

Journal of İstanbul Faculty of Medicine İstanbul Tıp Fakültesi Dergisi, J Ist Faculty Med 2025, 88 (3): 178-184

https://doi.org/10.26650/IUITFD.1619983

Submitted: 14.01.2025

Revision Requested: 14.03.2025 Last Revision Received: 16.03.2025

Accepted: 10.04.2025

Published Online 18.07.2025

Journal of istanbul Faculty of Medicine İstanbul Tıp Fakültesi Dergisi

Research Article Open Access

REVERSE SHOULDER ARTHROPLASTY FOR PROXIMAL HUMERUS FRACTURES: CLINICAL AND RADIOLOGICAL COMPARISON OF INLAY AND ONLAY DESIGN **PROSTHESES**

PROKSİMAL HUMERUS KIRIKLARINDA TERS OMUZ ARTROPLASTİSİ: INLAY VE ONLAY TASARIM PROTEZLERİN KLİNİK VE RADYOLOJİK SONUÇLARININ KARŞILAŞTIRILMASI

Koray Şahin¹ [©] ⊠, Nezih Ziroğlu ² [©] , Hakan Batuhan Kaya ¹ [©] , Eyüp Berk Çiçek ¹ [©] , Okan Tezgel ³ [©] , Mehmet Kapıcıoğlu ¹ [©] , Kerem Bilsel 4 @

- ¹ Bezmialem Vakif University, Faculty of Medicine, Department of Orthopedics and Traumatology, İstanbul, Türkiye
- ² Acibadem University Atakent Hospital, Department of Orthopedics and Traumatology, Istanbul, Türkiye
- ³ Bahcelievler Medipol Hospital, Orthopedics and Traumatology Clinic, İstanbul, Türkiye
- ⁴ Acibadem University Fulya Hospital, Department of Orthopedics and Traumatology, İstanbul, Türkiye

Abstract

Objective: Proximal humeral fractures (PHFs) are common among the elderly with numerous treatment options. Especially for complex fractures, reverse shoulder arthroplasty (RSA) has become a popular treatment alternative. However, effects of different RSA designs in the setting of PHFs have not been clarified yet. The purpose of this study was to compare the clinical and radiological outcomes of inlay (medialized) and onlay (lateralized) design RSAs performed for PHFs.

Material and Methods: A retrospective evaluation was conducted on patients who underwent RSA for PHF between December 2016 and September 2023. The patients were divided into two study groups based on the prosthetic design: Group I (inlay) and Group II (onlay). Clinical and radiological outcome data of the final followup visits were compared between the study groups. The clinical outcome measures included the pain score (visual analogue scale - VAS), simple shoulder test (SST), and subjective shoulder value (SSV). Tuberosity healing was evaluated using follow-up radiographs.

Results: A total of 74 patients were included in the study. There were 26 patients in group I and 48 patients in group II. The mean age of the patients was 72.4±7.2 years, and the mean follow-up duration was 51.2±25.4 months. The tuberosity healing rate was

Öz

Amaç: Proksimal humerus kırıkları (PHK) yaşlı popülasyonda sık görülen ve çok çeşitli tedavi seçenekleri olan kırıklardır. Özellikle kompleks kırıklarda ters omuz artroplastisi (TOA) popüler bir tedavi seçeneği haline gelmiştir. Ancak PHK'daki uygulamalarda farklı TOA tasarımlarının klinik sonuçlara etkisi halen netleştirilememiştir. Bu çalışmada PHK durumunda uygulanan TOA'de inlay (medialize) ve onlay (lateralize) protez tasarımlarının klinik ve radyolojik sonuçlarını karşılaştırmak amaçlanmıştır.

Gereç ve Yöntemler: Aralık 2016-Eylül 2023 tarihleri arasında PHK tanısıyla TOA uygulanan hastalar retrospektif olarak incelenmiştir. Grup I (inlay) ve grup II (onlay) olmak üzere kullanılan protezin tasarımına göre iki çalışma grubu oluşturulmuştur. Çalışma grupları, son klinik değerlendirmede elde edilen radyolojik görüntüleme ve klinik sonuçlarına göre karşılaştırılmıştır. Klinik sonuçların değerlendirilmesinde ağrı skoru (görsel ağrı skalası-VAS), basit omuz testi (SST) ve subjektif omuz değeri (SSV) kullanılmıştır. Tüberkül iyileşmesinin değerlendirilmesinde ise direkt radyografi görüntülerinden faydalanılmıştır.

Bulgular: Çalışmaya 74 hasta dahil edilmiştir. Grup I'de 26, grup II'de ise 48 hasta bulunmaktadır. Hastaların ortalama yaşı 72,4±7,2 yıl ve ortalama takip süresi ise 51,2±25,4 ay olarak bulunmuştur. Tüberkül kaynama oranı grup I'de daha yüksek olmakla birlikte

- Citation: Şahin K, Ziroğlu N, Kaya HB, Çiçek EB, Tezgel O, Kapıcıoğlu M, et al. Reverse shoulder arthroplasty for proximal humerus fractures: Clinical and radiological comparison of inlay and onlay design prostheses. Journal of Istanbul Faculty of Medicine 2025;88(3):178-184. https:// doi.org/10.26650/IUITFD.1619983
- This work is licensed under Creative Commons Attribution-NonCommercial 4.0 International License. ① §
- 2025. Şahin K, Ziroğlu N, Kaya HB, Çiçek EB, Tezgel O, Kapıcıoğlu M, Bilsel K.
- ☑ Corresponding author: Koray Şahin drkoraysahin@gmail.com

higher in group I; however, the difference showed no significance (61.5% vs 54.2%, p>0.05). The two study groups were comparable in terms of clinical outcomes (p>0.05).

Conclusion: The findings of this study showed that, despite the absence of tuberosity healing in nearly half of the patients, both prosthetic designs resulted in satisfactory clinical outcomes. Although the inlay design group had a higher rate of tuberosity healing, the difference was not statistically significant, and further research is needed to confirm any potential superiority.

Keywords

Proximal humerus fracture \cdot reverse shoulder arthroplasty \cdot tuberosity healing

aradaki farkın istatistiksel olarak anlamlı olmadığı görülmüştür (%61,5 vs %54,2, p>0,05). İki çalışma grubu arasında klinik sonuçlar açısından anlamlı fark görülmemiştir (p>0,05).

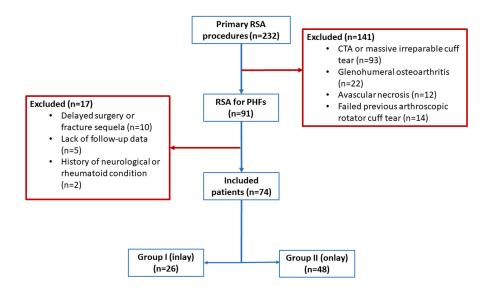
Sonuç: Bu çalışmada hastaların yaklaşık yarısında tüberkül iyileşmesi sağlanamadığı halde klinik sonuçlarda tatmin edici seviyede bir ilerleme elde edildiği görülmüştür. Inlay tasarım protezlerde tüberkül iyileşme oranları daha yüksek olmakla birlikte aradaki farkın anlamlı olmadığı görülmüştür. Bu tasarımın tüberkül iyileşmesi açısından olası üstünlüğünün gösterilmesi için ileri çalışmalara ihtiyaç vardır.

Anahtar Kelimeler Proksimal humerus kırığı ∙ ters omuz artroplastisi ∙ tüberkül iyileşmesi

INTRODUCTION

With a variety of conservative and surgical treatment options, the management of proximal humeral fractures (PHF), one of the most prevalent osteoporotic fractures in the elderly, remains contentious. Due to the low bone density, poor bone microstructure, high rate of comorbidity, and increased risk of falling in this population, the incidence of complex PHF patterns and subsequent need for surgery is markedly high (1, 2). Reverse shoulder arthroplasty (RSA), hemiarthroplasty, and internal fixation are among the surgical procedures that have been documented for treating PHFs (3). Due to previous findings reporting superior outcomes of RSA in the acute setting compared with delayed treatment of PHFs, RSA has grown in popularity as the main treatment option for PHF in the elderly (4, 5).

The Grammont design has constituted the main biomechanical principles of the RSA procedure; yet it was not deprived of certain disadvantages, such as scapular notching (6). For this reason, newer designs were developed, which led to lateralization with lower neck-shaft angle (NSA), a larger glenosphere diameter, or onlay humeral components. Biomechanical studies suggested that lateralization improves range of motion by increasing the tension in the rotator cuff muscles and by lengthening the deltoid. It was also reported that lateralization could decrease incidence of scapular notching by avoiding the contact between the glenoid neck and the humeral tray (6, 7). These advantages have been described well for cuff tear arthropathy. However, the effects of different RSA designs in the treatment of PHFs have not been clearly defined yet. The current data on this topic are controversial due to the heterogeneous cohort characteristics and study designs. This study aims to compare the effects of the RSA design on clinical outcomes and tuberosity healing. We hypothesized that an onlay (lateralized) humeral component would be disadvantageous compared to the inlay (medialized) humeral component in the setting of PHF; since tuberosity repair would be more difficult and tense, which


eventually would lead to unsuccessful tuberosity healing and inferior clinical outcomes.

MATERIAL AND METHODS

This retrospective case–control study was conducted at a single university hospital serving as a referral center for shoulder disorders. The study protocol received approval from the appropriate local ethics board (Date: 25.12.2024, No: 23), and written consent was obtained from all participating patients. The research was carried out in compliance with the principles outlined in the Declaration of Helsinki.

Data from the medical records of all patients with PHF diagnosis who underwent RSA surgery between December 2016 and September 2023 were assessed. Patients were diagnosed through preoperative radiographs and computed tomography (CT) scans. The senior author determined the fracture pattern, classification, and the decision to perform RSA. The inclusion criteria consisted of the following: (1) availability of follow-up data for a minimum of 12 months, (2) presence of head-split type PHFs, 3- and 4-part displaced PHFs, or shoulder fracture-dislocations, (3) time to surgery from injury being less than 4 weeks, (4) RSA intervention using an inlay or onlay design prosthesis with the same surgical approach (deltopectoral approach). The exclusion criteria were: (1) delayed surgery (later than 4 weeks), (2) revision surgery, (3) history of any surgery to the affected shoulder, (4) history of any neurological or rheumatoid condition.

A total of 74 patients were included in the final analysis of this study. Group I consisted of 26 patients treated with an inlay (medialized) design prosthesis, whereas Group II included 48 patients who received an onlay (lateralized) design prothesis (Figure 1). Each study group comprised two distinct designs. The Lima SMR Reverse (LimaCorporate, Udine, Italy) and Delta Xtend (DePuy Orthopaedics, Warsaw, IN, USA) were used as inlay design prostheses in group I. The Biomet Comprehensive Shoulder System (Biomet, Warsaw, IN, USA) and Next Shoulder

Figure 1. Patient selection flow chart of the study. RSA: reverse shoulder arthroplasty, CTA: cuff tear arthropathy, PHF: proximal humeral fracture

Solutions (Next, Ankara, Turkey) were used as onlay design prostheses in group II.

All procedures were conducted by the senior author under general anaesthesia, supplemented with an interscalene nerve block, while the patients were positioned in the beachchair position. The deltopectoral approach was preferred in all patients. There were minor differences in tuberosity detection due to the differences in the fracture pattern. An osteotome was used to separate the lesser and greater tuberosity fracture fragments, and the tuberosities were then secured using No.2 braided non-absorbable Ethibond sutures (Ethicon, Johnson & Johnson). The head fragment was removed and kept for potential use as an autograft source. A standard surgical technique and instrumentation were performed according to the technical instructions of the manufacturing companies. Two holes were drilled into the humeral diaphysis and two No. 2 braided, non-absorbable Ethibond sutures were passed through these holes before insertion of the humeral stem. One loop-suture in "nice-knot" manner was passed through each tuberosity fragment. Following the reduction of the prosthesis, tuberosity fragments were reduced and fixed to the neck of the prosthesis. Then, the tuberosity repair was completed tying the sutures between the tuberosities and finally fixing the tuberosities to the humeral diaphysis using the sutures passing through the holes on the humeral diaphysis. The humeral head fragment was used as a source of autograft to fill the remaining gaps between the tuberosities if needed.

All patients adhered to the identical conventional rehabilitation program and were monitored by the same physiotherapist, who had expertise in shoulder rehabilitation.

Immobilization with an arm sling in 30° of abduction and neutral rotation was applied to all patients for 4 weeks following surgery to allow tuberosity healing. Immediate active wrist and elbow motion was allowed postoperatively. At the postoperative 4th week, passive and active-assistive range of motion exercises were initiated, respecting the pain-free motion limits with gradually increasing intensity. Active range of motion exercises were allowed starting from the 6th week. Deltoid, rotator cuff and periscapular strengthening exercises and shoulder proprioception exercises were initiated at the 10th postoperative week depending on the recovery level of each individual.

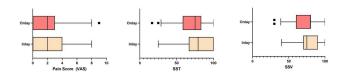
All post-operative clinical evaluations were conducted by a single author at 2 weeks, 4 weeks, 3 months, 6 months, 12 months, and annually thereafter. Clinical outcome measures comprised pain score (visual analogue scale – VAS, where 0 signifies no pain and 10 denotes maximum pain), subjective shoulder value (SSV, with 0 points representing the worst outcome and 100 points the best outcome), and simple shoulder test (SST, where 0 points indicate the worst outcome and 100 points indicate the best outcome). SST is a diagnostic questionnaire that was previously translated to Turkish and showed high reliability and validity and good correlation with shoulder function, muscle strength, and the DASH (Disabilities of Arm, Shoulder, and Hand) questionnaire (8). Data from the final clinical follow-up visit were used in the final analysis.

In each follow-up visit, true anteroposterior and axial radiographs of the shoulders were obtained, and tuberosity healing was assessed. Radiological assessments were performed by two independent surgeons and then confirmed

by the senior author. A displacement of >1cm of the tuberosity fragment from the humeral diaphysis or the absence of tuberosity (osteolysis) in the 2 radiographic projections were categorized as tuberosity nonunion.

Statistical analysis

Descriptive statistical methods used to analyse the study data were mean, median, range, standard deviation, and percentage. The normality of the distribution was assessed using histograms, the Kolmogorov-Smirnov test, and the Shapiro-Wilk test. The chi-square test was used for the comparison of categorical data. Quantitative variables were analyzed using an unpaired samples t-test for normally distributed data and the Mann-Whitney U test for nonnormally distributed data. All statistical analyses were conducted using GraphPad Prism Software for Windows (Version 9.3.0, San Diego, California, USA), with a significance level established at p=0.05.


RESULTS

There were 58 (78.4%) female and 16 (21.6%) male patients. The mean age of the patients was 72.4±7.2 years, and the mean follow-up duration was 51.2±25.4 months. At the final follow-up visit, both study groups showed satisfactory outcomes in terms of all clinical outcome measures. Group I (inlay design) showed superior pain outcome (2.1±2.4 vs 2.3±2.4), superior SST outcome (75.6±22.9 vs 71.7±21.4), and superior SSV outcome (77.1±17.7 vs 74.6±17.8); however, these differences were not statistically significant (p>0.05). Results of clinical outcome measures were resumed in Table 1 (Figure 2).

Table 1. Results of the clinical outcome measures. (Data are interpreted as mean±standard deviation.

Outcome measure	Group I (n=26)	Group II (n=48)	p value
Pain score (VAS)	2.1±2.4	2.3±2.4	0.73ª
SST	75.6±22.9	71.7±21.4	0.39ª
SSV	77.1±17.7	74.6±17.8	0.71ª

VAS: Visual analogue scale, SSV: Subjective shoulder value, SST: Simple shoulder test, ^a: Mann–Whitney U test

Figure 2. Graphs illustrating the mean clinical outcome scores of the study groups.

VAS: visual analog scale, SST: simple shoulder test, SSV: subjective shoulder value

Table 2. Distribution of tuberosity healing rates of the two study groups

	Group I (n=26)	Group II (n=48)	p value
Healed/not healed tuberosity	16 (61.5)/10 (38.5)	26 (54.2)/22 (45.8)	0.54ª

Data are interpreted as frequency (percentage). a: chi-square test

DISCUSSION

The present study introduced the clinical and radiological outcomes of inlay and onlay design RSAs performed for the treatment of PHFs. The most important finding of this study is that even though almost half of the patients failed to achieve a successful tuberosity healing, both designs showed satisfactory clinical outcomes. Secondly, unlike our hypothesis, the findings of this study were insufficient to put forward the superiority of the inlay design RSA for PHF since no significant difference was observed in terms of both clinical and radiological outcomes between the two designs.

The majority of previous studies comparing inlay and onlay RSA designs performed for different indications reported comparable results between the two designs (9-13). However, onlay design and lower NSA have been suggested to provide higher external rotation, extension, abduction, and lower scapular notching rates in biomechanical studies due to increased posterior rotator cuff tensioning and deltoid muscle lever arm (7, 10, 14). For a rarer indication of RSA performed in glenohumeral osteoarthritis without rotator cuff tear, no difference was reported between inlay and onlay designs in terms of functional outcomes and complication rates (15).

Despite the presumed advantages of humeral lateralization such as less scapular notching, better deltoid wrapping and efficiency in the case of cuff tear arthropathy where the tuberosities are intact, RSA for PHF relies on different fundaments. Outcomes of RSA for fracture have been reported to be less reliable than cuff-deficient shoulder (16-18), and tuberosity healing has been identified as the major factor affecting functional outcomes in RSA surgery for PHFs (19, 20). In a recent meta-analysis, the overall rate of tuberosity union was reported to be 68% (21), which was consistent with our findings. Previous reports indicated increased range of motion, lower complication rates, and longer prosthesis survival when anatomical tuberosity healing was achieved (22, 23). A prior biomechanical research stated a notable reduction in the joint reaction forces in the shoulder in instances of tuberosity non-union (24). Therefore, current knowledge recommends that anatomical and stable fixation of the tuberosities should be obtained in RSA for fracture. However, findings of the present study showed that even though in almost half of the patients tuberosity healing could not be achieved, good clinical outcomes and high patient satisfaction

were obtained. This situation raises the idea that tuberosity healing might not be as important as it was thought to be, or that other contributing factors might also be quite important in order to obtain good clinical outcomes. However, it is not yet possible to draw such a conclusion from our findings, and further research with higher evidence is still needed.

The prosthetic features of different RSA designs have variable biomechanical and kinematical impacts for tuberosity healing in the setting of PHF. There are several previous studies reporting the results of different prosthetic designs. However, to our knowledge, the current study is the first to compare the effects of two RSA designs in a single cohort. Mattiassich et al. reported a 72% tuberosity union rate in 32 patients using a traditional Grammont design prosthesis with an inlay humeral stem and 155° NSA (25). Similarly, Torrens et al. reported a tuberosity union rate of 68% with the same prosthesis (26). Comparable tuberosity union rates have also been reported with onlay designs to an inlay RSA design. In their study with 51 patients, Grubhofer et al. reported an overall tuberosity union rate of 81% using an onlay design with a 135° NSA fracture stem. In our study, the tuberosity union rate was slightly higher in the inlay design group (61.5% vs 54.2%) without significant difference. An inlay design would probably be more advantageous due to the easier and more anatomical reduction of tuberosities, less tension during tuberosity repair, and the higher likelihood of tuberosity union. However, the findings of our study were not sufficient to support such an inference and indicated the need for further studies.

Fracture-specific stems have recently been developed to improve the chances of tuberosity union. Metaphyseal windows for grafting, hydroxyapatite or porous covering of the stem, lateral flange for proper tuberosity location, and calcar holes for suture passage are some of the several alterations found in fracture stems. The goal of these changes is to improve the osteointegration between the prosthesis and tuberosities (20). NSA has also been reported to be an important factor for tuberosity healing. A previous biomechanical study comparing RSA designs with 135° and 155° reported that a more stable tuberosity fixation is possible with an anatomical NSA of 135°, which allowed the exact anatomical positioning of the tuberosities (27). Accordingly, in a systematic review by O'Sullivan et al., the authors indicated

that the highest tuberosity union rate was achieved with an anatomical 135° NSA (28). To increase the efficiency of RSA for fracture and to obtain better clinical outcomes, efforts to develop newer prosthethic designs and modifications of current designs continue intensively today.

This study has several limitations. The retrospective nature of the study represents a primary limitation that may have introduced potential selection and assessment bias. Posthoc power analysis for the comparison of tuberosity healing rates between inlay and onlay prostheses (64.5% vs 54.2%) demonstrated a power of 15.1%, indicating a limited ability to detect a statistically significant difference between the groups. This low power is primarily attributed to the relatively small sample size and the modest observed effect size. While our findings show a trend towards higher tuberosity healing rates in the inlay group, the study was not adequately powered to confirm this difference with statistical significance. Since this study focuses on a considerably specific topic, conducting a study with sufficient power requires an almost infeasible sample size for a single-center study. Secondly, compared to previous reports, the current study has a considerably larger cohort size, which highlights its importance. However, future research with a larger patient cohort is warranted to further investigate the potential impact of prosthesis design on tuberosity healing outcomes in RSA for PHF. Another limitation to note is the absence of interobserver and intraobserver reliability testing for radiological evaluations. All radiological evaluations were conducted following consensus among the observers and confirmation by the senior author. This study represents the first-ever comparison of various RSA designs in this context. Consequently, it contributes significantly to the existing literature. However, it is evident that further research is needed on this topic to clarify the effects of different RSA designs conducted in the setting of a PHF.

CONCLUSION

Our findings demonstrated that RSA is an effective treatment for complex PHFs in the elderly, and that satisfactory clinical outcomes might be achieved rregardless of the prosthethic design used as long as an appropriate surgical technique and close clinical follow-up are performed. While inlay RSA showed a slightly higher tuberosity healing rate, the difference was not statistically significant. Further research with larger samples is needed to determine any clinical advantage.

Ethics Committee Ethics committee approval was received for this

Approval study from the ethics committee of Bezmialem

Vakıf University (Date: 25.12.2024, No: 23).

Peer Review Externally peer-reviewed.

Author Conception/Design of Study- K.Ş., N.Z., M.K., K.B.; Contributions Data Acquisition- H.B.K., E.B.Ç., O.T.; Data Analysis/

Interpretation – K.Ş., N.Z., M.K., K.B.; Drafting Manuscript- K.Ş., N.Z.; Critical Revision of Manuscript- K.B., M.K., H.B.K., E.B.Ç., O.T.; Final Approval and Accountability- K.Ş., N.Z., H.B.K., E.B.Ç., O.T., M.K., K.B.; Supervision- K.B., M.K., K.Ş., N.Z.

Conflict of Interest The authors have no conflict of interest to declare.

Financial Disclosure The authors declared that this study received no

financial support.

Author Details

Koray Şahin

- ¹ Bezmialem Vakif University, Faculty of Medicine, Department of Orthopedics and Traumatology, İstanbul, Türkiye

Nezih Ziroğlu

- ² Acibadem University Atakent Hospital, Department of Orthopedics and Traumatology, Istanbul, Türkiye
- © 0000-0002-2595-9459

Hakan Batuhan Kaya

- ¹ Bezmialem Vakif University, Faculty of Medicine, Department of Orthopedics and Traumatology, İstanbul, Türkiye
- 0000-0002-9788-6578

Eyüp Berk Çiçek

- ¹ Bezmialem Vakif University, Faculty of Medicine, Department of Orthopedics and Traumatology, İstanbul, Türkiye
- 0009-0003-3800-8876

Okan Tezgel

- ³ Bahcelievler Medipol Hospital, Orthopedics and Traumatology Clinic, istanbul, Türkiye
- 6 0000-0001-9497-329X

Mehmet Kapıcıoğlu

- ¹ Bezmialem Vakif University, Faculty of Medicine, Department of Orthopedics and Traumatology, İstanbul, Türkiye
- 0000-0002-6987-4270

Kerem Bilsel

- ⁴ Acibadem University Fulya Hospital, Department of Orthopedics and Traumatology, İstanbul, Türkiye
- (D) 0000-0002-7402-756X

REFERENCES

1 Barger J, Zhang D, Stenquist DS, Ostergaard P, Hall M, Dyer GSM, et al. Correlation and responsiveness of global health, upper extremity-specific, and shoulder-specific functional outcome measures following reverse total

- shoulder arthroplasty for proximal humerus fracture. BMC Musculoskelet Disord 2021;22(1):574.
- 2 Ensrud KE. Epidemiology of fracture risk with advancing age. J Gerontol A Biol Sci Med Sci 2013;68(10):1236-42.
- 3 Dey Hazra RO, Blach RM, Ellwein A, Katthagen JC, Lill H, Jensen G. Latest trends in the current treatment of proximal humeral fractures - an analysis of 1162 cases at a level-1 trauma centre with a special focus on shoulder surgery. Z Orthop Unfall 2022;160(3):287-98.
- 4 Barger J, Stenquist DS, Mohamadi A, Weaver MJ, Dyer GSM, von Keudell A. Acute versus delayed reverse total shoulder arthroplasty for the management of proximal humerus fractures. Injury 2021;52(8):2272-8.
- 5 Seidel HD, Bhattacharjee S, Koh JL, Strelzow JA, Shi LL. Acute versus delayed reverse shoulder arthroplasty for the primary treatment of proximal humeral fractures. J Am Acad Orthop Surg 2021;29(19):832-9.
- 6 Friedman RJ, Barcel DA, Eichinger JK. Scapular notching in reverse total shoulder arthroplasty. J Am Acad Orthop Surg 2019;27(6):200-9.
- 7 Streit JJ, Shishani Y, Gobezie R. Medialized versus lateralized center of rotation in reverse shoulder arthroplasty. Orthopedics 2015;38(12):e1098-103.
- 8 Ayhan Ç, Ünal E, Yakut Y. Turkish version of the simple shoulder test: a reliability and validity study. Turk J Physiotherapy Rehabilitation 2010;21(2):68-74.
- 9 Cho SH, Lee HJ, Aldhafian OR, Kim YS. Comparison of lateralized versus medialized reverse total shoulder arthroplasty: a systematic review and metaanalysis. Orthop J Sports Med 2022;10(1):23259671211063922.
- 10 Berton A, Gulotta LV, Longo UG, De Salvatore S, Piergentili I, Bandini B, et al. Medialized versus lateralized center of rotation in reverse total shoulder arthroplasty: a systematic review and meta-analysis. J Clin Med 2021;10(24):5868.
- 11 Bedeir YH, Grawe BM, Eldakhakhny MM, Waly AH. Lateralized versus nonlateralized reverse total shoulder arthroplasty. Shoulder Elbow 2021;13(4):358-70.
- 12 Jackson GR, Meade J, Young BL, Trofa DP, Schiffern SC, Hamid N, et al. Onlay versus inlay humeral components in reverse shoulder arthroplasty: a systematic review and meta-analysis. Shoulder Elbow 2023;15(1):4-13.
- 13 Rauck RC, Eck EP, Chang B, Craig EV, Dines JS, Dines DM, et al. Survivorship of a medialized glenoid and lateralized onlay humerus reverse shoulder arthroplasty is high at midterm follow-up. HSS J 2020;16(Suppl 2):2939.
- 14 Beltrame A, Di Benedetto P, Cicuto C, Cainero V, Chisoni R, Causero A. Onlay versus inlay humeral steam in reverse shoulder arthroplasty (RSA): clinical and biomechanical study. Acta Biomed 2019;90(12-S):5463.
- 15 Meshram P, Joseph J, Zhou Y, Srikumaran U, McFarland EG. Lateralized glenosphere reverse shoulder arthroplasty: inlay and onlay designs have similar clinical outcomes in patients with glenohumeral osteoarthritis. J Shoulder Elbow Surg 2022;31(4):747-54.
- 16 Ernstbrunner L, Suter A, Catanzaro S, Rahm S, Gerber C. Reverse total shoulder arthroplasty for massive, irreparable rotator cuff tears before the age of 60 years: long-term results. J Bone Joint Surg Am 2017;99(20):1721-9.
- 17 Ernstbrunner L, Andronic O, Grubhofer F, Camenzind RS, Wieser K, Gerber C. Long-term results of reverse total shoulder arthroplasty for rotator cuff dysfunction: a systematic review of longitudinal outcomes. J Shoulder Elbow Surg 2019;28(4):774-81.
- 18 Gerber C, Canonica S, Catanzaro S, Ernstbrunner L. Longitudinal observational study of reverse total shoulder arthroplasty for irreparable rotator cuff dysfunction: results after 15 years. J Shoulder Elbow Surg 2018;27(5):831-8.
- 19 Jo O, Borbas P, Grubhofer F, Ek ET, Pullen C, Treseder T, et al. Prosthesis designs and tuberosity fixation techniques in reverse total shoulder arthroplasty: influence on tuberosity healing in proximal humerus fractures. J Clin Med 2021;10(18):4146.
- 20 Imiolczyk JP, Moroder P, Scheibel M. Fracture-specific and conventional stem designs in reverse shoulder arthroplasty for acute proximal humerus fracturesa retrospective, observational study. J Clin Med 2021;10(2):175.
- 21 Jain NP, Mannan SS, Dharmarajan R, Rangan A. Tuberosity healing after reverse shoulder arthroplasty for complex proximal humeral fractures in elderly

- patients-does it improve outcomes? a systematic review and meta-analysis. J Shoulder Elbow Surg 2019;28(3):e78-91.
- 22 Gunst S, Louboutin L, Swan J, Lustig S, Servien E, Nove-Josserand L. Does healing of both greater and lesser tuberosities improve functional outcome after reverse shoulder arthroplasty for fracture? A retrospective study of twentyeight cases with a computed tomography scan at a minimum of one-year follow-up. Int Orthop 2021;45(3):681-7.
- 23 Sabah Y, Decroocq L, Gauci MO, Bonnevialle N, Lemmex DB, Chelli M, et al. Clinical and radiological outcomes of reverse shoulder arthroplasty for acute fracture in the elderly. Int Orthop 2021;45(7):1775–81.
- 24 Sabesan VJ, Lima DJL, Yang Y, Stankard MC, Drummond M, Liou WW. The role of greater tuberosity healing in reverse shoulder arthroplasty: a finite element analysis. J Shoulder Elbow Surg 2020;29(2):347-54.
- 25 Mattiassich G, Marcovici LL, Krifter RM, Ortmaier R, Wegerer P, Kroepfl A. Delta III reverse shoulder arthroplasty in the treatment of complex 3- and 4-part fractures of the proximal humerus: 6 to 42 months of follow up. BMC Musculoskelet Disord 2013;14:231.
- 26 Torrens C, Alentorn-Geli E, Mingo F, Gamba C, Santana F. Reverse shoulder arthroplasty for the treatment of acute complex proximal humeral fractures: influence of greater tuberosity healing on the functional outcomes. J Orthop Surg (Hong Kong) 2018;26(1):2309499018760132.
- 27 Schmalzl J, Piepenbrink M, Buchner J, Picht S, Gerhardt C, Lehmann LJ. Higher primary stability of tuberosity fixation in reverse fracture arthroplasty with 135° than with 155° humeral inclination. J Shoulder Elbow Surg 2021;30(6):1257-65.
- 28 O'Sullivan J, L\u00e4dermann A, Parsons BO, Werner B, Steinbeck J, Tokish JM, et al. A systematic review of tuberosity healing and outcomes following reverse shoulder arthroplasty for fracture according to humeral inclination of the prosthesis. J Shoulder Elbow Surg 2020;29(9):1938-49.

