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Abstract

In this paper, a Chebyshev collocation method [1] is developed to find an approximate solution for
nonlinear Fredholm-Volterra integro—differential equation. This method transforms the nonlinear
Fredholm-Volterra integro—differential equation into the matrix equation with the help of Chebyshev
collocation points. The matrix equation corresponds to a system of nonlinear algebraic equations with
the unknown Chebyshev coefficients. Finally, some numerical examples are presented to illustrate the
accuracy of the method.
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Ozet

Bu calismada, lineer olmayan Fredholm-Volterra integro—diferansiyel denklemlerin yaklasik
coziimlerini bulmak icin Chebyshev siralama yontemi [1] gelistirilmistir. Bu yontem lineer olmayan
Fredholm-Volterra integro—diferansiyel denklemini, siralama noktalarini kullanarak matris denklemine
doniistiirtir. Bu matris denklemi ise bilinmeyeni Chebyshev katsayilari olan lineer olmayan cebirsel
denklem sistemine kargilik gelir. Calismanin sonunda yontemin dogrulugunu gostermek icin bazi
sayisal ornekler sunulmustur.

Anahtar Kelimeler: Lineer Olmayan integro-diferansiyel denklemler; Chebyshev serileri;
Stralama Yontemi.
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1. INTRODUCTION
Consider the following nonlinear Fredholm—Volterra integro-differential
equation

S 2(0)9(1) = g0 + AfEf;(x,z)y"(z)m 2l S & oy a1

-1 =1 -1 j=1

under the mixed conditions
m-1 ) ) )
> [al-jy“)(—l) +b; (1) + c,-jy“)(c)} W, i=0,1 . m-1-lsc<l  (2)
j=0

where yp(x) is an unknown function, the functions g(x),/A(x),#(x,7) and
K (x,t) are defined on interval —-1=<.r,7<1 and a;,b;,c;,A,Ay, ; are
constants.

Let us seek the solution of (1) expressed in terms of Chebyshev polynomials as

N
y(x)=2©a,7;(x), -l=sx=l 3)
=0

where a,, 0 =7 < N, are unknown Chebyshev coefficients and N is chosen any
positive integer such that m < N. E' denotes a sum whose first term is halved,

T,(x) denotes the Chebyshev polynomials of the first kind of degree r.
The Chebyshev collocation points defined by

STT
X, = COS N ,s=0,1,...N “4)

are used in the following sections.

2. FUNDAMENTAL RELATIONS
Let us write Eq. (1) in the form
Dx)=g(x)+ A /(x)+ A,/ (x) (5

where the differential part
D)= Y LDy (x) ()
=0

Fredholm integral part is
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1 2 .
1(x) = [ Fi(x.0)y" (0t (7)
—1i=1
and Volterra integral part is
X 2 )
T =[S K, (0 @t ®)
—1j=1

2.1. Matrix Representation for Differential Part

Let us assume that the A derivative of the function (3) with respect to x has the
truncated Chebyshev series expansion by

N
y(k)(x) = E'aﬁk)Tr(x) , -l=sx=l
r=0

where aﬁk) (k=0, 1,..., m) are Chebyshev coefficients.

Then the solution expressed by (3) and its derivatives can be written in the
matrix forms respectively

y(x) = T(x)A )
and

W(x) = T()A™Y (10)

It is well known from [6] that the relation between the Chebyshev coefficient
matrix A of y(x) and the Chebyshev coefficient matrix AY of y(k)(x) is given

AR 2k MFA
Then the expression (10) becomes
y P (x) =2"T(x)M* A (11)

where

T(x)=[T0(x) Ti(x) .. TN(x)], A=[ﬂzl a .. ay
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0 1/2 0 3/2 0 5/2 -+ N/2]
o o 2 0 4 0 - O
O
0 0 O
0 0 O 0
and
0 1/2 0 3/2 0 5/2 - 0]
0O 0 2 0 4 0 N
M=0 0 O 3 O 5 0 for even N
o o o o0 o o -+ N
o o 0 0 o0 o0 -0

Substituting the Chebyshev collocation points into Eq.(6) and using (11), the
matrix representation of D(x;) can be given by

D) = $2° ()T ()M A (12
k=0

2. 2. Matrix Representation for Fredholm Integral Part

Let us substitute the Chebyshev collocation points into Eq. (7) to obtain the
matrix relation of /(x;) and assume that, for each x,, Fo(x,,f) and F(x,t) is expanded
to the Chebyshev series in the form

N
FGgt) = " fGOT (), i=0.1
r=0

where a summation symbol with double primes denotes a sum with first and last
terms halved and Chebyshev coefficients f;(x,) are determined by means of the
relation

2 &, J7
.fir(xs)=ﬁz E(xs’t)Tr(tJ) ) t] = COS F ,j:(), 1,...,N

j=0

Then the matrix representations of Fi(x,,f) become
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Fi(xg,t) = F;(x)T(1)" (13)

where
.fi 0 (xs ) f; (xs )
Fi(x) =727 ) o fiva(x) =0
2 2
Besides, 1(¢) function can be written in the matrix form [5],

¥ (t)=T(®B (14)

in which
T

0 =0 10 . ol B=[%0 b . byy

and the elements b; of the column matrix B consist of ¢; and a;= a_; as follows:

2
3 2
—+E a, a;, |,foreveni
bi =) 2 pr| E—r §+r
y-it
2
E a, a;, , forodd i
=1 5 i
When the relations (9), (13) and (14) are substituted in /(x,), we have
[(xs)=Fl(xs)ZlA+F2(xs)Z2B (15)
where

Z1=fT(t)TT(f)df=|_zijJ, i=0,1,.,N, j=01,.,N
-1

Z, = ff(t)’?(z)dz: [2,]. i=0. 1N, =01, 28
-1

and

1 1 1 . .
+ , foreven i+
Z =[O =G G-y
"l 0

, forodd i+ j
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2. 3. Matrix Presentation for Volterra Integral Part

Firstly, the Chebyshev collocation points are substituted into (8). Similarly the
previous section, it is supposed that the kernel function Ki(x,,f) can be expanded to

univarete Chebyshev series with respect to ¢. Then the matrix form of the kernel
function is

K (x,,0)=K;(x)T(®)", j=01 s=01.,N (16)
where

kjo(xg) kjn(xy)
Kj(x) =[5 kp(xy) - kg (x) 255

2
Substituting the relations (9), (14) and (16) in J(x;), the matrix representation of
J(x;) is obtained as

J(x,) =K, (x)Z,(x,)A+ K, (x,)Z,(x,)B

(17)
where
Z,(x))= [ 7@ T(Ddr=[z,(x)] =0, 1., N, j=0,1 ., N
-1
Z,(x))= [T T(ndr = [2,(x)]. 10, 1. N, j=0,1 ..., 2N
-1
and
20 = [ 7T (e
-1
2x2_2 Jori+ j=1
Ti+ j+ ()C) T;’+ j— (X) 1 1
.j.l —.j.l -t ———+x" -1 , for li-jl=1
i+j+1 i+j-1 i+j+1 i+j-1
T Ta®@ T (@ T, 1 1]
4 | — +— + — — + foreveni + j
i+j+1 i-j-1 1+i-j 1-i+j 1_(i+j)2 1-(-7 J
Ty (%) . T ;4 (x) . Ty (¥) Ty (%) _ 1
i+j+1

1
+
i-j-1 l1+i-]

1—(i+j)2+1—i—j

I-i+j

G-/F |
],foroddi+j
G-/F | |
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2. 4. Matrix Representation for the Conditions

Using the relation (11), the matrix form of the conditions defined in (2) can be
written as

m=1
> 2/(a,7(-1) +6,T0) + c,7()M/A =p,, i=0,1,....N

/=0
Let us define U; as

m=1
U, = Y2/ (a,7(-D)+6,7() + c, 7O =[uy uy ... u,]

/=0
Thus, the matrix forms of conditions (2) become

UA =y, (1%)

3. METHOD OF SOLUTION

To construct the fundamental matrix equation corresponding to Eq. (1), the
Chebyshev collocation points are substituted in (5) and then using the matrix
relations (12), (15) and (17), it is obtained fors =0, 1,..., N

ﬁzkpk(xs)T('xs)MkA = g(xs) + )\vl (Fl(xs)ZlA +F2(xs)Z2B)
k=0

+ 4 (K (x)Z, (x,)A + K, (x,) 2, (x,)B)

Thereby, the fundamental matrix is gained of the form

/71

Ez"PkTMk -AFZ - ALK Z |A-(ARZ, + LK Z)B=G (19

4=0
where

P(x) 0 - 0 A, (x) 0 0

O B € IR
0 0 Pk(“r/v) 0 0 A’”(XN)
g(xo) T(xo) ]’;(XO) Zn(XO)

G| ED | g | T e _|EW] g |ECD forn=1,2
8(xy) 7(xy) £, (xy) Z,(Xy)

95



Chebyshev Polynomial Solution of Nonlinear Fredholm-Volterra Integro-Differential Equations

This equation corresponds to a system of N+1 nonlinear algebraic equations
with unknown Chebyshev coefficients aq, a1, ..., ay.

Finally, to obtain the solution of Eq.(1) under the mixed conditions (2), m
equations in nonlinear algebraic system (19) are replaced with m equations in linear
algebraic equations system (18). Therefore, Chebyshev coefficients are determined
by solving the new nonlinear algebraic system.

The method also can be developed for the problem defined on the domain [0,1]
m 1 2 x 2
P(0)y™ (x) = () + 24 [ F, (e, 0)y' (0t + 2 [ 3 K (x, 1)y (Dt (20)

The solution of this equation under the mixed conditions is found in terms of

shifted Chebyshev polynomials T: (x) of the form

N

y(x) = E'a:T:(x), O=sx=l
r=0

where T, (x) = T,(2x - 1).

It is followed the previous procedure using the collocation points defined by
1 STT
Xg =5 1 +cos ~ Il s=01..,N (21)

and the relation

*k *
A" _ gkt A . k=0,1,..N

where
T

*

A& =
2

*

a * *
0

— al oo aN}

Then we obtain the fundamental matrix equation for (20) as

D 4PIMA - A[FZA + FZB |- L[KZA +KZB | =G
=0
Moreover, the matrix forms of the conditions become
m=1

24/’(%]** (=D +6, 7" () + c,7" () M/A” =y, i=0,1,...N

/=0
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It is easily seen that T = T L, = 2Z:1 and Z, = 2Z—:1 for n = 0,1, because
of the properties of the Chebyshev polynomials.

5. NUMERICAL EXPERIMENTATIONS

The efficiency of the presented method is shown in following three examples.
Results were computed using the program written in Mathcad 2000 Professional.

Examplel. Let us consider two examples of nonlinear Fredholm- Volterra
integro-differential equation. These problems has been solved by Taylor
polynomials for N =4 and N = 5 respectively in [3].

1 X
2)y"(x) = ' (x) + xp(x) = g(x) + [xty(t)de + [(x - 20> ()t (22)
| 2
2 6 1 23 5 ,
where g(x) = EX6 —§x4 +x°0 = 2x7 —Ex+ 3 and »(0)=-1,y'(0)=0.
1 X
b) y'(x) + xy(x) = g(x) + f(x + t)y(t)dt + f(x - t)y2 (t)dt (23)
0 0
where g(x) = ;—;x6 + %x“ +x° = 2x° —§x+% and y(0)=-2.

a) Let us take N = 2 for solution of Eq. (22) and seek the solution y(x) as a
truncated Chebyshev series

2

y(x) = E'arTr(x), -l=sx=<l
r=0

Fundamental matrix equation of this problem defined in Section 3 is
(4TM® -2PTM + P,T-FZ JA-K,ZB=G
and condition equations are
7(0)A=-1 and 27(0)MA =0

This matrix equation corresponds to nonlinear algebraic system as follows:

la —za +a —laz—gaz—ﬁa 2+iaa +§aa +gaa _-16

R R R RS T R BT R R
1 2 1 2 2 5

day ——ay" ——a;” ——ay,” + Tapa + —aja, =

27 4% T54 2 T34 192 =3

-1 8

—apg+—a—-a, =0 (24)

P

and condition equations are
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1
—ag—a, =-1
7 0 2

a; =0 (25)

In system (24), first and second equations are replaced by condition equations in
(25) and new linear algebraic system is obtained. This system is solved easily, so
we have

y(x)= x? -1

which is the exact solution of Eq.(22).
b) Let us consider solution of Eq. (23) for N = 2 and seek the solution y(x) as a
truncated Chebyshev series

N
Y@= ' (x), Osxsl (26)
r=0
The fundamental matrix equation of this problem defined in Section 3 is

(4PT'M+PT -F'Z)A" -K)Z;B" =G
and for condition equation is
T"(0A =-2
The matrix equation corresponds to nonlinear algebraic system as follows:

=1 % 17 « 19 « 1 2 1 2 7 42 1 %% 1 x4+ 1 « s+ 103

—ay+—a +—ay-—ay ——a; ——a, + — +— + = = —
g 0T ATy T Tt T Tt Tghia T ghoh =g,
AUy g L L2 L L Lya -2
4 76 62 3270 16t 242 127 30712 1920
—ay+t—a -—a,=— 27
4 6d] 6 271 (27)
and condition equation is

la;‘; —a +ay=-2 (28)

2
When the first equation the system (27) is replaced by Eq. (28), new nonlinear

algebraic system is obtained. Taking starting points aj =0 (i =0,1,2) the
solution of the system is obtained and we have
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y(x) = =1.625T, (x) + 0.5T; (x) + 0.125T5 (x)
or
2
y(x)=x"-2
which is the exact solution of Eq.(23).
Example 2. Consider the nonlinear Volterra integro-differential equation

Y(x)=-1+ }yz(t)dt ,¥(0)=0 (29)
0

Using the method in Section 3, Eq. (29) is solved for N = 6. The solution of this
example can be found analytically by reducing to differential equation, but the
analytical solution is not represented by the elementary functions. However, it can
be represented by hypergeometric functions. The numerical solutions of Eq. (29)
were given by Sepehrian-Razzaghi [4] and by Avudainayagam-Vani [2]. A
comparison of these solutions with the present solution is given in Table 1.

Table 1. Numerical results of Example (2)

. Wavelet-Galerkin Walsh Series Presented Exaf:t

Method Method (m=60) Method N=6 Solution
0.0000 0.0000 0.00000 0.00000 0.00000
0.0625 -0.0625 -0.06250 -0.06250 -0.06250
0.1250 -0.1250 -0.12498 -0.12498 -0.12498
0.1875 -0.1874 -0.18740 -0.18740 -0.18740
0.2500 -0.2497 -0.24967 -0.24967 -0.24967
0.3125 -0.3117 -0.31171 -0.31171 -0.31171
0.3750 -0.3734 -0.37336 -0.37336 -0.37336
0.4375 -0.4345 -0.43446 -0.43446 -0.43446
0.5000 -0.4948 -0.49482 -0.49482 -0.49482
0.5625 -0.5542 -0.55423 -0.55423 -0.55423
0.6250 -0.6124 -0.61243 -0.61243 -0.61243
0.6875 -0.6692 -0.66916 -0.66917 -0.66917
0.7500 -0.7242 -0.72415 -0.72415 -0.72415
0.8125 -0.7771 -0.77709 -0.77709 -0.77709
0.8750 -0.8277 -0.82766 -0.82767 -0.82767
0.9375 -0.8756 -0.87557 -0.87557 -0.87557
1.0000 -0.9205 -0.92047 -0.92047 -0.92048
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m

1
V(%) = x"(x) + sinxp(x) = ¢* (1 - x +sinx)- 2 + fe_ztyz(t)dt
-1

with the conditions y(0) = »'(0) = y"(0) =1.
Let us suppose that y(x) is approximated by Chebyshev series

7
y(x) = E'arT,(x), -l=x=<l
r=0

Using the procedure in Section 3, we find the approximate solution of this
equation. A comparison of the obtained solution with the exact solution at the
collocation points is given in Table 2.

Table 2. Numerical results of Example (3)

x Presented Method Exact solution e*
Xo 2.718281 2.718282

X 2.519044 2.519044

X 2.028115 2.028115

X3 1.466214 1.466214

X4 0.682029 0.682029

X5 0.493068 0.493069

X6 0.396976 0.396976

X7 0.367879 0.367879

6. CONCLUSIONS

In this work, Chebyshev collocation method has applied to nonlinear integro-
differential equation. The study has showed that solving Fredholm part is easier
than Volterra part. An interesting feature of this method is that the analytical
solution is obtained for smaller N as shown in the Example 1. Moreover, this
method gives better approximate solutions than the other methods as shown in the
Example 2. One of the advantages of this method that solution is expressed as a
truncated Chebyshev series, then y(x) can be easily evaluated for arbitrary values of
X.
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