemma 3.1 and for an n vertex Hamiltonian graph G, tr(G) < n < 36% .

The complete bipartite graph K3 3, which has a triameter of 3 against an upper bound of 9, stands
as a prime example of this scenario. Analogously, this conclusion extends to any Hamiltonian graph
where § < 5.

Another partial result can be derived regarding minimally connected graphs. We classify a graph
G = (V,E) as minimally r-connected (or simply minimally connected) when specific conditions are met:
its vertex connectivity is k(G) = r and for any edge e € E reduces this connectivity to k(G —e) =r —
1. Furthermore, the vertex connectivity k(G ) is defined as the minimum cardinality of a vertex cut; that
is, a subset S € V(G) whose removal renders G disconnected or reduces it to a single vertex.

Lemma 3.2 [5, Proposition 3.14] Consider a graph G comprising n vertices with a vertex

connectivity of k. The following bound applies: tr(G) < @ + 3.

Proposition 3.2 Let G be identified as a minimally connected graph with n vertices. Then,

6n
tr(G) < S+l
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Proof: It is a standard graph-theoretical fact that for any connected graph G, the vertex
connectivity satisfies k(G) < 6(G). As established by Halin in [8], for a minimally connected graph,
this equality holds strictly as k(G) = 8(G). Therefore, by applying Lemma 3.2, we obtain tr(G) <

3(n—2)+3 _ 3(n—2)+3 S6_n.
K 1) 5+1

As any tree is minimally connected, any tree is an example to justify the above proposition.
GRAPHS WITH TRIAMETER 4, 5, AND 2n — 3

It is trivially observed that complete graphs represent the sole class of graphs possessing a
triameter of 3. In a parallel vein, previous findings in [1] established the upper bound tr(G) < 2n — 2
identifying that the only n-vertex graphs with tr(G) = 2n — 2 achieving this limit are trees
characterized by having either 2 or 3 leaves. The primary objective of this section is to provide a
characterization for graphs exhibiting triameters of 4, 5, and 2n — 3.

Theorem 4.1 Consider an n vertex graph G. The condition tr(G) = 4 holds if and only if G is
isomorphic to K, \ M where M represents a non-empty matching within K.

Proof: Let us begin with the complete graph K,, composed of n vertices. The removal of any
single edge e results in tr(K,, — e) = 4. Suppose we select a second edge e’ from the graph K,, — e.
Should e and e’ share a common vertex (i.c., they are incident), the triameter increases to
tr(K, \ {e,e'}) = 5. Conversely, if the edges are disjoint (non-incident), the triameter remains stable
attr(K, \ {e,e'}) = 4. By extending this logic, it becomes evident that removing a set of disjoint edges-
specifically, a matching M of K,,- results in tr(K, \ M) = 4

For the converse argument, assume we have a graph G with n vertices where tr(G) = 4.
Structurally, G must be derived from K, through the deletion of a specific set of edges. However, as
previously demonstrated, the removal of any pair of incident edges elevates the triameter beyond 4.
Consequently, to maintain the triameter at 4, the deleted edges must be mutually non-incident, thereby
forming a matching. This concludes the proof.

Theorem 4.2 Let G = (V, E) be a graph on n vertices. The equality tr(G) = 5 is valid if and only
if the diameter is 2 and the graph can be expressed as G = K,, \ T. Here T € E (K,,) represents an edge
subset that includes at least two incident edges but is devoid of any triangles.

Proof: Let G be a graph on n vertices with diam(G) = 2 and G = K, \ T, for some T € E(K},)
such that T contains at least two incident edges and T does not contain any triangle. Since diam(G) =
2, then tr(G) = 4,5 or 6. As T contains at least two incident edges, tr(G) # 4. If tr(G) = 6, then
there exist three vertices u,v,w such that d(u,v) = d(v,w) = d(w,u) = 2. (Note that d(u,v) +
d(v,w) +d(w,u) = 3 + 2 + 1isnot possible, as diam(G) = 2). Thus G contains three vertices which
are mutually non-adjacent, i.e., T contains a triangle, a contradiction. Thus tr(G) = 5.

Conversely, let tr(G) = 5. Then diam(G) = 2 and G can be obtained by removing some suitable
edges T from K,,. If T does not contain any incident edges, then T is a matching and hence tr(G) = 4,
a contradiction. If T contains a triangle, then tr(G) = 6, a contradiction. Hence T contains at least two
incident edges and T does not contain any triangle.

Corollary 4.1 Let G = (V, E) be a graph on n vertices such that tr(G) = 6 and diam(G) = 2.
Then G = K, \ T, forsome T S E(K,) such that T contains at least a triangle.

Theorem 4.3 Let G = (V,E) be a graph on n > 3 vertices. Then tr(G) = 2n — 3 if and only if
G is either K3 or isomorphic to a graph formed by joining 3 paths to the three vertices of a K.

Proof: Clearly, if G is either K3 or isomorphic to a graph formed by joining 3 paths to the three
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vertices of a K3, then tr(G) = 2n — 3.

Conversely, let tr(G) = 2n — 3. Then for any spanning tree T of G, we have tr(T)\geq tr(G) =
2n — 3. Since T is bipartite, tr(T) can not be odd. Thus tr(T) = 2n — 2 for all spanning trees T of G
and any spanning tree is either with 2 or 3 leaves. We claim that A(G) < 4. Because, for every connected
graph G, there exists a spanning tree T of G such that A(G) = A(T) and any tree T has at least A(T)
leaves. Thus A(G) = 2 or 3.

If A(G) = 2, then any spanning tree of G can not have 3 leaves. Thus P, is the only spanning tree
of G and tr(P_n) = 2n — 2 > tr(G). Thus G has at least one edge more than P,. However, joining any
edge between the internal vertices of P, creates a vertex of degree more than 2 in G. Thus, only the
leaves of P, can be joined by an edge. But, in that case G = C,, and tr(G) = n = 2n — 3. This implies
thatn = 3,1i.e., G = Kj.

If A(G) = 3, let T be a spanning tree of G and A(T) = 3. Then, we have y.(G) = y.(T) =n —
3 =n — A. By [9], this implies that T has exactly one vertex of degree 3 , say u. Let uq, u,, u3 be the
three neighbours of u in T. Now, tr(T) = 2n — 2 > tr(G). Thus G has at least one edge more than T.
Clearly, no edge in G, apart from uu,, uu,, uusz, can be incident to u, as that would violate A(G) = 3.
Joining any two of u; and u; by an edge in T yields a graph with triameter 2n — 3. However adding any

other edges in T yields a graph with triameter smaller than 2n — 3. Hence the theorem holds.

Corollary 4.2 Let G be a graph on n vertices such that tr(G) = 2n — 3 and G° is connected.
Then
7, if G = Bull graph,
6, otherwise

(6% = {
Proof: It follows from the characterization of graphs with tr(G) = 2n — 3 in Theorem 4.3.

CHARACTERIZING GRAPHS WITH tr(6)= tr(G°)

Lemma 5.1 [1, Lemma 5.2] Let G = (V; E) be a graph such that G and G¢ are connected. If
tr(G) > 9, then tr(G°) < 6.

In the light of Lemma 5.1 if for a graph G, tr(G) = tr(G¢) holds, then tr(G) = tr(G°) €
{3,4,5,6,7,8,9}. Then the natural question to ask is to characterize those graphs.

Proposition 5.1 Let There does not exist any graph G, such that G and G€ are connected and
tr(G) = tr(G°) € {3,4,9}.

Proof: The only graphs G with tr(G) = 3 are K,,. As complement of K,, is disconnected, there
does not exist any graph G such that tr(G) = tr(G¢) = 3.

Let, if possible, G be a graph such that tr(G) = tr(G¢) = 4. As 2 - diam(G) < tr(G)\leq3 -
diam(G), we have diam(G) = diam(G°¢) = 2. Let u, v, w be the vertices in G for which the triameter
is attained. Then, without loss of generality, let 4 = tr(G) = dg(u,v) + dg(v,w) + dg(w,u) =1 +
1 + 2. This means (u,v), (v,w) € E(G), i.e., (u,v),(v,w) € E(G). Hence dgc(u,v) + dgec(v,w) +
dec(w,u) =24+2+1=5 > tr(G°), a contradiction. Thus, there does not exist any graph G such that
tr(G) = tr(G°¢) = 4.

Let, if possible, G be a graph such that tr(G) = tr(G¢) = 9. Thus diam(G), diam(G°) € {3,4}.
However, as diam(G€) > 3 implies diam(G) < 3, we have diam(G) = diam(G¢) = 3. By [10,
Corollary 2.4 (v)], this implies rad(G) = rad(G®) = 2. As rad(G) < diam(G), this means that G is
not self-centered. Then, by [10, Corollary 2.5], G has two adjacent vertices x and y such that N (x) U
N¢ (y) = V(G). However, this means for any three vertices u, v,w, d;(u, v) + dg(v,w) + dg(w,u) <
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8, a contradiction. Hence, there does not exist any graph G such that tr(G) = tr(G¢) = 9.
Theorem 5.1 If G is a graph such that tr(G) = tr(G¢) = 5, then G = Cs.

Proof: Let G be a graph on n vertices such that tr(G) = tr(G¢) = 5. By Theorem 4.2, we have
G =K, \ T, for some$T € E(K,) such that T contain at least two incident edges and T does not
contain any triangle. Now, as G = K,, \ T, we have G = T and all the n vertices of G€ are incident to
one or more edges in T. Again as tr(G¢) = 5, by Theorem 4.2, K, \ T does not contain any triangle.
Thus both G and G€ is triangle-free, i.e., G neither contains a clique of size 3 nor an independent set of
size 3. Thus n < R(3,3) = 6, where R(a, b) denotes the Ramsey number. Hence n < 5. As G and G°
are both connected, we have n > 4. However, the only connected graph on 4 vertices whose
complement is also connected is P, and tr(P,) = 6. Thus the only option left is n = 5. An exhaustive
search on connected graphs G on 5 vertices such that its complement is connected and tr(G) =
tr(G¢) =5 gives G = Cs.

CONCLUSION AND OPEN PROBLEMS

In this final section, we outline potential avenues for future inquiry and present several open
problems derived from our findings.

e (Characterizing graphs G with tr(G) = tr(G°) € {6,7,8})

e It was shown that tr(G) = tr(G°) € {3,4,9} can not hold and tr(G) = tr(G) =5
implies G = G¢ = (5. Thus characterizing the class of graphs G with tr(G) = tr(G°) €
{6,7,8} can be an interesting topic of research. See Figure 1 which shows that each of
these classes are non-empty.

o (Effect of vertex and edge removal on triameter)

Proposition 6.1 Consider a connected graph G and a vertex subset A € V(G). Suppose that for
every element a € A be the subgraph G — a remains connected but exhibits a strictly smaller triameter,
i.e., tr(G — a) < tr(G). Under these constraints, the cardinality of A satisfies|A| < 3.

Proof: Let tr(G) = d(u,v,w). Let x € V(G) \ {u, v,w}such that G' = G — x is connected.
Thentr(G') = dgr(w,v,w) = dg(u,v,w) =tr(G). Thus x € A,ie.,A S {u,v,w}ie., 4] <3.

This can be a starting point for studying triameter vertex-critical graphs.

e (Conjecture: tr(G) < %) In Theorem 3.2, Proposition 3.1 and Proposition 3.2, it was

proved that tr(G) < % for certain families of graphs. However, we strongly suspect

that the result is true for any connected graph G and the bound is assymptotically tight.
To settle this, one need to prove the result for connected graphs G with girth 3 and 4 and
6(G) = 3.

tr(G) =6 tr(G) =7 tr(G) =8

Figure 1
Some graphs with tr(G) = tr(G°).
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