Çankaya Üniversitesi Fen-Edebiyat Fakültesi, Journal of Arts and Sciences Sayı: 5, Mayıs 2006

An Inequality of Fejer-Riesz Type

Yüksel SOYKAN*

Abstract

In this paper, we obtain an extension of an integral inequality of Fejer-Riesz type. *Key words: Hardy Spaces, Inequalities.*

Özet

Bu çalışmada Fejer-Riesz tipinde bir integral eşitsizliğinin bir genellemesini elde edeceğiz. *Anahtar Kelimeler: Hardy Uzayları, Eşitsizlikler.*

1. INTRODUCTION

Throughout let Δ be the open unit disk and let $\partial \Delta$ be the boundary of Δ . For $1 \le p < \infty$, $H^p(\Delta)$ is the set of all functions f analytic on Δ such that

$$\lim_{r \to 1} \frac{1}{2\pi} \int_0^{2\pi} \left| f(re^{i\theta}) \right|^p d\theta < \infty.$$
$$\|f\|_p = \left\{ \frac{1}{2\pi} \int_0^{2\pi} \left| f(e^{i\theta}) \right|^p d\theta \right\}^{1/p} = \lim_{r \to 1} \left\{ \frac{1}{2\pi} \int_0^{2\pi} \left| f(re^{i\theta}) \right|^p d\theta \right\}^{1/p}$$

defines a complete norm on $H^p(\Delta)$. In the case of p = 2, $H^2(\Delta)$ is the class of power series $\sum_{n=0}^{\infty} a_n z^n$ with $\sum_{n=0}^{\infty} |a_n|^2 < \infty$ which means $\{a_n\}_{n=0}^{\infty} \in \ell^2$. In this case, for $f \in H^2(\Delta)$ the norm is given by $\|f\|_2 = \left\{\sum_{n=0}^{\infty} |a_n|^2\right\}^{1/2}$. For more information on this spaces see [1 and 3].

^{*} Karaelmas üniversitesi, Fen Edebiyet. Fakültesi, Matematik Bölümü, Zonguldak yuksel_soykan@hotmail.com

The following interesting inequality is given in [1, page 46]. **LEMMA 1.1** (Fejer-Riesz Inequality). If $f \in H^p(\Delta)$ $(1 \le p < \infty)$, then the integral of $|f(x)|^p$ along the segment $-1 \le x \le 1$ converges, and

$$\int_{-1}^{1} |f(x)|^{p} dx \leq \frac{1}{2} \int_{0}^{2\pi} |f(e^{i\theta})|^{p} d\theta \leq \int_{0}^{2\pi} |f(e^{i\theta})|^{p} d\theta.$$

We shall prove an extension for p = 2, below.

THEOREM 1.2 Let γ be a circular arc (or a straight-line segment) satisfying $\gamma \subseteq \overline{\Delta}$. Then for every $f \in H^2(\Delta)$,

$$\frac{1}{2\pi} \int_{\gamma} |f(z)|^2 |dz| \le ||f||^2_{H^2(\Delta)} = \frac{1}{2\pi} \int_{\partial \Delta} |f(z)|^2 |dz| \qquad (1.1)$$

where |dz| denote the arclength measure.

Let \mathbb{R} and \mathbb{C} denote the real line and the complex plane respectively. Suppose $D' \subseteq \overline{\mathbb{C}} = \mathbb{C} \cup \infty$ is a simply connected domain. Then there is a canonical Hilbert Space $E^2(D')$ of analytic functions on D'. These spaces are discussed in detail in chapter 10 of [1] and the precise definition will be recalled in the next section; so these spaces will be taken for granted for the moment. The following is an immediate consequence of above theorem.

COROLLARY 1.3 Suppose that *D* is a disc or a codisc or a half-plane and $\gamma' \subseteq \overline{D}$ be a circular arc (or a straight line) then for every $g \in E^2(D)$,

$$\frac{1}{2\pi} \int_{Y^{-}} |g(z)|^{2} |dz| \leq ||g||_{E^{2}(D)}^{2} = \frac{1}{2\pi} \int_{\partial D} |g(z)|^{2} |dz|$$

where ∂D denote the boundary of D.

2. PRELIMINARIES

Let *D* be a simply connected domain in $\overline{\mathbb{C}}$ and let φ be a Riemann mapping function for *D*, that is, a conformal map of *D* onto Δ . An analytic function *g* on *D* is said to be of class $E^2(D)$ if there exists a function $f \in H^2(\Delta)$ such that

$$g(z) \equiv f(\varphi(z))\varphi'(z)^{\frac{1}{2}} \quad (z \in D)$$

where ${\varphi'}^{\frac{1}{2}}$ is a branch of the square root of φ' . We define 52

$$\|g\|_{E^2(D)} = \|f\|_{H^2(\Delta)}$$
. Thus, by construction, $E^2(D)$ is a Hilbert space with
 $\langle g_1, g_2 \rangle_{E^2(D)} = \langle f_1, f_2 \rangle_{H^2(\Delta)}$

where $g_i(z) = f_i(\varphi(z))\varphi'(z)^{\frac{1}{2}}$, (i = 1, 2) and the map $U_{\varphi}: H^2(\Delta) \to E^2(D)$ given by

$$U_{\varphi}f(z) = f(\varphi(z))\varphi'(z)^{1/2} \ (f \in H^{2}(\Delta), z \in D)$$

is an isometric bijection. If ∂D is a rectifiable Jordan curve then the same formula

$$V_{\varphi}f(z) = f(\varphi(z))\varphi'(z)^{1/2} \quad (f \in L^{2}(\partial \Delta), z \in \partial D)$$

defines an isometric bijection V_{φ} of $L^2(\partial \Delta)$ onto $L^2(\partial D)$, the L^2 space of normalized arc length measure on ∂D . The inverse

$$V_{\psi} = V_{\varphi}^{-1} : L^{2}(\partial D) \to L^{2}(\partial \Delta)$$

of V_{φ} is given by

$$V_{\psi}g(w) = g(\psi(w))\psi'(w)^{1/2} \quad (g \in L^2(\partial D), w \in \partial \Delta, \psi = \varphi^{-1}).$$

We recall some definition and remark.

REMARK 2.1 Suppose f is a function on an interval I in \mathbb{R} and $a, b \in I$. If $(\log f) > 0$ we say that f is log-convex. Then we have

i) if f is log-convex then $f((1-\lambda)a + \lambda b) \le f(a)^{(1-\lambda)} f(b)^{\lambda}$ $(0 < \lambda < 1)$ ii) f is log-convex if and only if $(f')^2 \le ff''$.

REMARK 2.2 Suppose that $G \in L^2(\mathbb{R})$. The Fourier Transform of *G* is the function \hat{G} given by

$$\hat{G}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(u) e^{ixu} du$$

and G is given by

$$G(u) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{G}(x) e^{-ixu} dx$$

The following equality

$$\int_{-\infty}^{\infty} \left| G(u) \right|^2 du = \int_{-\infty}^{\infty} \left| \hat{G}(x) \right|^2 dx$$

(i.e. $\|G\|^2 = \|\hat{G}\|^2$) is called Parsevals identity. If $G \in L^2(\mathbb{R})$ we have the equality

$$\left\|\hat{G}\right\|^{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left|\int_{-\infty}^{\infty} G(u)e^{ixu} du\right|^{2} dx.$$

(A proof may be found in Rudin [4, page 189].

3. MAIN RESULT

In this section we shall prove the theorem which is mentioned in the introduction.

Proof of Theorem 1.2:

When $f \in H^2(\Delta)$, we shall write $I_{\gamma} = \frac{1}{2\pi} \int_{\partial \Delta} |f(z)|^2 |dz|$.

Special cases;

i) The case $\gamma \subseteq \partial \Delta$ is trivial.

ii) Suppose that $\gamma = \{z : |z| = r\}$ so that $z = re^{i\theta}$ and $|dz| = rd\theta$ (see Figure 1).

Figure 1

For $f \in H^2(\Delta)$, since

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \quad \left(a_n \in \ell^2\right) \text{ and } \left|f(re^{i\theta})\right|^2 = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_n \overline{a_m} r^{n+m} e^{i(n-m)\theta}$$

we obtain

$$I_{\gamma} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f(re^{i\theta}) \right|^2 r d\theta = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_n \overline{a_m} r^{n+m} e^{i(n-m)\theta} r d\theta$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_n \overline{a_m} r^{n+m} r \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n-m)\theta} d\theta$$
$$= \sum_{n=0}^{\infty} |a_n|^2 r^{2n+1} \le \sum_{n=0}^{\infty} |a_n|^2 = ||f||^2$$

iii) Let γ be a full circle in Δ such that $\gamma \cap \partial \Delta = \emptyset$ and suppose that $\varphi : \Delta \to \Delta$ is a conformal map and $\gamma' = \{z : |z| = r\}$ so that $z = re^{i\theta}$, $\gamma = \varphi(\gamma')$ (see Figure 2)

Figure 2

We know from section-2 that the formula

 $U_{\varphi}f(z) = f(\varphi(z))\varphi'(z)^{1/2} \quad (f \in H^{2}(\Delta), z \in D)$ defines a unitary operator U_{φ} of $H^{2}(\Delta)$ onto $E^{2}(\Delta) = H^{2}(\Delta)$ so that $\left\|U_{\varphi}\right\| = \|f\|$ Then we have

$$I_{\gamma} = \frac{1}{2\pi} \int_{\gamma} |f(z)|^{2} |dz|$$

$$= \frac{1}{2\pi} \int_{\gamma'} |f(\varphi(z))|^{2} |\varphi'(z)|^{2} |dz|$$

$$= \frac{1}{2\pi} \int_{\gamma'} |U_{\varphi} f(z)|^{2} |dz|$$

$$\leq \left\| U_{\varphi} f \right\|^{2} \qquad \text{(by case ii)}$$

$$= \left\| f \right\|^{2}.$$

(iv) Suppose that 0 < a < 1 and $\gamma = \{z : |z-a| = (1-a)\}$ so that

Figure 3

For each n, by case iii), it follows that

$$\frac{1}{2\pi} \int_{\gamma_n} |f(z)|^2 |dz| \leq ||f||^2.$$

If $f \in H^2(\Delta)$ is fixed, we have

$$\frac{1}{2\pi} \int_{\gamma} |f(z)|^2 |dz| = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(\theta) d\theta$$

where

$$g(\theta) = \left| f(a + (1-a)e^{i\theta} \right|^2 (1-a)$$

and

$$\frac{1}{2\pi} \int_{\gamma_n} |f(z)|^2 |dz| = \frac{1}{2\pi} \int_{-\pi}^{\pi} g_n(\theta) d\theta \le ||f||^2$$

where

$$g_n(\theta) = \left| f(a + \frac{n}{n+1}(1-a)e^{i\theta} \right|^2 \frac{n}{n+1}(1-a).$$

Note that $(g_n) \subseteq L^1(-\pi,\pi)$ and $g_n \ge 0$ a.e. Thus by Fatou's lemma, it follows that

$$\frac{1}{2\pi} \int_{\gamma} |f(z)|^2 |dz| = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(\theta) d\theta = \frac{1}{2\pi} \int_{-\pi}^{\pi} \underline{\lim} g_n(\theta) d\theta$$
$$\leq \underline{\lim} \frac{1}{2\pi} \int_{-\pi}^{\pi} g_n(\theta) d\theta$$

$$\leq \underline{\lim} \left\| f \right\|^2 = \left\| f \right\|^2$$

(here $\underline{\lim}$ means $\underset{n\to\infty}{\lim} inf$). That is, we obtain

$$\frac{1}{2\pi} \int_{\gamma} \left| f(z) \right|^2 \left| dz \right| \leq \left\| f \right\|^2$$

v) Suppose that γ has distinct end points on $\partial \Delta$. Using a conformal map as above we can assume these end points are ± 1 . $\varphi(w) = \tanh(w)$ maps the infinite strip- $-\frac{\pi}{4} < v < \frac{\pi}{4}$ (w = u + iv) in the *w*-plane onto the interior of the unit disc in the *z*-plane (see Figure 4).

Figure 4

Suppose that $D = \{z \in \Box : |\operatorname{Im}(w)| < \frac{\pi}{4}\}$. Then we obtain

$$E^{2}(D) = \left\{ g: g(w) = f(\tanh w) \sec h(w) = \sum_{n=0}^{\infty} a_{n} \tanh^{n}(w) \sec h(w) \right\}$$

where $f \in H^2(\Delta)$ and

$$I_{\gamma} = \frac{1}{2\pi} \int_{\gamma} |f(z)|^2 |dz| = \frac{1}{2\pi} \int_{\varphi^{-1}(\gamma)} |f(\tanh(w))|^2 |\sec h^2(w)| |dw|$$

(Here we used the substitution $z = \tanh w$ and the fact $dz = \sec h^2(w)dw$, w = x + iy, dw = dx), so that

$$I_{\gamma} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| f\left(\tanh(x+iy)\right) \right|^2 \left| \sec h^2(x+iy) \right| dx$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| Uf(x+iy) \right|^2 dx$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| h(x+iy) \right|^2 dx \quad (\operatorname{say} h = Uf \in E^2(D)) \quad (3.1)$$

An Inequality of Fejer-Riesz Type

where $U: H^2(\Delta) \to E^2(D)$

$$Uf(w) = f(\varphi(w))\varphi'(w)^{\frac{1}{2}} = f(\tanh w) \sec h(w)$$

is a unitary operator as in the case iii) so that ||Uf|| = ||f||. We shall now show that if $h \in E^2(D)$ and $-\frac{\pi}{4} < y < \frac{\pi}{4}$, then

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \left| h(x+iy) \right|^2 dx \le \left\| h \right\|_{E^2(D)}^2$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| h(x+i\frac{\pi}{4}) \right|^2 dx + \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| h(x-i\frac{\pi}{4}) \right|^2 dx \quad (3.2)$$

Note that if $X = \left\{h : h(z) = \sum_{n=0}^{N} a_n \tanh^n(w) \sec h(w)\right\}$, then i) X is a dense subset of $E^2(D)$ and ii) each $h \in X$ is analytic for w satisfying $|\operatorname{Im}(w)| < \frac{\pi}{4}$, in fact, this is true for w satisfying $|\operatorname{Im}(w)| < \frac{\pi}{2}$. Suppose that $h \in X$. By (3.1)

$$I_{y} = \frac{1}{2\pi} \int_{-\infty}^{\infty} |h(x+iy)|^{2} dx, \quad -\frac{\pi}{4} < y < \frac{\pi}{4}$$

so, by (3.2) we need to show that $I_y \leq I_{\frac{\pi}{4}} + I_{-\frac{\pi}{4}}$. We will show that $(I_y')^2 \leq I_y I_y''$. For $h \in X$ there is a $g \in L^2(\mathbb{R})$ such that $h(z) = \int_{-\infty}^{\infty} g(u)e^{izu}du$ (this is the Paley-Wiener theorem, see [1, page 196 and 2, page 132]). If we set $G(u) = g(u)e^{-yu}$, $-\frac{\pi}{4} < y < \frac{\pi}{4}$ then the Fourier Transform \hat{G} of G is given by $\hat{G}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(u)e^{ixu}du$, but also we have $G(u) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{G}(x)e^{-ixu}dx$ and $\|\hat{G}\|^2 = \|G\|^2$. For $-\frac{\pi}{2} < y < \frac{\pi}{2}$ we obtain $I_y = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\int_{-\infty}^{\infty} g(u)e^{i(x+iy)u}du|^2 dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\int_{-\infty}^{\infty} g(u)e^{-yu}e^{ixu}du|^2 dx = \frac{1}{2\pi} \|\hat{G}\|^2 = \frac{1}{2\pi} \|G\|^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} |g(u)e^{-yu}|^2 du$

and consequently

$$I_{y} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| g(u) \right|^{2} e^{-2yu} du$$

$$I_{y}' = \frac{1}{2\pi} \int_{-\infty}^{\infty} -2u |g(u)|^{2} e^{-2yu} du$$
$$I_{y}'' = \frac{1}{2\pi} \int_{-\infty}^{\infty} -4u^{2} |g(u)|^{2} e^{-2yu} du$$

In view of above equalities, it follows by Schwarz Inequality that $(I_y')^2 \leq I_y I_y''$. Thus I_y is log-convex. So from Remark 2.1, $I_{(1-\lambda)a+\lambda b} \leq I_a^{(1-\lambda)} I_b^{\lambda}$ (0 < λ < 1). Note that if $\alpha, \beta > 0$ and $\alpha + \beta = 1$ and x, y > 0 then $x^{\alpha} y^{\beta} \leq x + y$. Hence for $h \in X$

$$I_{y} = I_{(1-\lambda)\frac{\pi}{4} + \lambda\left(\frac{-\pi}{4}\right)} \qquad \left(\frac{-\pi}{4} < y < \frac{\pi}{4}\right)$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left|h(x+iy)\right|^{2} dx \le I_{\frac{\pi}{4}}^{\alpha} + I_{\frac{-\pi}{4}}^{\beta}$$
$$\le I_{\frac{\pi}{4}} + I_{\frac{-\pi}{4}}.$$
(3.3)

We shall finish the proof of this case by showing that the inequality

$$I_{y} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| h(x+iy) \right|^{2} dx \le \left\| h \right\|_{E^{2}(D)}^{2} \qquad \left(\frac{-\pi}{4} < y < \frac{\pi}{4} \right)$$

is true for all $h \in E^2(D)$. Now suppose that $h_N(z) = \sum_{n=0}^N a_n \tanh^n(z) \sec h(z)$; that is, $h_N \in X$, for N = 0, 1, 2, ... and $h(z) = \sum_{n=0}^{\infty} a_n \tanh^n(z) \sec h(z)$, i.e., $h \in E^2(D)$. Then $h_N \to h$ (means $\int_{\partial D} |h_N(z) - h(z)| |dz| \to 0$).

From (3.3), the following inequality

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \left| h_N(x+iy) \right|^2 dx \le \left\| h_N \right\|_{E^2(D)}^2$$

holds. By Fatou's Lemma

$$\int_{-\infty}^{\infty} \underline{\lim} \left| h_N(x+iy) \right|^2 dx \le \underline{\lim} \int_{-\infty}^{\infty} \left| h_N(x+iy) \right|^2 dx$$

so

$$I_{y} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| h(x+iy) \right|^{2} dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} \underline{\lim} \left| h_{N}(x+iy) \right|^{2} dx$$
$$\leq \underline{\lim} \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| h_{N}(x+iy) \right|^{2} dx$$

An Inequality of Fejer-Riesz Type

$$\leq \underline{\lim} \|h_N\|_{E^2(D)}^2 = \|h\|_{E^2(D)}^2$$

Hence for all $h \in E^2(D)$, we have the inequality

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \left| h(x+iy) \right|^2 dx \le \left\| h \right\|_{E^2(D)}^2$$

as required. We now verified (1.1) in all cases.

References

- [1] Duren, P. L., "Theory of Hp Spaces", Academic Press, New York, 1970.
- [2] Koosis, P., "Introduction to Hp Spaces" Cambridge University Press, Cambridge, Second Edition, 1998.
- [3] Pommerenke, C., "Boundary behaviour of conformal maps", Springer-Verlag, Berlin, Heidelberg, 1992.
- [4] Rudin, W., "Functional Analysis,", McGraw-Hill, New York, International Edition, 1991.