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ABSTRACT 
 

In the present study, the meshfree RBFs collocation method is used to find the approximate solutions of the general Rosenau 

KdV-RLW equation. Firstly, Crank Nicolson method and forward finite difference approximation method is applied for solving 

the equation. One of the linearization techniques, which is called Rubin graves linearization, is applied for the approximate 

solution of the equation. Secondly, the numerical values of physical invariants of the motions for the equation are evaluated 

for studying known fundamental physical conservative properties. Also, to examine the accuracy of the used numerical method 

𝐿2 and 𝐿∞  norms are evaluated. The stability analysis for the numerical technique is tested. It is seen that the method is 

unconditionally stable. At the end of this paper, obtained results show the validity and applicability of the numerical method. 
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1. INTRODUCTION 

 

In the present study, we used the meshless method which based on radial basis functions (RBFs) to get 

the numerical solution of the general Rosenau KdV-RLW equation. This mentioned equation has the 

following form:  

𝑢𝑡 − 𝛾𝑅𝐿𝑊𝑢𝑥𝑥𝑡 + 𝑢𝑥𝑥𝑥𝑥𝑡 + 𝛽𝐾𝑑𝑉𝑢𝑥𝑥𝑥 + 𝑢𝑥 + 𝛼(𝑢𝑝)𝑥 = 0                                    (1)  

 

𝛼 > 0, 𝑝 ≥ 2, 𝛾𝑅𝐿𝑊, 𝛽𝐾𝑑𝑉 are real constants.  

 

For this equation following initial condition is taken 

                                    𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥𝑙 < 𝑥 < 𝑥𝑟                                                      (2)  

and the boundary condition is used as 

𝑢(𝑎, 𝑡) = 𝑢(𝑏, 𝑡) = 0, 0 < 𝑡 < 𝑇                                                 (3) 

where value of 𝑢0(𝑥) is known. Equation (1) is a combination of general Rosenau-KdV and general 

Rosenau-RLW equation. By taking  𝛽𝐾𝑑𝑉 = 0 in equation (1), general Rosenau-RLW equation is found 

as follows:  

                                        𝑢𝑡 − 𝛾𝑅𝐿𝑊𝑢𝑥𝑥𝑡 + 𝑢𝑥𝑥𝑥𝑥𝑡 + 𝑢𝑥 + 𝛼(𝑢𝑝)𝑥 = 0,   𝑝 ≥ 2.                       (4) 

 

In the equation (4), for 𝑝 = 2 and 3 usual Rosenau-RLW equation and modified Rosenau-RLW equation 

is occurred, respectively. Also, in equation (4) by taking 𝑝 ≥ 4, the general Rosenau-RLW equation is 

obtained.  

 

In the literature, various methods are used to solve the equation (4) numerically. Mittal et al. [1] have 

proposed quintic B-splines collocation method, Zuo et al. [2] studied a new conservative difference 
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scheme for finding numerical solutions. On the other hand, if 𝛾𝑅𝐿𝑊 = 0 in equation (1), we have the 

following general Rosenau-KdV equation: 

                               𝑢𝑡 + 𝑢𝑥𝑥𝑥𝑥𝑡 + 𝛽𝐾𝑑𝑉𝑢𝑥𝑥𝑥 + 𝑢𝑥 + 𝛼(𝑢𝑝)𝑥 = 0,    𝑝 ≥ 2                                    (5) 

 

Esfahani [5] studied solitary wave solution. Some numerical techniques have been used for the solution 

of the general Rosenau-KdV equation [6-7]. Up to now, the general Rosenau KdV-RLW equation has 

not been solved by using RBFs collocation method. That’s why, in this study, we construct RBFs 

collocation method to obtain the numerical results for the general Rosenau KdV-RLW equation.  

 

1.1. A Brief Review for RBFs 

 

RBFs are much more preferred basis functions in numerical methods to evaluate the approximate 

solutions of differential equations, in recent years. A RBF defined as follows: 

𝜙: 𝑅+ → 𝑅,  

                                                          𝜙(𝑟𝑗) = 𝜙(∥ 𝑥 − 𝑥𝑗 ∥)                                                           (6) 

 

in which ∥ . ∥ represents the Euclidean norm. They are meshless. Therefore, the main advantage of radial 

basis functions requires neither domain nor surface discretization. Note that, RBFs are positive definite 

functions and usually symmetric. They can be used as basis function in the scattered data interpolation. 

They are also divided into Global RBFs and compactly supported RBFs. There are a lot of RBFs in the 

literature. Most popular RBFs are Gaussian (G), Multiquadric (MQ), Inverse Multiquadric (IMQ), Thin 

Plate spline (TPS). Some of them include shape parameter. If a RBF has a shape parameter, it is called 

as infinitely smooth. If it does not include a shape parameter, it is called as piecewise smooth. Actually, 

the shape parameter plays a critical role in calculations and accuracy of the solution changes as depend 

on value of shape parameter. Therefore, choosing the value of shape parameter is very important issue 

and a lot of studies has been done to obtain optimal numerical value for the shape parameter by many 

authors. 

 

The radial basis functions interpolation was first used by Kansa [8,9]. It is obtained directly collocating 

RBFs for solving ordinary differential equations and especially partial differential equations. Also, in 

this method there is no need to evaluate any integral because of the using of collocation technique. The 

existence, uniqueness and convergence of RBFs approximation was investigated by [10,11]. Also, some 

numerical and theoretical studies were presented in references [12-15].  

 

2. RBFs COLLOCATION METHOD FOR SOLVING GENERAL ROSENAU KdV-RLW 

EQUATION 

 

In this section of the study, RBFs collocation method will be used to find the approximate solution the 

initial-boundary value problem of the equation (1) with given conditions (2) and (3). Now, we shall 

obtain a difference equation for the equation (1) by using Crank-Nicolson technique for the function  

𝑢(𝑥, 𝑡) and forward difference approximation for the function 𝑢𝑡(𝑥, 𝑡). Therefore by using these 

approaches the equation (1) is written as follows: 

 

𝑢𝑛+1−𝑢𝑛

Δ𝑡
− 𝛾

𝑢𝑥𝑥
𝑛+1 − 𝑢𝑥𝑥

𝑛

Δ𝑡
+

𝑢𝑥𝑥𝑥𝑥
𝑛+1 − 𝑢𝑥𝑥𝑥𝑥

𝑛

Δ𝑡
+ 𝛽

𝑢𝑥𝑥𝑥
𝑛+1 +  𝑢𝑥𝑥𝑥

𝑛

2
+ 

 

                               
𝑢𝑥

𝑛+1 + 𝑢𝑥
𝑛

2
+ 𝛼 ⋅ 𝑝

(𝑢𝑝−1𝑢𝑥)𝑛+1 + (𝑢𝑝−1𝑢𝑥)𝑛

2
= 0,                                            (7) 
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where 𝛾 is the constant for  RLW and 𝛽 is the constant for KdV. The nonlinear term (𝑢𝑝−1𝑢𝑥)𝑛+1 in 

equation (7) is linearized by using Rubin-Graves linearization technique [16] as follows 

 

         (𝑢𝑝−1𝑢𝑥)𝑛+1 = (𝑢𝑝−1)𝑛(𝑢𝑥)𝑛+1 + (𝑝 − 1)(𝑢𝑝−2)𝑛𝑢𝑥
𝑛𝑢𝑛+1 − (𝑝 − 1)(𝑢𝑝−1)𝑛𝑢𝑥

𝑛.           (8) 

 

Equation (7) can be rewritten by substituting linearized difference equation (8) into (7), we get       

 

𝑢𝑛+1 − 𝛾𝑢𝑥𝑥
𝑛+1 + 𝑢𝑥𝑥𝑥𝑥

𝑛+1 +
𝛽Δ𝑡

2
𝑢𝑥𝑥𝑥

𝑛+1 +  
Δ𝑡

2
𝑢𝑥

𝑛+1 + 

𝛼𝑝Δt

2
[(𝑢𝑝−1)𝑛(𝑢𝑥)𝑛+1 + (𝑝 − 1)(𝑢𝑝−2)𝑛𝑢𝑥

𝑛𝑢𝑛+1] = 𝑢𝑛 − 𝛾𝑢𝑥𝑥
𝑛 + 𝑢𝑥𝑥𝑥𝑥

𝑛 −
𝛽Δ𝑡

2
𝑢𝑥𝑥𝑥

𝑛 − 

 

                                           
Δ𝑡

2
𝑢𝑥

𝑛 +
𝛼𝑝Δ𝑡

2
(𝑝 − 2)(𝑢𝑝−1)𝑛𝑢𝑥

𝑛.                                                         (9) 

 

The truncation error of the scheme in the given equation (9) is obtained. Taylor’s series expansion of 

above expression about (𝑥𝑖 , 𝑡𝑛) gives 

 

𝑇𝑖
𝑛+1 =

Δ𝑡(Δ𝑥)2

3
(

3β

4
 𝑢5𝑥 + 𝑢3𝑥) +

(Δ𝑡)2 

2

𝜕

𝜕𝑡
 (β𝑢3𝑥 + 𝑢𝑥) 

+
(Δ𝑡)3 

6

𝜕2

𝜕𝑡2
 (𝑢𝑡 + β𝑢3𝑥 + 3𝑢𝑥) 

 

Hence truncation error of the scheme is of order two in space and order one in time. Since truncation 

error approaches zeros at Δ𝑡 → 0 and ∆𝑥 → 0, the difference scheme is consistent. 

Let 𝑥𝑖 be 𝑁 + 1 distinct collocation points such that 𝑥𝑙 = 𝑥0 < 𝑥1 ⋯ < 𝑥𝑁 = 𝑥𝑟 and ℎ =
𝑥𝑙−𝑥𝑟

𝑁
.  To 

approximate value of  𝑢(𝑥, 𝑡) is approached by  𝑢𝑛 = 𝑢(𝑥, 𝑡𝑛)  and it is expressed as  

 

                                           𝑢𝑛 = ∑ 𝜆𝑗
𝑛𝜙(𝑟𝑗)

𝑁

𝑗=0

                                                                                     (10) 

 

where values of  𝜆𝑗
𝑛′

𝑠 will be calculated. Function  𝜙(𝑟𝑗) is RBF in the form of Equation (6).  The first 

derivative of approximate solution can be calculated as follows: 

                                        
𝑑

𝑑𝑥
(𝑢𝑛) = ∑ 𝜆𝑗

𝑛 𝑑

𝑑𝑥
𝜙(𝑟𝑗).

𝑁

𝑗=0

                                                                           (11) 

 

Numerical values of other derivatives in the equation (9) can be evaluated with a similar manner. 

Substituting the above equations into the equation (9) at the collocation points 𝑥𝑖, following systems of 

algebraic equations are obtained: 
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∑ 𝜆𝑗
𝑛+1𝜙𝑗(𝑥𝑖) − γ

𝑁

𝑗=0

∑ 𝜆𝑗
𝑛+1𝜙𝑗

′′

𝑁

𝑗=0

(𝑥𝑖) + ∑ 𝜆𝑗
𝑛+1𝜙𝑗

𝑖𝑣(𝑥𝑖) +
βΔ𝑡

2

𝑁

𝑗=0

∑ 𝜆𝑗
𝑛+1𝜙𝑗

′′′(𝑥𝑖)

𝑁

𝑗=0

+
Δ𝑡

2
∑ 𝜆𝑗

𝑛+1𝜙𝑗′(𝑥𝑖)

𝑁

𝑗=0

+
𝛼𝑝Δ𝑡

2
[  (∑ 𝜆𝑗

𝑛𝜙𝑗(𝑥𝑖)

𝑁

𝑗=0

)

𝑝−1

∑ 𝜆𝑗
𝑛+1𝜙𝑗′(𝑥𝑖)

𝑁

𝑗=0

+ (𝑝 − 1) (∑ 𝜆𝑗
𝑛𝜙𝑗(𝑥𝑖)

𝑁

𝑗=0

)

𝑝−2

∑ 𝜆𝑗
𝑛𝜙𝑗′(𝑥𝑖) ∑ 𝜆𝑗

𝑛+1

𝑁

𝑗=0

𝜙𝑗(𝑥𝑖)  

𝑁

𝑗=0

]

= ∑ 𝜆𝑗
𝑛𝜙𝑗(𝑥𝑖)

𝑁

𝑗=0

− γ ∑ 𝜆𝑗
𝑛𝜙𝑗

′′(𝑥𝑖)

𝑁

𝑗=0

+ ∑ 𝜆𝑗
𝑛𝜙𝑗

𝑖𝑣(𝑥𝑖) −
βΔ𝑡

2
∑ 𝜆𝑗

𝑛𝜙𝑗
′′′(𝑥𝑖) −

𝑁

𝑗=0

𝑁

𝑗=0

Δ𝑡

2
∑ 𝜆𝑗

𝑛𝜙𝑗′(𝑥𝑖)

𝑁

𝑗=0

+
𝛼𝑝(𝑝 − 2)Δ𝑡

2
(∑ 𝜆𝑗

𝑛𝜙𝑗(𝑥𝑖)

𝑁

𝑗=0

)

𝑝−1

∑ 𝜆𝑗
𝑛𝜙𝑗′(𝑥𝑖) ,

𝑁

𝑗=0

                                                                                  (12) 

for 𝑖 = 1, ⋯ , 𝑁 − 1 and with used boundary conditions 

∑ 𝜆𝑗
𝑛𝜙𝑗(𝑥𝑖) = 0,    for 𝑖 = 0,

𝑁

𝑗=0

 

               ∑ 𝜆𝑗
𝑛𝜙𝑗(𝑥𝑖) = 0,    for 𝑖 = 𝑁.

 𝑁

𝑗=0

 

Therefore a system of linear equations is obtained, where 𝜆𝑗
𝑛+1 are unknown parameters and evaluated 

by using a linear system solver.  

 

3. NUMERICAL RESULTS 

 

For numerical methods, testing the accuracy is an important matter. In where, accuracy will be tested by 

computing error norms and calculating numerical values of some physical properties for the model 

equation. The equation (1) has mass and energy conservation. These are evaluated as follows, respectively:  

                            𝑄(𝑡) = ∫ 𝑢(𝑥, 𝑡)𝑑𝑥 = ∫ 𝑢0(𝑥, 𝑡)𝑑𝑥 = 𝑄(0),

𝑥𝑟

𝑥𝑙

𝑥𝑟

𝑥𝑙

                                        (13) 

                               𝐸(𝑡)  =  (∥ 𝑢 ∥2+ 𝛾 ∥ 𝑢𝑥 ∥2 +∥ 𝑢𝑥𝑥 ∥2) 

                                       =  (∥ 𝑢0 ∥2+ 𝛾 ∥ 𝑢0𝑥 ∥2 +∥ 𝑢0𝑥𝑥 ∥2) = 𝐸(0)                                   (14) 

 

Secondly, error norms which are a way to determine the error between analytical and numerical 

solutions, are calculated in this study. The formulas of 𝐿2 and 𝐿∞ norms are as follows: 

𝐿2 = √ℎ ∑|𝑢𝑗
𝑒𝑥𝑎𝑐𝑡 − 𝑢𝑗

𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙|
2

𝑁

𝑗=1

,    𝐿∞ = max
1≤𝑗≤𝑁

|𝑢𝑗
𝑒𝑥𝑎𝑐𝑡 − 𝑢𝑗

𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙|.              (15) 
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3.1. Test Problem I 

 

Our first test problem is the general Rosenau-RLW equation (4) for 𝛼 = 1 . We investigate the solitary 

wave motion for the model equation. The equation (4) has following analytical solution for movement of 

the solitary wave: 
 

𝑢(𝑥, 𝑡) = exp (
ln (

(𝑝 + 3)(3𝑝 + 1)(𝑝 + 1)
2(𝑝2 + 3)(𝑝2 + 4𝑝 + 7)

)

𝑝 − 1
) sech

4
𝑝−1[

𝑝 − 1

√4𝑝2 + 8𝑝 + 20  
(𝑥 − 𝑐𝑡)], 

where 𝑐 =
𝑝4+4𝑝3+14𝑝2+20𝑝+25

𝑝4+4𝑝3+10𝑝2+12𝑝+21
 is wave velocity. 

 

For 𝑡 = 0, initial condition (2) is found from the exact solution. Also boundary conditions can be 

evaluated from analytical solution for the chosen solution domain. For this test problem, the solution 

domain and time interval are chosen as −60 ≤ 𝑥 ≤ 100 and 0 ≤ 𝑡 ≤ 40, respectively. The results of 

numerical experiment are indicated for different choices of 𝑝, where we take 𝑝 = 4, 8. A comparison 

error norms with the earlier results [3,4] is presented in Table 1 at time 𝑡 = 40 with 𝛥𝑡 = 0.1 and ℎ =
0.5. Table 2 shows the invariant values of approximate solution. From this table, we can say that the 

changes of mass is nearly unchanged as the time process, while the changes of energy is less than 0.05%. 

As another result, all the above computations are obtained with Gaussian radial basis function, which is 

defined as 𝜙(𝑟𝑖) = exp (−𝑐2𝑟𝑖
2), with shape parameter. The optimal shape parameter value is found 

experimentally. Motion of the single solitary waves is depicted in Figure 1. It is clearly seen that original 

forms of waves are preserved. For the solitary wave, amplitude’s height and location of the peak position 

at time 𝑡 = 40 are given in Table 3 for 𝑝 = 4 and 𝑝 = 8. As is shown in this table, we can say that the 

amplitude of wave is larger while the values of 𝑝 are increasing. The single solitary wave’s velocities at 

time 𝑡 = 40 are found 𝑣1 = 1.1375, 𝑣2 = 1.05 for 𝑝 = 4, 8 respectively. 
 

 
Figure 1. The single solitary wave’s motion for 𝑝 = 4, 8. 

 

Table 1. Comparison numerical values of error norms at 𝑡 = 40. 
 

Method 𝒑 𝑳𝟐 𝑳∞ 

Present 4 3.7458e-03  1.3674e-03 

 [3] 4 4.4788e-03  1.7112e-03 

 [4]             4 7.4517e-02  2.7871e-02 

Present 8                    4.2968e-03                               1.5636e-03 

           [3] 8 4.3184e-03   1.6189e-03 

           [4] 8 8.0373e-02   2.9533e-02 
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Table 2. Invariant values of numerical solution 

 

𝑻 𝒑 𝑸 𝑬 

10 4 6.2658062  2.8676831 

20 4 6.2658062  2.8676716 

30 4 6.2658062  2.8676602 

40 4 6.2658062 2.8676488 

         10 8 9.7420850  4.7351497 

         20 8 9.7420850  4.7351353 

         30 8 9.7420850  4.7351209 

         40 8 9.7420850  4.7351065 

              

 
Table 3. Amplitudes solitary wave solutions at time 𝑡 = 40. 

 
𝑴𝒆𝒕𝒉𝒐𝒅 𝒑 𝐏𝐞𝐚𝐤 𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 𝐀𝐦𝐩𝐥𝐢𝐭𝐮𝐝𝐞 𝐨𝐟 𝐰𝐚𝐯𝐞 

 𝑢𝑒𝑥𝑎𝑐𝑡  4      45.5         0.6743 

Present 4      45.5         0.6740 

 𝑢𝑒𝑥𝑎𝑐𝑡  8      42         0.7818 

Present 8      42       0.7814 

    

 

3.2. Test Problem II 
 

In this test problem, for 𝛼 = 1, 𝑝 = 3 and 𝑝 = 5 the equation (5) is considered. Here, the solution 

interval of the problem is [−60, 100].   
 

For 𝑝 = 3 , the analytical solution is given by [3] as follows 
 

𝑢(𝑥, 𝑡) =
1

4
√−15 + 3√41 sech2

1

4
√

−5 + √41

4
[𝑥 −

1

10
(5 + √41)𝑡] 

 

and at t=0 solution is 

𝑢(𝑥, 0) =
1

4
√−15 + 3√41 sech2

1

4
√

−5 + √41

4
𝑥. 

Motion of solitary wave for the general Rosenau-KdV equation is illustrated in Figure 2 for different 

times. The amplitudes of exact and approximate solution are 0.5096, 0.5093 at peak position 𝑥 = 46, 
respectively. 

 
Figure 2. The single solitary wave’s motion for 𝑝 = 3. 
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If we choose the quantity 𝑝 = 5, the solution will be  
 

𝑢(𝑥, 𝑡) =
4

15
√(−5 + √34  )
4

𝑠𝑒𝑐ℎ
1

3
√−5 + √34 [𝑥 −

1

10
(5 + √34)𝑡] 

 

and for 𝒕 = 𝟎 initial condition will be evaluated as follows: 
 

𝑢(𝑥, 0) =
4

15
√(−5 + √34  )
4

𝑠𝑒𝑐ℎ
1

3
√−5 + √34𝑥. 

In Figure 3, we can observe the simulation of the single solitary wave at times 𝑡 = 0, 10, 20, 30, 40. 

When we calculated the height of amplitude for exact and numerical solution, the amplitude of wave 

has same value for both of them. This value is 0.6828 at position 𝑥 = 43. 

 
 

Figure 3. The single solitary wave’s motion for 𝑝 = 5 

 

In Table 4, we present the comparison of error norms at time 𝑡 = 40 with the quantities Δ𝑡 = 0.1 and 

ℎ = 1. The numerical results of the physical conservations of the general Rosenau-KdV equation are 

indicated in Table 5. 

 
Table 4. Comparison error norms of numerical solution at 𝑡 = 40. 

 

Method 𝒑 𝑳𝟐 𝑳∞ 

Present 3 1.7880e-03   6.3620e-04 

  [6] 3 1.3498e-02          - 

  [7] 3         - 7.5394e-03 

Present 5 3.3217e-03 1.1897e-03 

   [6] 5 1.7998e-02         - 

   [7] 5          - 1.2020e-02 

    

 
Table 5. Invariant values of numerical solution. 

 

𝑻 𝒑 𝑸 𝑬 

10 3 4.8989794  1.682545 

20 3 4.8989794  1.682543 

30 3 4.8989794  1.682543 

40 3 4.8989794 1.682539 

         10 5 7.0936431 3.206036 

         20 5 7.0936431 3.205995 

         30 5 7.0936431 3.205955 

         40 5 7.0936431 3.205919 
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3.3. Test Problem III 

 

In this part, we applied the present method to find approximate solution of the general Rosenau KdV-

RLW equation. Analytical solution of the equation is given as follows:  

𝑢(𝑥, 𝑡) = 𝐴𝑠𝑒𝑐ℎ
4

𝑝−1[𝐵(𝑥 − 𝑐𝑡)], 

 

where 𝐴 = [
8(𝑝+1)(𝑝+3)(3𝑝+1)𝛽𝐵4

𝛼(𝑝−1)2{−(𝑝−1)2𝛾+4(𝑝2+2𝑝+5)𝐵2}
]

1

𝑝−1
, 𝑐 =

𝛽(𝑝−1)2

−𝛾(𝑝−1)2+4𝐵2(𝑝2+2𝑝+5)
  and  

 

𝐵 =
𝑝 − 1

𝑝 + 1
[
√(𝑝2 + 2𝑝 + 5)2 + 16(𝑝 + 1)2𝛽(𝛽 + 𝛾) − (𝑝2 + 2𝑝 + 5)

32𝛽
]

1
2

. 

It is known that this solution function produces a solitary wave. The solution domain is chosen −40 ≤
𝑥 ≤ 100 in the time period 0 ≤ 𝑡 ≤ 40. Also, the time and space steps are taken Δ𝑡 = 0.1, ℎ =
0.5 respectively. Table 6 shows the error norms of numerical solution at different times with 𝑝 = 4. 

Also, we plotted the numerical solution for 𝑡 = 0, 10, 20, 30, 40 in Figure 4. One can see that the waves 

move toward right with increase of time. Amplitude of wave computed as 1.0354 at the location of the 

peak position 𝑥 = 59.5. 

 
Figure 4. The single solitary wave’s motion for 𝑝 = 4 

 

Table 6. Error norms of numerical solution at different times for 𝑝 = 4. 
 

𝑻 𝑳𝟐 𝑳∞ 

10 1.0340e-02 4.1664e-03 

20 2.1139e-02 8.4541e-03 

30 3.2570e-02 1.3017e-02 

    40 4.4636e-02 1.7823e-02 

 

4. STABILITY ANALYSIS OF NUMERICAL SCHEME 

 

In order to examine the stability of the method, Fourier analysis [17] is used. Firstly, we must obtain 

linearized form of the equation (1), since we will apply the linear stability analysis. Therefore, by 

choosing the quantity 𝑝𝑢𝑝−1 as locally constant, we obtain following the linear equation with constant 

coefficient: 

 

𝑢𝑡 − 𝛾𝑅𝐿𝑊𝑢𝑥𝑥𝑡 + 𝑢𝑥𝑥𝑥𝑥𝑡 + 𝛽𝐾𝑑𝑉𝑢𝑥𝑥𝑥 + 𝑢𝑥 + 𝛼𝑣𝑢𝑥 = 0,        𝑣 constant.      (16)   
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Fourier method’s general principle is replacement of the solution given by RBF collocation method at 

time 𝑡𝑛 by the value 𝑢𝑛 = 𝜉𝑛𝑒𝑖𝜃𝑥 where 𝜃 is positive constant and 𝑖 = √−1. If this equation is 

substituted into the linear difference equation, we get  

𝜉 =
(1 + 𝛾𝑅𝐿𝑊𝜃2 + 𝜃4) + 𝑖Δ𝑡(

𝛽𝐾𝑑𝑉

2
𝜃3 −

𝜃
2

− 𝛼𝑣𝜃)

(1 + 𝛾𝑅𝐿𝑊𝜃2 + 𝜃4) − 𝑖Δ𝑡(
𝛽𝐾𝑑𝑉

2
𝜃3 −

𝜃
2

− 𝛼𝑣𝜃)
.                                       (17) 

It is conclude that the present method is unconditionally stable because of taking the modulus of equation 

(17) gives |𝜉| = 1. 

 

4. CONCLUSION 

 

In the earlier similar works the governing equation was solved using finite difference methods based on 

an average difference scheme and conservative difference scheme. But for the solved equation any 

meshless method didn’t used. As a difference scheme meshless technique based on collocation 

approximation is used for solving the equation in this current study. Numerical calculations for different 

cases of the equation is obtained by using RBF collocation method. Gaussian radial basis function is 

used to find the numerical solution for all test problems. This present method is applied for three test 

problems of simulation of solitary waves. After investigation of the stability of the method, it is seen 

that this performed numerical method is unconditional stable. The error norms and invariants are also 

computed. The numerical algorithm well conserves the properties related to mass and energy. It should 

be noted that RBFs collocation method is reliable and effective to solve similar type nonlinear problems. 
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