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Abstract

In this paper, we obtain an extension of an integral inequality of Fejer-Riesz type.
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Özet

Bu çal›şmada Fejer-Riesz tipinde bir integral eşitsizliğinin bir genellemesini elde edeceğiz.

Anahtar Kelimeler: Hardy Uzaylar›, Eşitsizlikler.

An Inequality of Fejer-Riesz Type

Yüksel SOYKAN *

* Karaelmas üniversitesi, Fen Edebiyet. Fakültesi, Matematik Bölümü, Zonguldak

yuksel_soykan@hotmail.com

1.  INTRODUCTION 

 

    Throughout let  be the open unit disk and let  be the boundary of . 

For 1 ,  is the set of all functions  analytic on p ( )pH f  such that 
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defines a complete norm on ( )pH . In the case of 2p ,  is the 

class of power series  with 

2 ( )H
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a . In this case, for 2 ( )f H  the norm is given by 
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f a  For more information on this spaces see [1 and 3]. 
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    The following interesting inequality is given in [1, page 46]. 

LEMMA 1.1 (Fejer-Riesz Inequality). If ( )pf H  (1 )p , then the 

integral of ( )
p

f x  along the segment 1 x 1 converges, and 

1 2 2

1 0 0

1
( ) ( ) ( )

2

p pp i i .f x dx f e d f e d  

    We shall prove an extension for 2p , below. 

THEOREM 1.2  Let  be a circular arc (or a straight-line segment) 

satisfying .  Then for every 2 ( )f H , 

(1.1)   2

2 2 2

( )

1 1
( ) ( )

2 2H
f z dz f f z dz  

where dz  denote the arclength measure. 

 
    Let  and  denote the real line and the complex plane respectively. 

Suppose 'D  is a simply connected domain. Then there is a 

canonical Hilbert Space  of analytic functions on ' . These spaces 

are discussed in detail in chapter 10 of [1] and the precise definition will be 
recalled in the next section; so these spaces will be taken for granted for the 
moment. The following is an immediate consequence of above theorem. 

2 ( ')E D D

 
COROLLARY 1.3 Suppose that  is a disc or a codisc or a half-plane and D

' D  be a circular arc (or a straight line) then for every , 2 ( )g E D

2

2 2 2

( )'

1 1
( ) ( )

2 2E D D
g z dz g g z dz  

 
where D  denote the boundary of . D

 
2. PRELIMINARIES 

 1 

    Let  be a simply connected domain in D  and let  be a Riemann 

mapping function for , that is, a conformal map of  onto . An 

analytic function  on  is said to be of class  if there exists a 

function such that 

D D

g D 2 ( )E D
2 ( )f H

g z f z z( ) ( ) ( )
1
2    ( z D ) 

where 
1
2  is a branch of the square root of . We define 

RR CC

CC CC
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(1.1)
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g f
E D H2 ( ) ( )2 . Thus, by construction,  is a Hilbert space with 2 ( )E D

g g f f
E D H1 2 1 22 2, ,

( ) ( )
 

where g z f z zi i( ) ( ) ( )
1
2 ,  ( 1, 2i ) and the map  

given by 

2 2: ( ) (U H E D)

( ) ( ( )) )U f z f z z   ( 2 ( ),f H z D ) 

is an isometric bijection. If D  is a rectifiable Jordan curve then the same 

formula 

( ) ( ( )) )V f z f z z   ( 2 ( ),f L z D ) 

defines an isometric bijection V  of 2 ( )L  onto 2 (L D) ,  the  space of 

normalized arc length measure on 

2L

D . The inverse 
1 2 2: ( ) ( )V V L D L  

of V  is given by 

( ) ( ( )) ( )V g w g w w     (
2 1( ), ,g L D w ). 

We recall some definition and remark. 
 
REMARK 2.1 Suppose  is a function on an interval f I  in  and . 

If   we say that  is log-convex. Then we have 

,a b I

(log ) '' 0f f

 

i) if  is log-convex then f
(1 )((1 ) ) ( ) ( )f a b f a f b  (0 1)  

 ii) f  is log-convex if and only if 2( ') ''f ff . 

 

REMARK 2.2 Suppose that . The Fourier Transform of G  is the 

function  given by 

2 ( )G L

Ĝ

1ˆ ( ) ( )
2

ixuG x G u e du  

and G is given by 

1 ˆ( ) ( )
2

ixuG u G x e dx . 

The following equality 
22 ˆ( ) ( )G u du G x dx   

RR

RR
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(i.e.  
22 ˆG G )  is called Parsevals identity. If  we have the 

equality 

2 ( )G L

22 1ˆ ( )
2

ixuG G u e du dx . 

 
(A proof may be found in Rudin [4, page 189]. 
 

3. MAIN RESULT 

 
In this section we shall prove the theorem which is mentioned in the 
introduction. 
    Proof of Theorem 1.2: 

    When , we shall write 2 ( )f H
21

( )
2

I f z dz . 

Special cases; 
i) The case  is trivial. 

ii) Suppose that :z z r  so that iz re  and dz rd   (see Figure 

1). 

 

      Figure 1 

For , since 2 ( )f H
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iii) Let  be a full circle in  such that  and suppose that 

:  is a conformal map and ' :z z r  so that iz re , 

( ')  (see Figure 2)  

 

                                                            Figure 2       

We know from section-2 that the formula 

( ) ( ( )) )U f z f z z   ( 2 ( ),f H z D ) 

defines a unitary operator U  of 2 ( )H  onto 2 ( )E =  so that 2 ( )H

U f  Then we have  

21
( )

2
I f z dz  

         
2 2

'

1
( ) '( )

2
f z z dz  

 
2

'

1

2
U f z dz  

          
2

        (by case ii)U f  

     
2
.f  

 

(iv) Suppose that  and 0 a 1 : (1z z a a)  so that 
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(1 ) iz a a e  and : (1
1

n

n
z z a a

n
)  so that 

(1 )
1

in
z a a e

n
    (see Figure 3).                                                      

 

          Figure 3       
    For each n , by case iii), it follows that 

2 21
( )

2 n

f z dz f . 

If is fixed, we have 2 ( )f H

21 1
( ) ( )

2 2
f z dz g d  

where 
2

( ) ( (1 ) (1 )ig f a a e a  

and 

2 21 1
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Note that 1( ,ng L  and  a.e. Thus by Fatou`s lemma, it 

follows that  

0ng
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2 2

lim f f  

(here lim  means li ). That is, we obtain m
n

inf

2 21
( ) .

2
f z dz f  

v) Suppose that  has distinct end points on . Using a conformal map as 

above we can assume these end points are ±1. ( ) tanh( )w w  maps the 

infinite strip-
4 4

v   ( )w u iv in the -plane onto the interior of 

the unit disc in the -plane (see Figure 4).  

w

z

 
Figure 4 

Suppose that { : Im( )
4

D z w }. Then we obtain 

2

0

( ) : ( ) (tanh )sec ( ) tanh ( )sec ( )n

n

n

E D g g w f w h w a w h w  

where  and 2 ( )f H

1

2 2 2

( )

1 1
( ) (tanh( )) sec ( )

2 2
I f z dz f w h w dw  

(Here we used the substitution tanhz w  and the fact , 

,  dw ), so that 

2sec ( )dz h w dw

w x iy dx

2 21
(tanh( )) sec ( )

2
I f x iy h x iy dx  

                                     
21

( )
2

Uf x iy dx  

(3.1)    
2 21

( )     (say ( ))
2

h x iy dx h Uf E D  (3.1)
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where  2 2: ( ) (U H E D)
1
2( ) ( ) ( ) (tanh )sec ( )Uf w f w w f w h w  

is a unitary operator as in the case iii) so that Uf f . We shall now 

show that if  and 2 ( )h E D
4 4

y , then 

(3.2) 2

2 2

( )

1
( )

2 E D
h x iy dx h  

        

2 2
1 1

( ) ( )
2 4 2 4

h x i dx h x i dx  

Note that if 
0

: ( ) tanh ( )sec ( )
N n

nn
X h h z a w h w , then i) X  is a dense 

subset of  and ii) each h2 ( )E D X  is analytic for  satisfying w

Im( )
4

w , in fact, this is true for  satisfying  w Im( )
2

w . Suppose that 

. By (3.1)  h X

21
( ) ,    

2 4
yI h x iy dx y

4
 

so, by (3.2) we need to show that 
4 4

yI I I . We will show that 

'
2

' 'y y yI I I . For  there is a  such that 

 (this is the Paley-Wiener theorem, see [1, page 196 

and 2, page 132]). If we set , 

h X 2 ( )g L

( ) ( ) izuh z g u e du

( ) ( ) yuG u g u e
4 4

y  then the Fourier 

Transform  of G  is given by Ĝ
1ˆ ( ) ( ) ,

2

ixuG x G u e du  but also we have 

1 ˆ( ) ( )x e
2

ixuG u G dx  and 
2 2

Ĝ G . For 
2 2

y  we obtain 

2 2
( )1 1

( ) ( )
2 2

i x iy u yu ixu

yI g u e du dx g u e e du dx  

     
2 221 1 1ˆ ( )

2 2 2

yuG G g u e du  

and consequently  

2 21
( )

2

yu

yI g u e du  

(3.2)
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2 21
' 2 ( )

2

yu

yI u g u e du  

22 21
'' 4 ( )

2

yu

yI u g u e du  

 
In view of above equalities, it follows by Schwarz Inequality that 

'
2

' 'y y yI I I . Thus 
yI  is log-convex. So from Remark 2.1, 

(1 )

(1 )a b a bI I I    (0 1) . Note that if , 0  and 1  and 

 then ,x y 0 .x y x y  Hence for h X  

(1 )
4 4

        ( )
4 4

yI I y  

     
2

4 4

1
( )

2
h x iy dx I I  

(3.3)        
4 4

I I . 

We shall finish the proof of this case by showing that the inequality 

2

2 2

( )

1
( )          ( )

2 4
y E D

I h x iy dx h y
4

 

is true for all . Now suppose that 

; that is, 

2 ( )h E D

0
( ) tanh ( )sec ( )

N n

N nn
h z a z h z ,Nh X  for 0,1, 2,...N  and 

, i.e., . Then 
0

( ) tanh ( )sec ( )n

nn
h z a z h z 2 ( )h E D

          (means Nh h ( ) ( ) 0N
D

h z h z dz ). 

From (3.3), the following inequality 

2

2 2

( )

1
( )

2
N N E D

h x iy dx h  

holds. By Fatou`s Lemma 
2 2

lim ( ) lim ( )N Nh x iy dx h x iy dx  

so 

2 21 1
( ) lim ( )

2 2
y NI h x iy dx h x iy dx  

        
21

lim ( )
2

Nh x iy dx  

(3.3)
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        2 2

2 2

( ) ( )
lim .N E D E D

h h  

Hence for all , we have the inequality 2 ( )h E D

2

2 2

( )

1
( )

2 E D
h x iy dx h  

as required. We now verified (1.1) in all cases. 
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