Positive Integral Operators With Analytic Kernels

Can Murat DİKMEN¹

Abstract

In this paper we construct examples of positive definite integral kernels which are also analytic. **Key words:** Integral operators, Cauchy integral formula, Positive definite kernels,

Abstract

Bu çalışmada aynı zamanda analitik olan pozitif tanımlı integral çekirdek örneklerini oluşturacağız. *Anahtar Kelimeler: İntegral operatörler, Cauchy integral formülü, Pozitif tanımlı çekirdekler.*

1. INTRODUCTION

To construct examples of positive definite integral kernels which are also analytic, we need to recall the following definitions (see [2], [3], [4], [5]).

Throughout, let us denote the inner product on any complex Hilbert space H by $\langle .,. \rangle$. We let $\langle f,f \rangle^{1/2} = \|f\|$ and call it the norm of f.

Definition 1.1. (i) Let denote any interval (finite or infinite) on the real line. $L^2(I)$ is the space of Lebesgue measurable complex valued functions

$$f:I\to\mathbb{C}$$

Karaelmas Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Zonguldak e-mail: canmuratdikmen@karaelmas.edu.tr

which are square integrable, in the sense that $\int_I |f(t)|^2 dt < \infty$, with pointwise operations and inner product

$$\langle f, g \rangle = \int_{T} f(t) \overline{g(t)} dt$$
.

So the norm of f is

$$||f||^2 = \int_I |f(t)|^2 dt < \infty.$$

(ii) Given two intervals I,J $L^2(I\times J)=$ all measurable complex valued functions k on $I\times J$ such that

$$\int_{I} \int_{I} |k(s,u)|^{2} du ds < \infty.$$

Definition 1.2. Let H, H_1 be Hilbert spaces. A linear operator $S: H_1 \to H$ is bounded if there exists some $M \in \mathbb{R}$ such that

$$||Sf|| \le M ||f||$$
 for all $f \in H_1$.

A linear operator $S: H_1 \to H$ is compact if given a bounded sequence $(f_n) \subseteq H_1$, there exists a subsequence $(f_{n_r}) \subseteq f_n$, $g \in H$ such that

$$Sf_{n_r} \to g$$
.

We use $B(H_1, H)$ and $K(H_1, H)$ for the space of all bounded linear operators and for all compact operators from H_1 into H respectively.

Theorem 1.1. If $S \in B(H_1, H)$, there exists a unique $S^* \in B(H, H_1)$, called adjoint of S, such that

$$\langle Sf, g \rangle_H = \langle f, S^*g \rangle_{H_1}.$$

If $H = H_1$ and $S = S^*$, then S is called self-adjoint or symmetric.

Definition 1.3. Let T be a self-adjoint linear operator on a Hilbert space $(H,\langle .,.\rangle)$. Then T is called positive, written $T \ge 0$, if $\langle Tf,f\rangle \ge 0$ for all $f \in H$.

Definition 1.4. Let $I,J \subset \mathbb{R}$ be intervals and suppose $k \in L^2(I \times J)$, then the formula

$$Sf(s) = \int_{I} k(s, u) f(u) du$$

where $s \in I$, $f \in L^2(J)$, defines a compact linear operator S mapping $L^2(J)$ into $L^2(I)$. The adjoint $S^*: L^2(I) \to L^2(J)$ is given by

$$S^*g(u) = \int_{t} g(t) \overline{k(t,u)} dt.$$

So if
$$g \in L^2(I)$$

$$SS^*g(s) = \int_J S^*g(u)k(s,u)du$$

$$= \int_J \int_J g(t)\overline{k(t,u)}k(s,u)dtdu$$

$$= \int_J g(t)K(s,t)dt$$

where $K(s,t) = \int_I k(s,u) \overline{k(t,u)} du$ $s,t \in I$.

Figure 1.1.

It is well known that, because $k \in L^2(I \times J)$, interchanging the order of integral is legitimate and that $K \in L^2(I \times I)$.

Theorem 1.2. Here $T = SS^*$ is necessarily positive written $T \ge 0$ meaning that $\langle Tf, f \rangle \ge 0$ for all $f \in H$.

Proof:
$$\langle Tg, g \rangle_{L^{2}(I)} = \langle SS^{*}g, g \rangle_{L^{2}(I)} = \langle S^{*}g, S^{*}g \rangle_{L^{2}(J)} = \left\| S^{*}g \right\|_{L^{2}(J)}^{2} \geq 0$$
.

Similarly S^*S is positive operator on $L^2(J)$.

This gives us a method of constructing examples of positive integral operators on $L^2(I)$. Whenever $k \in L^2(I \times J)$, $T = SS^*$ will be a positive integral operator on $L^2(I)$ with kernel

$$K(s,t) = \int_{J} k(s,u) \overline{k(t,u)} du.$$

Definition 1.5. Here k is called kernel of S and K is called the kernel of T.

Remark 1.3. If
$$k(s,u) = l(s,u)h(u)$$
 where $|h(u)| = 1$ then
$$\int_{I} k(s,u)\overline{k(t,u)}du = \int_{I} l(s,u)\overline{l(t,u)}du.$$

Remark 1.4. A result analogous to theorem is true if the Lebesque measure on J is nultiplied by a positive constant m (usually $(1/2\pi)$). In this case we have

$$Sf(s) = \int_J k(s,u) f(u) (mdu)$$
 where $s \in I$, $f \in L^2(J)$ and
$$S^*g(u) = \int_I \overline{k(s,u)} g(t) dt$$
 where $u \in J$, $t \in I$ and $g \in L^2(I)$
$$Tf(s) = SS^*f(s) = \int_I K(s,t) g(t) dt$$
 where $K(s,t) = \int_J k(s,u) \overline{k(t,u)} (mdu)$.

Now, we will use this theorem to give examples of positive definite kernels K using kernels k which arise in a natural way in mathematical analysis. Specifically we consider k's which arise from Cauchy's integral formula (C.I.F.).

As a sequel we hope to give some more examples using same techniques considering the Fourier transformation and the Laplace transform (see [1]). In all cases K will be an analytic kernel of s and t.

2. Examples suggested by C.I.F.

In this section we will give some examples of positive integral operators suggested by Cauchy's integral formula which were obtained during my M.Sc. study (see [1]).

We recall the parameterized Cauchy's integral formula. We parameterize the integral by taking $z = \varphi(u)$.

Figure 2.1.

Here γ is a positively oriented rectifiable Jordan curve and D is its inner domain. Let f be an analytic neighborhood of D and $s \in D$

$$f(s) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - s} dz$$
$$= \frac{1}{2\pi i} \int_{a}^{b} \frac{f(\varphi(u))\varphi'(u)}{\varphi(u) - s} du.$$

Example 2.1. Suppose γ is the unit circle, $I = [a,b] \subseteq (-1,1)$. Here we shall take $J = [-\pi,\pi]$.

Figure 2.2.

We write the Cauchy's integral formula (C.I.F) to get our integral kernel

$$f(s) = \frac{1}{2\pi i} \int_{\partial \Delta} \frac{f(z)}{z - s} dz \quad (s \in I).$$

If we substitute $z = e^{i\theta}$ then $dz = ie^{i\theta}d\theta$ and

$$f(s) = \frac{1}{2\pi i} \int_{-\pi}^{\pi} \frac{f(e^{i\theta})ie^{i\theta}}{e^{i\theta} - s} d\theta.$$

This suggests the linear operator $S: L^2([-\pi, \pi]) \to L^2(I)$ defined by

$$Sf(s) = \int_{-\pi}^{\pi} f(\theta) \frac{1}{e^{i\theta} - s} \frac{d\theta}{2\pi} \quad \left(k(s, \theta) = \frac{1}{e^{i\theta} - s} \right).$$

Hence

$$S^*g(\theta) = \int_I g(t) \frac{1}{e^{-i\theta} - t} dt \quad \left(\overline{k(t, \theta)} = \frac{1}{e^{-i\theta} - t} \right).$$

Here

$$k(s,\theta) = \frac{1}{e^{i\theta} - s} \in L^2(I \times J)$$
.

For this we need to show that they are square integrable:

$$\int_{-\pi}^{\pi} \int_{I} \frac{1}{\left| e^{i\theta} - s \right|^{2}} ds d\theta < \infty \tag{2.1}$$

Then, equation (2.1) is true since $k(s,\theta)$ is continuous on $I \times J$. So is $k(t,\theta)$. So SS^* has kernel

$$K(s,t) = \int_{-\pi}^{\pi} k(s,t) \overline{k(t,\theta)} d\theta$$

$$= \int_{-\pi}^{\pi} \frac{1}{\left(e^{i\theta} - s\right)\left(e^{-i\theta} - t\right)} d\theta.$$
(2.2)

In general, if h is a function on $\partial \Delta$ then

$$\int_{-\pi}^{\pi} h(e^{i\theta}) i e^{i\theta} d\theta = \int_{\partial \Delta} h(z) \frac{dz}{2\pi}$$

so that

$$\int_{-\pi}^{\pi} h(e^{i\theta}) d\theta = \int_{\partial \Delta} h(z) \frac{1}{iz} \frac{dz}{2\pi}.$$
 (2.3)

Now if we use (2.3) in (2.2), then we get

$$K(s,t) = \frac{1}{2\pi} \int_{\partial \Delta} \frac{1}{(z-s)\left(\frac{1}{z}-t\right)} \frac{dz}{iz}$$
$$= \frac{1}{2\pi i} \int_{\partial \Delta} \frac{dz}{(z-s)(1-zt)}.$$

The poles of integrand are at z = s and z = 1/t. Since $s, t \in I$, we know that |s| < 1, |1/t| > 1. Then we have only one pole at z = s.

Therefore,

$$K(s,t) = \frac{1}{2\pi i} \int_{\partial \Delta} \frac{1}{1-zt} dz = \operatorname{Re} s(f(z),s) = \frac{1}{1-st}.$$

Since K is the kernel of SS^* , K is positive definite on $L^2(I)$ where $I \subseteq (-1,1)$. Now we will find another positive definite kernel for vertical strip.

Example 2.2. Let $\beta \in \mathbb{R}$ and let D be the open half-plane $\{z \in \mathbb{C} : \text{Re } z > -\beta\}$. Let γ be the boundary line of D and suppose $I = [a,b] \subseteq D$, (i.e. $a > -\beta$), so that $s,t > -\beta$ where $s,t \in I$.

We shall now construct a positive integral operator on $L^2(I)$ whose kernel is derived from the Cauchy integral formula for functions analytic in a neighborhood of D.

Figure 2.3.

We can parameterize γ by $\gamma = \varphi(u) = -\beta + iu$, $\varphi'(u) = i - \infty < u < \infty$. Then we have by C.I.F.

$$f(s) = -\frac{1}{2\pi i} \int_{\partial \Delta} \frac{f(z)}{z - s} dz = -\frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(-\beta + iu).i}{-\beta - s + iu} du.$$

This suggests us the operator $S: L^2(\mathbb{R}) \to L^2(I)$ such that

$$Sf(s) = \int_{\mathbb{R}} \frac{f(u)}{\beta + s - iu} \frac{du}{2\pi}$$

so we have

$$k(s,u) = \frac{1}{\beta + s - iu}.$$

Here we have that $k(s,u) \in L^2(I \times \mathbb{R})$ because

$$\int_{\mathbb{R}} \int_{I} \frac{1}{\left|\beta + s - iu\right|^{2}} ds du = \int_{\mathbb{R}} \int_{I} \frac{1}{(\beta + s)^{2} + u^{2}} ds du.$$

Since the nearest point of I to the line γ is a, we have that $(\beta + s)^2 \ge (\beta + a)^2$ for all $s \in I$. Then,

$$\int_{\mathbb{R}} \int_{\mathbb{I}} \frac{1}{(\beta + s)^{2} + u^{2}} ds du \le \int_{\mathbb{R}} \int_{\mathbb{I}} \frac{1}{(\beta + a)^{2} + u^{2}} ds du$$

$$= \int_{\mathbb{R}} \frac{(b - a)}{(\beta + a)^{2} + u^{2}} du < \infty.$$

Hence

$$\begin{split} K_1(s,t) &= \int_{\mathbb{R}} \frac{1}{\left(\beta + s - iu\right)\left(\beta + t + iu\right)} \frac{du}{2\pi} \\ &= \int_{\mathbb{R}} \frac{1}{\left(u + i(\beta + s)\right)\left(u - i(\beta + t)\right)} \frac{du}{2\pi}. \end{split}$$

Figure 2.4.

The pole in the upper half plane is at $i(\beta + t)$. Say

$$\frac{1}{\left(u+i(\beta+s)\right)\left(u-i(\beta+t)\right)} = h(u)$$

then

$$K_1(s,t) = i \operatorname{Re} s(h(u), i(\beta+t))$$

$$= i \frac{1}{i(\beta+t) + i(\beta+s)}$$

$$= \frac{1}{2\beta+s+t}.$$

Since $K_1(s,t)$ is the kernel of SS^* , (2.4) is positive definite on $L^2(I)$.

Suppose now $\gamma = \beta + iu$, $u \in \mathbb{R}$ and D is all points to the left of γ , that is $D = \{z \in \mathfrak{t} : \operatorname{Re} z < \beta\}$ and that $I = [a,b] \subseteq D$ (i.e. $b < \beta$).

In this case C.I.F. reads

$$f(s) = \frac{1}{2\pi i} \int \frac{f(z)}{z - s} dz = \frac{1}{2\pi i} \int \frac{if(\beta + iu)}{\beta + iu - s} du$$

which suggests the linear operator $S:L^2(\mathbb{R})\to L^2(I)$ such that

$$Sf(s) = \int_{\mathbb{R}} \frac{f(u)}{\beta + iu - s} \frac{du}{2\pi}.$$

Then we have

$$k_2(s,u) = \frac{1}{\beta + iu - s}$$
 $s \in I, u \in \mathbb{R}$.

Here $k_2(s,u) \in L^2$ (I x \mathbb{R}), because

$$\int_{\mathbb{R}} \int_{I} \frac{1}{\left|\beta + iu - s\right|^{2}} ds du = \int_{\mathbb{R}} \int_{I} \frac{1}{\left|(\beta + a)^{2} + u^{2}\right|} ds du$$

$$\leq \int_{\mathbb{R}} \int_{I} \frac{1}{\left(\beta + a\right)^{2} + u^{2}} ds du$$

$$= \int_{\mathbb{R}} \frac{(b - a)}{\left(\beta - b\right)^{2} + u^{2}} du < \infty.$$

So

$$K_{2}(s,t) = \int_{\mathbb{R}} \frac{1}{(\beta + iu - s)(\beta - iu - t)} \frac{du}{2\pi}$$
$$= \int_{\mathbb{R}} \frac{1}{(u - i(\beta - s))(u + i(\beta - t))} \frac{du}{2\pi}.$$

Figure 2.6.

The pole in the upper half plane is $i(\beta - s)$. Say

$$\frac{1}{(u-i(\beta-s))(u+i(\beta-t))} = h(u)$$

then
$$K_2(s,t) = i\operatorname{Re} s(h(u),i(\beta-s))$$
. Hence
$$K_2(s,t) = \frac{1}{2\beta-s-t}. \tag{2.5}$$

Since K_2 is kernel of SS^* , (2.5) is positive definite on $L_2(I)$.

For the last part of our example we use the fact that the sum of two positive operators is positive. So if $\beta > 0$ and $I = [a,b] \subseteq (-\beta,\beta)$, we obtain a positive operator on $L_2(I)$ with kernel K(s,t) which is analytic in $D \times D$.

Figure 2.7.

Hence we have

$$K(s,t) = K_1(s,t) + K_2(s,t)$$

$$= \frac{1}{2\beta + s + t} + \frac{1}{2\beta - s - t}$$

$$= \frac{4\beta}{4\beta^2 - (s+t)^2}.$$
(2.6)

Again since K is kernel of $S_1S_1^* + S_2S_2^*$, (2.6) is positive definite on $L_2(I)$.

We now give another example which is similar to the last one. This time D will be the horizontal strip.

Example 2.3. Let $\beta > 0$ and let D_1 be the open half-plane $\{z \in \pounds : \operatorname{Im} z < \beta\}$. Let γ be the boundary line of D_1 and suppose $I = [a,b] \subseteq D_1$, $s,t \in I$.

We shall now construct a positive integral operator on $L_2(I)$ whose kernel is derived from the Cauchy integral formula for functions analytic in a neighborhood of

Figure 2.8.

This time C.I.F. reads

F. reads
$$f(s) = -\frac{1}{2\pi i} \int_{\mathbb{R}+i\beta} \frac{f(z)}{z-s} dz.$$

If we put
$$z = i\beta + u$$
 then $dz = du$, then we get
$$f(s) = -\frac{1}{2\pi i} \int_{\mathbb{R}} \frac{f(i\beta + u)}{i\beta + u - s} du.$$

This suggests the linear operator $S:L^2(\mathbb{R}) \to L^2(I)$ defined by

$$Sf(s) = \int_{\mathbb{R}} \frac{f(u)}{i\beta + u - s} \frac{du}{2\pi}.$$

Hence

$$S^*g(u) = \int_I \frac{g(t)}{-i\beta + u - t} dt.$$

Then we have

$$k_1(s,t) = \frac{1}{i\beta + u - s}$$
 and $\overline{k_1(u,t)} = \frac{1}{-i\beta + u - t}$.

Here $k_1(s,u) \in L^2(\mathbf{I} \times \mathbb{R})$, because

$$\int_{\mathbb{R}} \int_{I} \frac{1}{\left|i\beta + u - s\right|^{2}} ds du = \int_{\mathbb{R}} \int_{I} \frac{1}{\left(u - s\right)^{2} + \beta^{2}} ds du$$

Let $u = s + \beta \tan \theta$ and $du = \beta \sec^2 \theta d\theta$. Then,

$$\int_{\mathbb{R}} \int_{I} \frac{1}{(u-s)^{2} + \beta^{2}} ds du = \int_{a}^{b} \int_{-\pi/2}^{\pi/2} \frac{\beta \sec^{2} \theta}{\beta^{2} \tan^{2} \theta + \beta^{2}} d\theta ds$$

$$= \int_{a}^{b} \int_{-\pi/2}^{\pi/2} \frac{1}{\beta} d\theta ds$$

$$= \int_{a}^{b} \frac{\pi}{\beta} ds = \frac{(b-a)\pi}{\beta} < \infty.$$

Then we have

$$K_{I}(s,t) = \int_{\mathbb{R}} \frac{1}{\left(i\beta + u - s\right)\left(-i\beta + u - t\right)} \frac{du}{2\pi}$$
$$= \int_{\mathbb{R}} \frac{1}{\left(u - (s - i\beta)\right)\left(u - (i\beta + t)\right)} \frac{du}{2\pi}.$$

Figure 2.9.

The pole in the upper half plane is $(t+i\beta)$. Then,

$$K_{1}(s,t) = i \operatorname{Re} s(h(u), t + i\beta)$$

$$= \frac{i}{t + i\beta - s + i\beta}$$

$$= \frac{i}{t - s + 2i\beta}$$

$$= \frac{i(t - s - 2i\beta)}{(t - s)^{2} + 4\beta^{2}}.$$

Hence

$$K_1(s,t) = \frac{2\beta + i(t-s)}{(t-s)^2 + 4\beta^2} = \overline{K_1(t,s)}.$$

Here $K_1(s,t)$ is symmetric and positive definite.

For the second part of our example we again let $\beta>0$ and let D_2 be the open half-plane $\left\{z\in\mathfrak{L}:\operatorname{Im}z>-\beta\right\}$. Let γ be the boundary line of D_2 and suppose $I=[a,b]\subseteq D_2,\ s,t\in I.$ We shall now construct a positive integral operator on $L_2(I)$ whose kernel is derived from the Cauchy formula for functions analytic in a neighborhood of D_2 .

Figure 2.10.

We put $z = \varphi(u) = -i\beta + u$ and dz = du in C.I.F.

$$f(s) = \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{f(-i\beta + u)}{-i\beta + u - s} du.$$

This suggests the linear operator $S:L^2(\mathbb{R}) \to L^2(I)$ such that

$$Sf(s) = \int_{\mathbb{R}} \frac{f(u)}{-(i\beta + s) + u} \frac{du}{2\pi}.$$

Here

$$k_2(s,u) = \frac{1}{-(i\beta + s) + u} \in L^2(I \times \mathbb{R})$$
, because

$$\int_{\mathbb{R}} \int_{I} \frac{1}{\left| -(i\beta + s) + u \right|^{2}} ds du = \int_{\mathbb{R}} \int_{\mathbb{I}} \frac{1}{(u - s)^{2} + \beta^{2}} ds du < \infty \quad \text{by (2,7)}$$

Then

$$K_2(s,t) = \int_{\mathbb{R}} \frac{1}{\left(-(i\beta+s)+u\right)\left(-(-i\beta+t)+u\right)} \frac{du}{2\pi}.$$

Figure 2.11.

The pole in the upper half plane is $s + i\beta$. Then,

$$K_2(s,t) = i \operatorname{Re} s(h(u), s + i\beta)$$

$$= \frac{i}{(i\beta - t) + i\beta + s}$$

$$= \frac{1}{2\beta + i(t - s)}$$

$$= \frac{2\beta - i(t - s)}{(t - s)^2 + 4\beta^2} = \overline{K_2(t, s)}.$$

Here $K_2(s,t)$ is symmetric and positive definite on $L_2(I)$.

For the last part of our example, we again use the fact that the sum of two positive operators is positive. So if $\beta > 0$ and $I = [a,b] \subseteq \mathbb{R}$, we obtain a positive operator on $L_2(I)$ with kernel K(s,t).

Figure 2.12.

$$K(s,t) = \frac{2\beta + i(t-s)}{(t-s)^2 + 4\beta^2} + \frac{2\beta - i(t-s)}{(t-s)^2 + 4\beta^2}$$
$$= \frac{4\beta}{4\beta^2 + (s-t)^2}.$$
 (2.8)

Then (2.8) is positive definite on $L_2(I)$.

We will now consider more general half-planes.

Example 3.4. Let $0 < \theta < \pi/2$. We define the two half planes by

$$\begin{split} D_1 &= \left\{z \in \pounds : -\theta < \arg z < -\theta + \pi \right\} \\ D_2 &= \left\{z \in \pounds : \theta - \pi < \arg z < \theta \right\} \end{split}$$

 $I = [a,b], \ a > 0 \text{ so } I \subseteq D_1 \ \mathrm{I} \ D_2$. Let $\gamma_1 = \partial D_1, \ \gamma_2 = \partial D_2$ and put $\omega = e^{i\theta}$.

We can parameterize γ_1 by $\varphi(u) = \overline{\omega} u$, $u \in \mathbb{R}$.

Figure 2.13.

So C.I.F. for
$$D_1$$
 can be written as
$$f(s) = \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{\overline{\omega} f(\overline{\omega} u)}{\overline{\omega} u - s} du$$

where we do not consider ω and $1/2\pi$ since from Remark 1.3. and Remark 1.4. This suggests the linear operator $S_1:L^2(\mathbb{R})\to L^2(I)$ defined by $Sf(s)=\int_{\mathbb{R}}\frac{f(u)}{\overline{\omega}u-s}\frac{du}{2\pi}.$

$$Sf(s) = \int_{\mathbb{R}} \frac{f(u)}{\overline{\omega}u - s} \frac{du}{2\pi}$$

Then,

$$k_1(s,u) = \frac{1}{\omega u - s} \in L^2(\mathbf{I} \times \mathbb{R})$$

$$\int_{\mathbb{R}} \int_{I} \frac{1}{\left|\overline{\omega u} - s\right|^{2}} ds du = \int_{\mathbb{R}} \int_{I} \frac{1}{\left|u \cos \theta - s - iu \sin \theta\right|} ds du$$

$$= \int_{\mathbb{R}} \int_{I} \frac{1}{u^{2} + s^{2} - 2us \cos \theta} ds du$$

$$\leq \int_{\mathbb{R}} \int_{I} \frac{1}{(1 - \cos \theta)(u^{2} + s^{2})} ds du$$

$$\leq \frac{(b - a)}{(1 - \cos \theta)} \int_{\mathbb{R}} \frac{1}{u^{2} + a^{2}} < \infty.$$

So that we have

$$K_1(s,t) = \int_{\mathbb{R}} \frac{1}{(\overline{\omega u} - s)(\omega u - t)} \frac{du}{2\pi}$$
$$= \int_{\mathbb{R}} \frac{1}{(u - \omega s)(u - \overline{\omega t})} \frac{du}{2\pi}.$$

Figure 2.14

The pole in the upper half plane is ωs . Then,

$$K_{1}(s,t) = i \operatorname{Re} s(h(u), \omega s) = \frac{i}{\omega s - \omega t}$$

$$= \frac{i}{(s-t)\cos\theta + i(s+t)\sin\theta}$$

$$= \frac{1}{(s+t)\sin\theta - i(s-t)\cos\theta}$$

$$= \frac{(s+t)\sin\theta + i(s-t)\cos\theta}{(s+t)^{2}\sin^{2}\theta + (s-t)^{2}\cos^{2}\theta} = \overline{K_{1}(t,s)}.$$

Then we know that $\,K_{\scriptscriptstyle 1}(s,t)\,$ is symmetric and positive definite on $\,L_{\scriptscriptstyle 2}(I)\,$.

Now we will construct our kernel for D_2 . We can parameterize γ_2 by $\varphi(u)=\omega u,\ u\in\mathbb{R}$.

Figure 2.15.

So C.I.F. for
$$D_2$$
 can be written as
$$f(s) = -\frac{1}{2\pi i} \int_{\mathbb{R}} \frac{\omega f(u)}{\omega u - s} du.$$

This suggests us the operator S from $L_2\left(\mathbb{R}\right)$ to $L_2(I)$ such that

$$Sf(s) = \int_{\mathbb{R}} \frac{f(u)}{\omega u - s} \frac{du}{2\pi}.$$

Hence

$$S^*g(u) = \int_I \frac{g(t)}{\partial u - t} dt.$$

Similarly

$$k_2(s,u) = \frac{1}{\alpha u - s} \in L^2(I \times \mathbb{R}).$$

Then we have

$$K_{2}(s,t) = \int_{\mathbb{R}} \frac{1}{(\omega u - s)(\omega u - t)} \frac{du}{2\pi}$$
$$= \int_{\mathbb{R}} \frac{1}{(u - \omega s)(u - \omega t)} \frac{du}{2\pi}.$$

Figure 2.16.

The pole in the upper half plane is ωt . Then,

$$K_{2}(s,t) = i \operatorname{Re} s(h(u), \omega t) = \frac{i}{\omega t - \omega s}$$

$$= \frac{i}{(t-s)\cos\theta + i(t+s)\sin\theta}$$

$$= \frac{1}{(t+s)\sin\theta - i(t-s)\cos\theta}$$

$$= \frac{(t+s)\sin\theta + i(t-s)\cos\theta}{(s+t)^{2}\sin^{2}\theta + (s-t)^{2}\cos^{2}\theta} = \overline{K_{2}(t,s)}.$$

Then, we know that $K_2(s,t)$ is symmetric and positive definite on $L_2(I)$.

Now for the last part of the example we use the fact that the sum of two positive operators is positive.

Figure 2.17.

BIBLIOGRAPHY

C.M.Dikmen, *Positive Integral Operators with Analytic Kernels*. MSc. Thesis, The University of Manchester, 1997

N. Young. An Introduction to Hilbert space. Cambridge University Press, Cambridge, 1988.

W.Rudin. Real and Complex Analysis. McGraw-Hill Book Company, New York, 1966

H.Hochstadt. Integral Equations. John Wiley & Sons Inc., New York, 1973

Mitrinovic, S. Dragoslav. The Cauchy Method of Residues. D.Reidel Publishing Company, Dordrecht, 1984