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Abstract 

White rot fungi can produce exopolysaccharides (EPS) and these EPSs have the potential 

to be used in various applications. Trametes versicolor, a white rot fungus, can also produce high 

amount of EPS. EPS production varies depending on fermentation method, production conditions, 

nutrient sources (especially glucose concentration) in the medium, and also the strain used. 

Therefore, in this study, EPS production ability of T. versicolor strain collected from 

Hatay/Turkey was firstly investigated during the repeated-batch fermentation (RBF) process.        

T. versicolor was incubated under RBF condition. After investigating the EPS production in 

different media during repeated-batch process, the effect of medium retention time on EPS 

production was determined. Then; the effects of agitation, temperature, pH, amount of pellets 

used and amount of glucose on EPS production were determined.  The results of the study showed 

that both production conditions and glucose concentration affect the EPS production of this strain 

during the RBF process.  

Keywords: Exopolysaccharide; Repeated-batch fermentation; Trametes versicolor; White 

rot fungus. 
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Yeni İzole Edilmiş Trametes versicolor’un Tekrarlı-Kesikli Fermentasyon Sürecinde 

Ekzopolisakkarit Üretme Potansiyelinin Araştırılması 

Öz 

Beyaz çürükçül funguslar ekzopolisakkarit (EPS) üretebilir ve bu EPS'lerin çeşitli 

uygulamalarda kullanılma potansiyeli vardır. Beyaz çürükçül fungus olan Trametes versicolor da 

yüksek miktarda EPS üretebilir. EPS üretimi fermentasyon metodu, üretim koşulları, ortamdaki 

besin kaynakları (özellikle glukoz konsantrasyonu) ve ayrıca kullanılan suşa bağlı olarak değişir. 

Bu nedenle, bu çalışmada öncelikle Hatay/Türkiye'den toplanan T. versicolor suşunun EPS üretim 

yeteneği tekrarlı-kesikli fermentasyon (TKF) sürecinde araştırılmıştır. T. versicolor, TKF 

koşulunda inkübe edildi. Tekrarli-kesikli süreç sırasında farklı ortamlarda EPS üretimi 

araştırıldıktan sonra, besiyeri alıkonma süresinin EPS üretimi üzerindeki etkisi belirlendi. Daha 

sonra da çalkalama, sıcaklık, pH, kullanılan pelet miktarı ve glukoz konsantrasyonun EPS üretimi 

üzerindeki etkileri belirlendi. Çalışmanın sonuçları, hem üretim koşullarının hem de glukoz 

konsantrasyonun bu suşun TKF sürecinde EPS üretimini etkilediğini göstermiştir. 

Anahtar Kelimeler: Beyaz çürükçül fungus; Ekzopolisakkarit; Tekrarlı-kesikli 

fermentasyon; Trametes versicolor. 

1. Introduction 

Exopolysaccharides (EPS) are polysaccharides secreted by microorganism into the 

extracellular medium. The biological activities of EPSs (long chain and molecular weight 

polymers composed of especially sugar units) including anti-inflammatory, antioxidative, 

antitumoral and antidiabetic have led to their increasing interest in various fields and especially 

in medicine [1, 2].  

White rot fungi are efficient EPS producers. It was reported that the EPS from Pleurotus 

pulmonarius has potential antioxidant capacity and therefore, it can be used for functional food 

and medicine production [3]. Similarly, EPS from Pleurotus eryngii have antitumoral and 

antioxidative activities [1]. Trametes versicolor is a biotechnologically important medicinal white 

rot fungus. It can be used in bioremediation and for producing various enzymes such as laccase 

and peroxidases. Another important characteristic of this fungus is its ability to produce EPS [4-

6]. The anti-inflammatory and prebiotic potential of crude EPS obtained from submerged culture 

liquid of T. versicolor was also reported [7]. 
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EPS production potential varies depending on microorganism and even the strain used, 

physical conditions of the microorganism such as agitation, pH and temperature, and also 

inorganic/organic sources in the growth medium [8].  

Fermentation method is also important for EPS production. Repeated-batch fermentation 

(RBF) method is an alternative method to batch method, and it allows maintenance long term 

activity of fungal pellets for a long period of time [9]. This method can also be used for production 

of metabolites and it improves the productivity of fungal products [10-13]. In this method, the 

mycelia of the fungus are in free pellet form and free pellets are self-immobilized mycelia [10, 

14]. It is possible to store and reuse these pellets and retain their long-term activity [10]. For 

example, it is an easy and simple process for production of high amounts of laccase enzyme by 

whole fungal pellets. RBF process was reported as the efficient method for obtaining high amount 

of EPS [2]. This method provides an easy operation for EPS production by free and immobilized 

pellets of Ganoderma lucidum [15, 16]. Highly stable Ganoderma pfeifferi pellets can be used in 

extended fermentation cycles for production of EPS efficiently [14].  It is possible to produce EPS 

with antioxidant activity by immobilized Chinese medicinal mushroom Cordyceps militaris [17]. 

However, there are limited studies on EPS production under RBF conditions [13, 15, 16] and 

according to our literature knowledge, there is no study on EPS production potential of repeated-

batch culture of T. versicolor and this strain. The aim of this study is to investigate the EPS 

production potential of newly isolated T. versicolor pellets during RBF process. 

2. Materials and Methods 

2.1. Fungus 

The white rot fungus Trametes versicolor was used in this study. This fungus was isolated 

as a pure culture after being collected from Hatay/Turkey and stored in Biotechnology laboratory 

in Inonu University.  It was maintained at 4 °C on Sabouraud dextrose agar (SDA) plates.  

2.2. Production of Stock Inoculum and Pellets 

T. versicolor cultured on SDA plates was inoculated on slant SDA and incubated statically 

at 30 °C for 5 days. After incubation, distilled water was added, and a conidial suspension of the 

culture was prepared. Four mL of this suspension was transferred into 250 mL flask containing 

100 mL Sabouraud dextrose broth (SDB) and the culture was incubated at 30 °C and 150 rpm for 

5 days. After incubation, the whole culture was gently homogenized and 1.5 mL of this 

homogenized culture inoculated into fresh SDB. This culture was incubated and then 

homogenized in the same conditions as above. This homogenized culture was used as stock 
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inoculum culture. For fungal pellet production, 7.5 mL from this stock inoculum culture was 

inoculated into 600 mL SDB/1000 mL flask. It was incubated 30 °C and 150 rpm for 5 days and 

the pellets obtained [18]. 

2.3. Repeated-Batch Fermentation with Fungal Pellets 

The fungal pellets prepared as stated above were harvested and used for RBF studies. 

Appropriate amounts of the prepared pellets were transferred to fresh medium to be used in RBF 

studies and incubated. After incubation, the culture was filtered under sterile condition, and fresh 

medium was added onto the pellets remaining in the flask [18]. 

2.4. Selecting the Most Appropriate Culture Medium for EPS Production 

Firstly, the RBF studies were conducted in two different culture media. These media were 

A) Commercial SDB medium (g/L): Peptone 10, glucose 20 

B) Complex medium (CM) (g/L): KH2PO4 0.5, MgSO4.7H2O 0.5, peptone 2, yeast extract 

2, glucose 22. 

In RBF experiments, the pellets were, firstly, transferred into 100 ml medium/250 mL. 

After incubation for appropriate time, the culture was filtered without removing the pellets. The 

medium was discharged and was exchanged with fresh medium. In these experiments the pellets 

were repeatedly used in these two media for 3 times with medium retention time of 1 h, 2 h, 24 h 

or 72 h and then, the most appropriate medium and retention time were selected. 

2.5. Optimization the EPS Production of Repeated-Batch Cultures 

These studies were performed in the most appropriate medium. After the most appropriate 

medium selected, studies were conducted to determine the optimum conditions for 

exopolysaccharide production in this medium. The medium and medium retention time used in 

these studies were the Complex medium and 24 h, respectively.   

2.5.1. Effect of Agitation on EPS Production of Repeated-Batch Cultures 

Effect of agitation on EPS production of pellets during RBF was investigated within the 

agitation rate of 0-200 rpm. The temperature and pellet amount used were 30 °C and 20 g, 

respectively. 
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2.5.2. Effect of Incubation Temperature on EPS Production of Repeated-Batch 

Cultures 

To test the effect of incubation temperature on EPS production of pellets during RBF, the 

cultures were incubated within the temperature range of 20-40 °C. The agitation rate and pellet 

amount used were 150 rpm and 20 g, respectively. 

2.5.3. Effect of Initial pH on EPS Production of Repeated-Batch Cultures 

Effect of initial pH on EPS production of pellets during RBF was investigated within the 

pH range of 3.0-7.0. The incubation temperature, agitation rate and pellet amount used were 30 

°C, 150 rpm and 20 g, respectively. 

2.5.4. Effect of Pellet Amount on EPS Production of Repeated-Batch Cultures 

Different pellet amounts (5, 10, 20 and 30 g) were tested to determine the effect of pellet 

amount on EPS production during RBF studies. The incubation temperature, agitation rate and 

initial pH used were 30 °C, 150 rpm and 7.0, respectively. 

2.5.5. Effect of Glucose Concentration on EPS Production of Repeated-Batch 

Cultures 

To determine the effect of glucose concentration on EPS production 0, 11, 22, 44, 88 g/L 

of glucose (final concentrations) were used, and RBF were conducted under the optimum culture 

parameters detected.  

2.6. Isolation of Exopolysaccharide 

To isolate the EPS from culture broth of repeated-batch cultures, the culture was 

centrifuged at 9000 rpm for 15 min. to separate the supernatant from pellets. The supernatant 

obtained was mixed with cold ethanol and kept overnight at 4 °C. Then, it was filtered using filter 

paper (pre-dried at 65 °C for overnight/pre-weighed) and the filter paper with EPS was kept again 

at 65 °C for overnight, placed in desiccator and dried to a constant weight. After that, the dry 

weight of the EPS was calculated [14, 19]. The macroscopic image of EPS obtained under optimal 

condition during RBF is shown in Fig. 1. 
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Figure 1: Macroscopic image of EPS. 

 

3. Results and Discussion 

Both the isolation of new microorganisms/strains and increasing the capacity of EPS 

production attract the attention of researchers [17, 20]. Trametes versicolor is one of the most 

frequently studied medicinal mushroom [7]. Therefore, in this study, the EPS production ability 

of T. versicolor strain collected and isolated from Hatay/Turkey was investigated under repeated-

batch fermentation conditions. This fermentation method has various advantages such as storage 

and reuse of the pellets and use of fungal pellets for a long period of time with long-term activity 

[9, 10]. The effects of various production conditions and glucose concentration on EPS production 

of this strain was also tested.  

3.1. Selecting the Most Appropriate Culture Medium 

EPS production by T. versicolor pellets under RBF was investigated in two different media 

(SDB and CM). These pellets were used for 3 times with various medium retention times of 1 h, 

2 h, 24 h and 72 h. Low amounts of EPS could be produced at the retention times of 1 h and 2 h. 

On the other hand, when the medium retention time of 24 h was used, the amounts of EPS detected 

at third cycle were 2.14±0.36 and 2.75±0.33 g/L in SDB and CM media, respectively (Table 1). 
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Table 1: EPS production (g/L) by T. versicolor pellets in SDB and CM media at 24 h and 72 h medium 

retention times. 

 Medium Retention Time 

              24 h                                            72 h 

Number of Times Pellets 

Used 

   SDB             CM        SDB                CM 

First cycle 1.88±0.16 1.67±0.07 2.02±0.10 1.74±0.23 

Second cycle 1.80±0.27 3.06±0.17 1.13±0.23 1.99±0.32 

Third cycle 2.14±0.36 2.75±0.33 1.32±0.31 2.41±0.10 

  

When 1 h and 2 h medium retention times used the cumulative total EPS amounts obtained 

after three cycles were below 2.5 g/L. However, when medium retention of 24 h and 72 h were 

used for SDB cultures, the cumulative total EPS amounts after three cycles were 5.82 and 4.47 

g/L, respectively. These values were 7.48 and 6.14 g/L for CM cultures (Fig. 2). The fungal pellets 

could produce low amounts of EPS at short retention times. However, when medium retention 

times of 24 h and 72 h were conducted, higher EPS amounts were obtained by the pellets (Fig. 

2). As a result of the studies, CM medium and 24 h medium retention time were selected and used 

throughout the studies. 

Figure 2: EPS production (g/L) by T. versicolor pellets at 24 h and 72 h medium retention times after three 

cycles in SDB and CM media. 
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3.2. Effect of Agitation Rate on EPS Production of Pellets During Repeated-Batch 

Fermentation 

Agitation and aeration ensure good mixing of liquid, solid and gas phases in the medium. 

However, high agitation rates can also cause the pellets to break down. Therefore, the effect of 

agitation on EPS production during RBF mode was tested. Agitation affected the EPS production 

of the pellets. As can be seen from Table 2, the EPS production of the RB cultures at each cycle 

remained low when the culture was mixed at low agitation speed such as 50 ppm or without 

mixing. However, higher levels of EPS could be produced at 100 (2.15±0.19 at third cycle) and 

150 rpm (3.06±0.17 at second cycle) and the production decreased at 200 rpm.  

Table 2: Effect of agitation on EPS (g/L) production of pellets during RBF. 

                                                            Number of Times Pellets Used 

Agitation (rpm)        1        2        3 

0 0.34±0.13 0.62±0.05 0.63±0.06 

50 0.19±0.09 0.64±0.15 0.78±0.09 

100 0.65±0.04 1.81±0.52 2.15±0.19 

150 1.67±0.07 3.06±0.17 2.75±0.33 

200 0.83±0.30 1.20±0.28 1.79±0.26 

 

The cumulative total EPS amounts at 0, 50, 100, 150 and 200 rpm after three cycles were 

1.59, 1.61, 4.61, 7.48 and 3.82 g/L, respectively (Fig.3). Oxygen transfer rate is reduced at low 

agitation and therefore, it affects the cell growth and metabolism. On the other hand, high 

agitation rate can cause shear stress and lead the cell (pellet) damage [2, 10]. In this study, the 

best agitation rate for EPS production was determined as 150 rpm. It was reported that 150 rpm 

is the best agitation rate for EPS production of white rot fungal cultures [21]. 
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Figure 3: The cumulative total EPS amounts obtained at various agitation speeds after three 

cycles.  
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The cumulative total EPS amounts at 20, 25, 30, 35 and 40 °C after three cycles were 6.15, 

6.87, 7.48, 4.29 and 3.81g/L, respectively (Fig. 4). Most fungi can produce EPS within a 

temperature range of 22-30 °C [22]. 

Figure 4: The cumulative total EPS amounts obtained at various temperatures after three cycles.  
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The cumulative total EPS amounts detected after three cycles for pH values of 3, 4, 5, 6, 

and 7 were 7.24, 5.48, 5.53, 5.21 and 7.08 g/L, respectively (Fig. 5).  It was reported that the best 

initial pH values for EPS production of shake flask cultures of C. versicolor, Grifola umbellata 

and Grifola frondosa are pH 5.5, pH 5.0 and 5.5, respectively [23-25]. Aspergillus sp. DHE6 

produces the highest amount of EPS at pH 6.0 under submerged fermentation conditions [26]. L. 

edodes can produce high amount of EPS at initial pH of 4.5 under submerged culture condition 

[27].

Figure 5: The cumulative total EPS amounts obtained at various pH values after three cycles. 
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When 5 and 10 g pellet amounts used, the cumulative total EPS amounts after three cycles 

were 6.06 and 6.44 g/L, respectively. However, these values were 7.48 and 7.21 g/L for pellet 

amounts of 20 and 30 g/L (Fig. 6). The results showed that higher pellet amounts positively 

affected the EPS production. 

Figure 6: The cumulative total EPS amounts obtained by various pellets amounts after three cycles. 
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The cumulative total EPS amounts obtained after three cycles for the glucose 

concentrations of 22, 44, 88 g/L were 7.48, 15.88 and 19.17, respectively (Fig. 7).  This shows 

the critical role of glucose for EPS production. Glucose is a favorable nutrient for EPS production 

of G. formosanum [29] and the best carbon source for EPS production of submerged cultures of 

P. sajor-caju [30]. α-phosphoglucomutase gene was reported as an important gene for EPS 

production of G. lucidum [31]. 

 

Figure 7: The cumulative total EPS amounts obtained at various glucose concentrations after three cycles. 

 

4. Conclusion 

This biotechnologically important T. versicolor strain used in our study was able to produce 

significant amounts of exopolysaccharide (EPS) under repeated-batch condition. The EPS 

production potential of this microorganism varied depending on the agitation speed, temperature, 

pellet amount, medium type and glucose concentration. It was observed that the concentration of 

glucose, which is a carbon and energy source, was very effective in the EPS production of these 

pellets in RBF process. Our results show that this strain and RBF method can be used for 

production of high amounts of EPS repeatedly. 
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