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ABSTRACT

In this paper we describe a package XMOD (Wensley and
Alp,1993) of functions for computing with crossed modules, their
morphisms and derivations; cat' -groups, their morphisms and
sections, written using the sf GAP (Schonert , 1993) group theory
programming language. We have also enumerated the isomorphism
classes of cat-groups in (Alp ,1997) and (Alp, Wensley ,1997) and
(Alp ,1997) We gave the application algorithms and some
mathematical results on cat' -group structures in (Alp, 1998) . We also
made a computational comment on pre-crossed modules, pre-cat I-

groups and underlying grupoids in this paper.

bZET

Su makalede GAP programmm ortak paketi XMod ( ) tarnm-
lamanm yarn srra Section larm GAP programma uygulanmasi ince-
lenmistir.
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2 DUMLUPINAR UNivERSiTESi

1. Introduction

A starting point for this paper was to consider the possibility of implementing
functions for doing calculations with crossed modules, derivations, actor crossed
modules, cat l-groups, sections, induced crossed modules and induced carl-groups in
GAP (Schonert , 1993).

We should first explain the importance of crossed modules. The general
points are:

• crossed modules may be thought of as 2-dimensional groups;
• a number of phenomena ill group theory are better seen from a crossed
module point of view;
• crossed modules occur geometrically as 7r 2 (X, A) ---1 7r I A when A IS

a subspace of X or as 7r IF ---1 tc IE where F ---1 E ---1 B IS a
fibration;
• crossed modules are usefully related to forms of double groupoids.

Particular constructions, such as induced crossed modules, are important for
the applications of the 2-dimensional Van-Kampen Theorem of Brown and Higgins
(Alp, Wensley ,1997) ,and so for the computation of homotopy 2-types.

For all these reasons, the facilitation of the computations with crossed
modules should be advantageous. It should help to solve specific problems, and it
should make it easier to construct examples and see relations with better known
theories.

The powerful computer algebra system GAP provides a high level
programming language with several advantages for the coding of new mathematical
structures. The GAP system has been developed over the last 15 years at RWTH in
Aachen. Some of its most exciting features are:

• it has a highly developed, easy to understand programming language
incorporated;
• it is especially powerful for group theory;
• it is portable to a wide variety of operating systems 011 many hardware
platforms.
• it is public domain and it has a lively forum, with open discussion. These
make it increasingly used by the mathematical community.

On the other hand, GAP has some disadvantages, too:

• the built in programming language is all interpreted language, which
makes GAP programs relatively slow compared to compiled languages such
as C or Pascal. GAP source can not be compiled. This will change in version
4 to be released during 1997;
• the demands all system resources are quite high for the serious
calculations.
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M.ALP·S.PAKIUNDIRL YING GRUPOIDS 3

However, the advantages outweigh the disadvantages, and so GAP was
chosen.

The term crossed module was introduced by 1. H. C. Whitehead in
(Whitehead , 1948). Most references of crossed modules state the axioms of a
crossed module using left actions, but we shall use right actions since this is the
convention used by most computational group packages.

In (Loday , 1982) Loday reformulated the notion of a crossed module as a
cat' group, namely a group G with a pair of homomorphisms t,h: G ~ G having
a common image R and satisfying certain axioms. We find it convenient to define a
cat-group C=(e;t,h: G ~ R) as two groups G, and R, two epimorphisms t.li :
G ~ R and a morphism e: R ~ G satisfying these certain axioms.

In section 2 we recall the basic properties of crossed modules and cat'>
groups. we made computational comment on underlying groupo ids pre-crossed
modules and pre-cat I-groups.

2. Crossed Modules and Cae -Croups

In this section we recall the descriptions of three equivalent categories:
XMod, the category of crossed modules and their morphisms; Cat I, the category of
cat-groups and their morphisms; and GpGpd, the subcategory of groups in the
category Gpd of groupoids. We also describe functors between these categories
which exhibit the equivalences.

A crossed module X = (a : s ~ R) is a pair of groups Rand S together

with an action of R on S and a group homomorphism a , called the boundary map
of X, satisfying the following axioms:

CMl:

CM2:

a (Sf)

for all s,tE Sand rE R

The standard constructions for crossed modules are as follows:

f. Any homomorphism a : S~ R provides a crossed module is 5 is
abelian and im a c;;;;, Z(R) with R acting trivially on S .

2. A conjugation crossed module is an inclusion of a normal subgroup
S~ R, where R acts on S by conjugation.

3. A central extension crossed module has as boundary a surjection a :
S ~ R with central kernel, where r E R acts on S by conjugation
with. a-Jr.
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4. An automorphism crossed module has as range a subgroup R of the
automorphism group Aut( S) of S which contains the inner
automorphism group of S. The boundary maps S E S to the inner
automorphism of S by s .

5. An R -Module crossed module has an R -module as source and a is
the zero map.
6. The direct product X I XX 2 of two crossed modules has source

SI X S2' RI X R2 and boundary a IX a 2' with RI, R2 acting trivially on

SI , S2 respectively.

A morphism between two crossed modules X = (a: s~ R) and
XI=(a ':S ~J(') is a pair <a, p > where a: S~S and p: K ~K are

homomorphisms such that a'a = p a and a (Sf) = (a s fPf
). When X = X' and

a ,p are automorphisms then (a , p) is an automorphism of X. The group of

automorphisms is denoted by Aut( X ).

In (Loday , 1982) Loday reformulated the notion of a crossed module as a
cat I_group, namely a group G with a pair of homomorphisms t,h : G ~ G having a
common image R and satisfying certain axioms. We find it convenient to define a
cat-group C=(e;t,h: G ~ R) as two groups G, and R, two epimorphisms t,h :
G ~ R and a morphism e: R ~ G satisfying:

CAT! :

CAT2:

te = he = id, '
[ker t, ker h] = {lG}'

The maps t and h are often referred to as the source and target, but we
choose to call them the tail and head of C, because em source is the GAP term for
the domain of a function. Note that CATI emplies e is an embedding.

A morphism C ~ C' of cat-groups is a pair (y, p) where y
G ~ G' and p: R ~ R' are homomorphisms satisfying

h' h' ,y=p ,ty=pt, ep=ye

The crossed module X associated to C has S = ker t and a =hls . The catl-
group associated to X has G = Rex S , using the action from X, and

t(r,s) = r, her,s) = r (a s), er = (r, I). (I)

We denote by epsilon the inclusion of S in G.
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An arbitrary cat'<group C = (e;t.h : G ~ R) is isomorphic to a semidirect
product cat-group as follows. Since G acts on S = ker t by conjugation, R acts
on S by

r er ( )-1 ( )S =s = er S er .

The semidirect product R oc S has composition and inverse given by:

(lj,SIXr2,s2)=Gr2,s;'sJ, (r,st'=(r-I,(s-Ir)
There is an isomorphism

e = Roc S ~G. (r,s)H (er)s (2)

with inverse

e -I G~ R oc S , g H Vg, (etg -I )g)
Proposition 2.1 C' =( e'; t',h' : R oc S ~ R ) is a cat-group where

t' = te , h' = he , e' = e -Ie and (e ,idR): C' ~ C is an isomorphism.

Proof: Since t'e'=tee-Ie=te, h'e'=hee-'e=he and

[kert' ,kerh']=[kerUe ),ker(he )]={ e -lgJ g E [kert ,kerh Jl=I, axioms CATI

and CAT2 are satisfied and c =( e'; t',h' : R oc S ~ R ). It follows from (2) that

(e ,idR): C' ~ C is an isomorphism.

3. Pre-crossed modules and Pre-cat-groups

When axioms CM2 and Cat2 are not satisfied, the corresponding structures
are known as pre-crossed modules and pre-cat'<groups. The Peiffer subgroup P of
S is the subgroup of ker( a) generated by Peiffer commutators

and X = (a : SIP ~ R) is a crossed module. The image of ~Sl , S 21] under

E :S~RocS is

(3)

The image E P is the Peiffer subgroup of Roc S, and C" =( e"; t", h" :
Roc S / [ker t', ker h'] ~ R) is the cat'<group corresponding to X, where t' = t"v ,
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h' =h"v , e" = V e' and V:R oc S ~ R oc S/[ker t", ker h' ] is the natural
homomorphism.

e P=[ker t' , ker h' ] (4)

The following diagram illustrates the arrangement of homomorphisms.

V ' h'----->~Roc S / [ker t ,ker ]

,
e t" h"

,
e

The underlying groupoid G of a cat'-group C has the elements of R as the
set of objects and the elements of G as arrows. The identity arrow at r is er. For,
each arrow g the source(tail) is tg and the target(head) is hg. Arrows g, g are

composable only when hg = t g'
g

,
g

(
tg hg=t g'

h g'

(r,s) (r',S' )
r ----:>~r(hs)= r'--->~ I I I ,

r (h S )=r(hs)(h S )=r(h(s S »

"'-----;----_3'
(r,s s')

So we have a composition of composable arrows:

(r,s) * (r', s' )=(r,s s')

when r(hs)= r' .Applying () to determine the composition rule for g * g'

g* g' =g(et g'r' g' =g(ehgr' (5)

with tail tg and head h g'. Also * is associative:

(6)
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In order to find an inverse g (equivalently (r, s) ) for *, we require

(r.s)
( ~
r r(hs)

'\ (r',s') )

(r, s)* (r, s)= l,=~(r)= (r,I),
(r,s) * (r, s )=lr(h.l")=e(r(hs »=(r(hs ~1),

(7)

(8)

(r,ss)
(r, ss)

=(r,l)
=(r(hs ),1)

and these are satisfied provided S = S-I r = r(hs). Thus (r, s) has inverse

(r(hs ~ s -I ) under * .The inverse g of g for this composition is given by

g = (ehg )g -I (etg )
(9)

The homomorphism g 1---7 g on G is the identity map on eR and

provides a cat I-isomorphism from C to C :::(e; h, t : G ~ R).

The set of arrows out of 1R are the elements of ker t while the arrows in to

1R are the elements of ker h , so ker a is the set of loops at 1R' The set of

objects in the component of G connected to 1R is the image of a, so G is

discrete when a = o.

A section ; defines a morphism ~ ( ; ) : G ~ G as follows. Consider the
diagram

; tg

h; tg

; hg

hg
g
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where ~ tg has tail t~ tg=tg and head h~ tg , while ~ hg has tail t~ hg

=hg and tail h~ hg. Then we define as follows:

~ (~ )(g)= (~ tg) * (g *~hg) (10)

where

g *~hg = g(et~ hg t' (~hg)= g(ehg t' (~hg) (11 )

It follows that

e -, ~ (~ )(g)= (h~ tg, (~ tg t' g (ehg t' (~hg )). ( 12)
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