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Abstract

In this paper, a Chebyshev collocation method [1] is developed to find an approximate solution for

nonlinear Fredholm-Volterra integro–differential equation. This method transforms the nonlinear

Fredholm-Volterra integro–differential equation into the matrix equation with the help of Chebyshev

collocation points. The matrix equation corresponds to a system of nonlinear algebraic equations with

the unknown Chebyshev coefficients. Finally, some numerical examples are presented to illustrate the

accuracy of the method.

Keywords: Nonlinear integro-differential equation; Chebyshev series; Colllocation Method.

Özet

Bu çal›şmada, lineer olmayan Fredholm-Volterra integro–diferansiyel denklemlerin yaklaş›k

çözümlerini bulmak için Chebyshev s›ralama yöntemi [1] geliştirilmiştir. Bu yöntem lineer olmayan

Fredholm-Volterra integro–diferansiyel denklemini, s›ralama noktalar›n› kullanarak matris denklemine

dönüştürür. Bu matris denklemi ise bilinmeyeni Chebyshev katsay›lar› olan lineer olmayan cebirsel

denklem sistemine karş›l›k gelir. Çal›şman›n sonunda yöntemin doğruluğunu göstermek için baz›

say›sal örnekler sunulmuştur.

Anahtar Kelimeler: Lineer Olmayan integro-diferansiyel denklemler; Chebyshev serileri;
S›ralama Yöntemi.
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1. INTRODUCTION

Consider the following nonlinear Fredholm–Volterra integro-differential
equation
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where )(xy  is an unknown function, the functions g x P x F x tk i( ), ( ), ( , ) and

),( txK j  are defined on interval − ≤ ≤1 1x t,  and iijijij cba µλλ ,,,,, 21  are

constants.

Let us seek the solution of (1) expressed in terms of Chebyshev polynomials as

y x a T xr r
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, − ≤ ≤1 1x                                                                  (3)

where ar, Nr ≤≤0 , are unknown Chebyshev coefficients and N is chosen any

positive integer such that  m ≤ N. ∑ '  denotes a sum whose first term is halved,

Tr(x) denotes the Chebyshev polynomials of the first kind of degree r.

The Chebyshev collocation points defined by
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cos , s = 0, 1, ..., N                                                                      (4)

are used in the following sections.

2. FUNDAMENTAL RELATIONS

Let us write Eq. (1) in the form

D x g x I x J x( ) ( ) ( ) ( )= + +λ λ1 2                                                                    (5)

where the differential part
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Fredholm integral part is
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and Volterra integral part is
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2.1. Matrix Representation for Differential Part

Let us assume that the kth derivative of the function (3) with respect to x has the
truncated Chebyshev series expansion by

∑
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where 
)(k

ra  (k = 0, 1,..., m) are Chebyshev coefficients.

     Then the solution expressed by (3) and its derivatives can be written in the
matrix forms respectively

y(x) = T(x)A                                                                                                 (9)

and

y x xk k( ) ( )( ) ( )=T A                                                                                     (10)

It is well known from [6] that the relation between the Chebyshev coefficient
matrix A of y(x) and the Chebyshev coefficient matrix A(k) of y(k)(x) is given

AMA kkk 2)( =

Then the expression (10) becomes

AM kkk xxy )(2)()( T=                                                                            (11)

where
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Substituting the Chebyshev collocation points into Eq.(6) and using (11), the
matrix representation of D(xi) can be given by

∑
=
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)()(2)( AMT                                                            (12)

2. 2. Matrix Representation for Fredholm Integral Part

Let us substitute the Chebyshev collocation points into Eq. (7) to obtain the
matrix relation of I(xi) and assume that, for each xs, F0(xs,t) and F1(xs,t) is expanded
to the Chebyshev series in the form
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where a summation symbol with double primes denotes a sum with first and last
terms halved and Chebyshev coefficients fir(xs) are determined by means of the
relation
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Then the matrix representations of  Fi(xs,t) become



93

Handan ÇERDİK-YASLAN, Ayşegül AKYÜZ-DAŞCIOĞLU
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When the relations (9), (13) and (14) are substituted in I(xs), we have
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2. 3. Matrix Presentation for Volterra Integral Part

Firstly, the Chebyshev collocation points are substituted into (8). Similarly the
previous section, it is supposed that the kernel function Kj(xs,t) can be expanded to
univarete Chebyshev series with respect to t. Then the matrix form of the kernel
function is
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ssj ,...,1,01,0,)()(),( === TK j                                (16)
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Substituting the relations (9), (14) and (16) in J(xs), the matrix representation of
J(xs) is obtained as

BA )()()()()( 2211 sssss xxxxxJ ZKZK +=                                         (17)

where

)(1 sxZ = T T(t)T ( )t dt
xs

−

∫
1

 = z xij s( )[ ]  I = 0, 1,..., N,     j=0,1 ,..., N

)(2 sxZ = T T(t)T ( )t dt
xs

−

∫
1

 = z xij s( )[ ] , I = 0, 1,..., N,     j=0,1 ,..., 2N

and

z x T t T t dtij i j

x

( ) ( ) ( )=
−

∫
1

( ) ( )

( ) ( )



























−−
+

+−
−

+−
+

−+
+

−−
+

++













−−
+

+−
+

+−
+

−+
+

−−
+

++

−+
−+

+
++

−
−+

−
++

−

=

+
+−−+−−++

+
+−−+−−++

=−
−+++

=+

ji
jijijiji

ji
jijijiji

ji
jiji

ji

jijiji

xT

ji

xT

ji

xT

ji

xT
jijiji

xT

ji

xT

ji

xT

ji

xT

x
jijiji

xT

ji

xT
x

oddfor,
22

1111

evenfor,
22

1111

1for,
211

1for,
2

1

1

1

1
2

1

)(

1

)(

1

)(

1

)(
1

1

1

1
2

1

)(

1

)(

1

)(

1

)(

1
1

1
1

1
1

)(

1

)(
22

4
1

, for |i-j|=1



95

Handan ÇERDİK-YASLAN, Ayşegül AKYÜZ-DAŞCIOĞLU

2. 4. Matrix Representation for the Conditions

Using the relation (11), the matrix form of the conditions defined in (2) can be
written as

2 1 1
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Thus, the matrix forms of conditions (2) become
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3. METHOD OF SOLUTION

To construct the fundamental matrix equation corresponding to Eq. (1), the
Chebyshev collocation points are substituted in (5) and then using the matrix
relations (12), (15) and (17), it is obtained for s = 0, 1,…, N
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This equation corresponds to a system of N+1 nonlinear algebraic equations
with unknown Chebyshev coefficients a0, a1, …, aN.

Finally, to obtain the solution of Eq.(1) under the mixed conditions (2), m
equations in nonlinear algebraic system (19) are replaced with m equations in linear
algebraic equations system (18). Therefore, Chebyshev coefficients are determined
by solving the new nonlinear algebraic system.

The method also can be developed for the problem defined on the domain [0,1]
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The solution of this equation under the mixed conditions is found in terms of

shifted Chebyshev polynomials )(* xTr  of the form
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Then we obtain the fundamental matrix equation for (20) as
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Moreover, the matrix forms of the conditions become

4 1 1
0

1
j

ij ij ij
j

i
j

m

a b c cT T T* * * *M A( ) ( ) ( )− + +( ) =
=

−

∑ µ ,     i=0, 1,…, N



97

Handan ÇERDİK-YASLAN, Ayşegül AKYÜZ-DAŞCIOĞLU

It is easily seen that *TT = , *ZZ nn 2=  and *ZZ nn 2=  for n = 0 ,1, because
of the properties of the Chebyshev polynomials.

5. NUMERICAL EXPERIMENTATIONS
The efficiency of the presented method is shown in following three examples.

Results were computed using the program written in Mathcad 2000 Professional.
Example1. Let us consider two examples of nonlinear Fredholm- Volterra

integro-differential equation. These problems has been solved by Taylor
polynomials for N = 4 and N = 5 respectively in [3].

a) ( )∫ −+∫+=+′−′′
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a) Let us take N = 2 for solution of Eq. (22) and seek the solution y(x) as a
truncated Chebyshev series

∑
=

=
2

0

)(')(
r

rr xTaxy ,      11 ≤≤− x

Fundamental matrix equation of this problem defined in Section 3 is

4 22TM PTM P T - F Z A Z B G− +( ) − =1 0 1 1 2 2K

and condition equations are

T ( )0 1A = −    and   2 0 0T ( )MA =

This matrix equation corresponds to nonlinear algebraic system as follows:
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and condition equations are
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1
2

1
20 −=− aa

01 =a                                                                                                       (25)

In system (24), first and second equations are replaced by condition equations in
(25) and new linear algebraic system is obtained. This system is solved easily, so
we have

          1)( 2 −= xxy

which is the exact solution of Eq.(22).

b) Let us consider solution of Eq. (23) for N = 2 and seek the solution y(x) as a
truncated Chebyshev series
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The fundamental matrix equation of this problem defined in Section 3 is
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and condition equation is

2
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2
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0 −=+− aaa                                                                                       (28)

When the first equation the system (27) is replaced by Eq. (28), new nonlinear
algebraic system is obtained. Taking starting points ai

* = 0  ( i  = 0, 1, 2) the
solution of the system is obtained and we have
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)(125.0)(5.0)(625.1)( *
2

*
1

*
0 xTxTxTxy ++−=

or

2)( 2 −= xxy
which is the exact solution of Eq.(23).

Example 2. Consider the nonlinear Volterra integro-differential equation

          ∫+−=′
x

dttyxy
0

2 )(1)( , 0)0( =y                                                          (29)

Using the method in Section 3, Eq. (29) is solved for N = 6. The solution of this
example can be found analytically by reducing to differential equation, but the
analytical solution is not represented by the elementary functions. However, it can
be represented by hypergeometric functions. The numerical solutions of Eq. (29)
were given by Sepehrian-Razzaghi [4]  and by Avudainayagam-Vani [2]. A
comparison of these solutions with the present solution is given in Table 1.

                        Table 1. Numerical results of Example (2)

x
Wavelet-Galerkin

Method
Walsh Series

Method (m=60)
Presented

Method N=6
Exact

Solution

0.0000 0.0000 0.00000 0.00000 0.00000

0.0625 -0.0625 -0.06250 -0.06250 -0.06250

0.1250 -0.1250 -0.12498 -0.12498 -0.12498

0.1875 -0.1874 -0.18740 -0.18740 -0.18740

0.2500 -0.2497 -0.24967 -0.24967 -0.24967

0.3125 -0.3117 -0.31171 -0.31171 -0.31171

0.3750 -0.3734 -0.37336 -0.37336 -0.37336

0.4375 -0.4345 -0.43446 -0.43446 -0.43446

0.5000 -0.4948 -0.49482 -0.49482 -0.49482

0.5625 -0.5542 -0.55423 -0.55423 -0.55423

0.6250 -0.6124 -0.61243 -0.61243 -0.61243

0.6875 -0.6692 -0.66916 -0.66917 -0.66917

0.7500 -0.7242 -0.72415 -0.72415 -0.72415

0.8125 -0.7771 -0.77709 -0.77709 -0.77709

0.8750 -0.8277 -0.82766 -0.82767 -0.82767

0.9375 -0.8756 -0.87557 -0.87557 -0.87557

1.0000 -0.9205 -0.92047 -0.92047 -0.92048
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Let us suppose that y(x) is approximated by Chebyshev series
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Using the procedure in Section 3, we find the approximate solution of this
equation. A comparison of the obtained solution with the exact solution at the
collocation points is given in Table 2.

                            Table 2. Numerical results of Example (3)

x Presented Method Exact solution ex

x0 2.718281 2.718282
x1 2.519044 2.519044
x2 2.028115 2.028115
x3 1.466214 1.466214
x4 0.682029 0.682029
x5 0.493068 0.493069
x6 0.396976 0.396976
x7 0.367879 0.367879

6. CONCLUSIONS

In this work, Chebyshev collocation method has applied to nonlinear integro-
differential equation. The study has showed that solving Fredholm part is easier
than Volterra part. An interesting feature of this method is that the analytical
solution is obtained for smaller N  as shown in the Example 1. Moreover, this
method gives better approximate solutions than the other methods as shown in the
Example 2. One of the advantages of this method that solution is expressed as a
truncated Chebyshev series, then y(x) can be easily evaluated for arbitrary values of
x.
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