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Abstract
We give a survey of results regarding the influence of the quantity W(x, f) = X — — in studying
t
. . . . . . . n '
the linear-like solutions of the ordinary differential equation X "+ f (f , X, X ) =0.
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1. Introduction

Let us consider the general second order ordinary differential equation (ODE)
below

x"+ f(t,x,x")=0, t=t=1, (D
where the nonlinearity f :[,, +0)x IR* — IR is assumed continuous. By a linear-

like solution of equation (1) we mean any C * function x defined locally near +%
that verifies the equation throughout its entire domain of existence and can be
asymptotically developed either as

x(t)=cet+o0(t), x'(t)=c+o(l) when t — +00 )
or as
x(’)=C1°t+02 +0(1), X'(f)=Cl+O(t_]) when f — +©  (3)

for some real constants ¢, ¢, C,.
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Integrating Second Order ODE’s: the Pseudo-Wronskian

Motivated by some questions regarding certain reaction-diffusion equations, see
the references [16], [14], we are interested here in the influence that the quantity
(called pseudo-wronskian in the sequel)

x'(1)
x(t) t

has over the restrictions imposed on the nonlinearity f(#,x,x") in the literature

x(1)

W(x,t)=% =x'(t)—T,t2tO,

devoted to linear-like solutions of ODE’s.

2. A general existence result

An existence result for linear-like solutions in a large particular case of (1) can be
found in the note [28]. For general results, see [2].

Theorem 1 ([28], Theorem 1). Assume that f does not depend explicitly of x'
and

[f @) =k (f)g(@J +hy (1),

where hl s h2 , g are nonnegative-valued, continuous functions such that

fz*[@ () + Iy (1)]dt < +0

for a fixed A€[0,1]. Then, equation (1) has a solution x which verifies (2)if A =0,
(3)if A =1 and, for AE(0,1), reads as
x(t)=cot +o(t'™), x'(t)=c+o(t™") when t — +.
Proof (sketch of). Introduce the Banach space (X (7',A), *H) , where X(T,A) is

the set of all real-valued continuous functions v(¢) defined in [7',+%) which satisfy

lim #*v(¢) =1, (v)EIR and HVH =supt’ |v(t)‘ . Given ¢,, ¢,, introduce also the set
1=+ t=T
S(c,) = {vEX(T, S H ORI E [T Gh @)+ hy@)ldr.1 2 T} :
t
where G =sup{g(u):0 <|c|+2|c,|+1}.

The operator O:S(c,) — S(c,) with the formula

, =1,

ov)@)=t" [cz - frAf(r,u(v, ¢, ¢, )(T))dr

70



Octavian G. MUSTAFA

where
u(v,c,c,)(t)=[c, +c,(1-sgnA)Jt + At?@dt -(1- )L)j‘v(t)dt ,
r T t

satisfies the requirements of Schauder’s fixed point theorem. It has, consequently, a
fixed point in S(c,) — which is our solution.

The history of asymptotic integration of ODE’s (with an emphasis on asymptotic
equivalence, polynomial-like solutions, boundedness and so on) has been long and
fructuous. The reader can find in the references [1], [5]-[13], [15], [17]-[27], [34]-[42]
many interesting details.

3. A study of W (x,t)

The simplest result concerning the pseudo-wronskian regards its set of zeros: if x
is any C” function such that x"(¢) <0 for every ¢ then W (x,t) either has no zero or

its set of zeros is an interval (possibly degenerate). This is a consequence of the
obvious identity

x"(f) = %[tW(x, N].

Another immediate result reads as follows: assume that the linear ODE
x"+a(t)x=0, t=1,

with continuous coefficient a(#) has a solution x(#) that satisfies (2) for some ¢ > 0.

+00

This happens if, say, f t|a(t)|dt < +o0 . Then,
lo

<0 ast— 4o,

1
W(yat) it
Cet

ds
[x(s)IP

notice that, regardless of the sign of x", linear homogenous ODE’s of second order
have always bounded solutions with eventually negative pseudo-wronskian.

where () = x(t)f see [3], p. 360. Since y(¢)=1/c when t =+, we
t

The presence of W(x,t) in the formula of f(Z,x,x") from equation (1) yields a

consistent enlargement of the class of functions h — see the hypotheses of Theorem 1.
Theorem 2 ([29], Theorem 6). Assume that there exist the continuous functions

h(t), g(s) such that g(s)>0 forall s >0 and xg(s)=<g(x'"“s), where x =17,
and s =0, for a certain @ €(0,1). Suppose further that
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|f(t,x,x')

< h(t)g(

, X
x — |
!

(< +).

and, for some €, 8 >0,

= h(s) Y du
f S ds < H:!t;]a 2

)

Then, all the solutions x of equation (1) such that ‘W(x, to)‘ <0 are defined
throughout [7,,+%) and satisfy (2).
Sufficient conditions for the integrability of W (x,t) are given in the next result.
Theorem 3 ([3], Theorem 6). Assume that f(#,x,x") = f(¢,x) in equation (1)

and | £(1,%)| s F (1,
monotone nondecreasing with respect to the second variable.
(i) Suppose that there exists A€ (0,1) and ¢ = 0 such that

s t
tIn| — | F
fol

Then, equation (1) has a solution x defined in [f,,+%) that can be developed as

x|/t ), where the comparison function F is continuous and
| P

t,%(l+)»)’c‘)dt<l|c’.
0

x(¢) = c(x)t +o(l) when t— +% for c(x)EIR, sgnx(f)=sgnc for all =1,
and

t
x(t) - &ds=c+o(1) when ¢ — 400 .

IOS

(ii) Suppose that there exist a & IR and ¢ > 0 such that
- t

ft 1+1n(—) F(t,
o l

Then, equation (1) has a solution x defined in [f,,+%) that can be developed as
x(t) =cot +0(1) when ¢t — +00 and with W (x,*)E L'((t,,+%),IR) .

Let us discuss now the effects that a perturbation of equation (1) might have on
W (x,t) : non-null limits and oscillations.

Theorem 4 ([29], Theorem 12). Fix #, €IR and consider the ODE below
x"+ f(t,x,x")=p(t), t=t,, 4

dt<c.

A+
4
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with continuous f', p, such that

‘f(t,x,x')l < h(t)

+0%0

X 1!
X —7‘ fs.h(s)ds, tlirgc;{p(s)ds =a€IR-{0}.

fy

Then, equation (4) has a solution x defined in [#,,+%) such that x(f,) =u, and
lim W (x,t) = a — which means that x(¢) = a«f Int when ¢t — +00 .
t—>+0

The proof of this theorem relies on an application of the Leray-Schauder
alternative in the function space X (#,,—1) for the integral operator

(Tv)(¢) =jsb(s)ds + jfg S,V(S),}L?dr ds, veX(t,,-1),
fo t t T

u u %
where g(z,v,w) =tf(t,t(—°+w),—°+w+—].
7

4 t
0 0
Theorem 5 ([30], Theorem 1, Remark 3). Assume that f(#,x,x')= f(#,X) in
equation (4) and ‘f(t,x)‘ < F(t,

the second variable comparison function F' . Suppose also that
st(s, P(s)‘ + sup{q(r)}) ds<q(t), t=t,,
t

T=S
for a certain positive-valued, bounded (possibly decaying to 0 as f— +),
continuous function g(f). Here, P"(t) = p(¢) for all f = f,. Assume further that

l‘w >1 and liminf tw <-1.
q(t) e q(t)

Then, equation (4) has a solution x defined in [7,,+%) such that

x(t)=P(t)+o() ast—+x

and W (x,*) oscillates — this means that there exist the sequences {f :n =1} and

x‘) for a continuous and monotone nondecreasing in

lim sup

f—>+

{tno :n =1}, increasing and unbounded from above, with the property that

W(x,t)<W(x,t’)=0<W(x,t

n+l

) forevery n=1.

The proof of this result is based on a Kummer-like decomposition of the equation
(4), see [2], pp. 47-48. We have the identities

AV = [a(s)| o5 +g)ae) [ 2T ar a9
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and

x(t) = P(t)-a(t) f %ds ., (6)

where a(t) is a positive solution of the linear homogenous ODE below

z"+q(t)z=0, t=t,, (7)
such that (the coefficient g(f) being continuous)

- ds a'(t)

o dr
{[a(s)]z <t®, ,LME =0 and f‘Q(S)‘{a(S)[W}JS < 400

Then, we have the asymptotic developments

x(t) = P(t) + o(a(t)f [aZ,:)]Z ) (8)

and

W(x,t) = W(P,t)- W(a,t)}o%ds + 9(f)

o ds
=W(P,t)+o| a(t)
( [ at
The latter estimate follows from
oo -1
tim {[a()}" [ S| w90 g
s Jla@P [ = a()
-1 oo -1

and y(t){ a(r) f ()]} =a(r>y<r){[a(t>]2 f[a(dj)]z}

{— 4+,

+00

2) when f — 400,

=o(1l) when

In the fundamental particular case when f t‘q(t)‘ dt < +00 , all the solutions a(?)

Iy

of equation (7) verify the formulas (2) and thus (8) reads as x(¢) = P(¢) + o(l) when

t — +o0 — which is the formula obtained at Theorem 5.

Open problem. Other conditions regarding the coefficient g(#) that will lead to

the existence of such a solution a(¢) of equation (7) are still unknown. According to

the fundamental paper by Hartman [18], for the equation (7) to be nonoscillatory it is

necessary that either
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1 1
tl_lglo;f!q(f)dtds =-0 or }EBO ;JJCI(T)deSEIR-

Further, a necessary and sufficient condition to have lim[a'(z)/a(t)] =0 is that
t—>+©

)=0.

Another topic regarding the pseudo-wronskian is concerned with the multiplicity of
solutions to a problem attached to equation (1).
Theorem 6 ([31], Theorem) Consider the problem

1
u=se| o 14y

uqu(s)ds

lim ( sup——

1
x"=-gtx'-x), t=t,=1,
!

tyx'(ty)—x(t))=c>0,
where the nonlinearity g : /R — IR is assumed continuous, with g(c)=g(3¢)=0
and g(a) >0 forevery real @ = ¢,3c and

> du G du
f < +00, f = 400,
g(u) g(u)

c+ 2¢

Then, the above problem has infinitely many linear-like solutions that verify
formulas (3).

The proof relies on the fact that the problem admits the next one-parametric family
of solutions

xT(t)=tLtl—°+fy2—gg)ds, x(t,)=u,€IR, T>0, ©)
0

where
yr()=c, tE[t,,t,+T] and y,()=G'(t-t,-T), t=t,+T
for the function G :[c,3c) —[0,+) given by the formulas

G(c)=0 and G(x)= j‘% , XE(c,3c¢).

We obtain the asymptotic development x,(f) = a,t+b, +0(1) when  — +,

where

u, yp(s
aT=—°+fyTE )ds and b, =-3c.
Ly 5 S
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We also remark that

daT =_C(IO+T_21)_ f g(yTz(S))dS<O, T>O,
dr (t,+T) s

which means that the solutions from (9) are not only different for each other but they

to+T

have also different slopes for their oblique asymptotes X, = a,t +b, .
Open problem. It is still unknown how to build examples of initial value problems
with an infinity of solutions verifying (3) when both a, and b, vary with T .

Under appropriate conditions, we can prescribe the zero(s) and size of the pseudo-
wronskian.
Theorem 7 ([32], Proposition 1). Assume that a,b > 0, the coefficient g(¢) of

equation (7) is nonnegative-valued, with eventually isolated zeros, and

+00

(a+ b)f seq(s)ds < b.
fy
Then, equation (7) has a solution x which verifies (2) for ¢ = a and also satisfies
the relations W (x,1,) =0 and

I x(t) x(1)
b—a=<sx'(t)<|1-=s*q(s)ds | =2 <=L <a+b, t>t,.
(?) l{ q(s) ; ) 0

The proof is based on an application of the Banach contraction principle to the
integral operator

(Tx)(t)=t|a+ j‘o%‘sfrq(r)x(r)drds L=t
r S fo

We can also produce the oscillation of the pseudo-wronskian under several
conditions.

Theorem 8 ([33], Theorem 7, Remark 1). Fix p&(0,1), ¢ = 0 and assume that

the coefficient g(¢) of equation (7) verifies the following conditions
-1 I-p

+00

f l[fsz ‘q(s)‘ ds] t* ‘q(t)‘dt <+

fy

and
tf s>q(s)ds z‘f s>q(s)ds
L, =limsup~———>0>L_ = li}Einf = .
o fsz‘q(s)‘ds fsz‘q(s)‘ ds
t t
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Then, the equation (7) has a solution x that satisfies (3) for ¢, =¢ and ¢, =0,

W (x,*) oscillates and also W (x,*)EL"((t,,+%),IR).
The proof consists of an application of the Banach contraction principle to the
integral operator — recall the decomposition (5), (6) and take z"=0, #=17,, as

auxiliary equation —

+00

(Ty)(e) = - fsq(s)x(s)a’s x()=c—s fy(s) t=1,.

To give an example of coefficient ¢(¢#) which obeys the restrictions from
2-p

p
{a, =k™ —(k+1)“ :k =1}. Consider also the function Q:[9,+%)— IR with

the formula

Theorem 8, set o> and introduce the sequence

(a, (t - 9k),tE[9%, 9% +1],
a, (9 +2—1),tE[9% +1,9% +3],

a,(t -9k - 4),t E[9%k +3,9% + 4],

O(t)=)a, (9k +4-1),tE[9% + 4,9 +5], k=1.
a, (t -9k —6),1E[9% +5,9% + 7],

a,(9k +8—1),t E[9% +7,9% +8],

0,1 €9k +8,9(k +1)],

. 9a
Then, we can take q(¢) =¢"Q(t) forall £=9. We havealso L, =—1_= T

Open problem. What can be said about the case when ¢ =0 ?
Let us close this study with an analysis of the size of the pseudo-wronksian for
nonlinear differential equations.

Theorem 9 ([4], Theorem 8, Corollary 3). Set #,,A=1, a,b=0, c€(0,1] and

£€(0,1). Assume that the continuous function g :[f,,+%) —>[0,+%) verifies the

conditions

Ma+e)'I <c, , 1= fﬂ”q(z)dz .
f

4
ct,
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Then, the Emden-Fowler like equation
x"+q(t)x* =0, t=t,,
admits a solution Xx:[7,,+%)—>[b,+%) with the asymptotic profile given by

x(¢) = ast + O(t"°) when t — +% such that
t
fs’m q(s)ds = ——— X1 ) -x'(O)<(a+ g)"-%fs“cq(s)ds , 1=t
)

In particular, W (x,t) = O(t™°) as t = +© .
The proof relies on an application of the Banach contraction principle to the
integral operator

(IO = = [39()x(5) s,

y(s)d t=t,.
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