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Abstract 

This study focuses on the problem of wheat yellow-rust disease caused by climate change and incorrect farming methods. 
Early detection of the disease, which manifests as yellow-orange spores on wheat leaves, is crucial for mitigating issues such 
as reduced crop yield, increased pesticide use, and environmental harm. Current CNN-based semantic segmentation 
models focus mainly on processing local pixels, which can be insufficient for large areas. This study proposes a novel version 
of the UNetFormer architecture, enhancing the CNN-based encoder with CBAM modules while utilizing a Transformer-
based decoder to address the limitations of current approaches. Specifically, the model incorporates a Convolutional Block 
Attention Module (CBAM) to refine feature extraction along spatial and channel axes. CBAM modules allow the network to 
prioritize meaningful features, particularly near-infrared (NIR) wavelength reflections critical for detecting wheat yellow-
rust. The proposed UNetFormer2 model effectively captures long-range dependencies in multispectral remote sensing 
images to improve disease detection across large agricultural areas. Specifically, the model achieves an IoU improvement of 
2.1% for RGB, 4.6% for NDVI, and 3% for NIR compared to the baseline UNetFormer model. This work aims to improve 
wheat yellow-rust disease monitoring efficiency and contribute to more sustainable agricultural practices by reducing 
unnecessary pesticide application.  
Keywords: Semantic segmentation, Remote sensing, Multispectral images, Wheat yellow-rust disease 

 

I. INTRODUCTION  
Wheat yellow rust is a common plant disease caused by climate changes and inappropriate agricultural 

management strategies [1]. Generally, the traditional management tool for wheat yellow rust disease is to 

implement chemical methods [2]. The current approach of chemical control, applied regardless of the disease's 

current status, leads to excessive pesticide use, causing environmental impacts such as groundwater pollution 

and the risk of pesticide residues in agricultural products. As the disease progresses, it manifests as yellow-

orange spores on wheat leaves due to physical and chemical changes, such as decreased chlorophyll content and 

water levels in the leaves [3]. Multispectral bands are crucial in detecting the yellow-rust spores by providing 

discriminative information [4]. Remote sensing systems via satellite or aerial vehicles can dynamically monitor 

plant stress over large areas [5]. Convolutional neural networks (CNNs) applied to multispectral remote sensing 

images are attracting attention in the literature to detect wheat yellow rust disease [6-8]. However, the processing 

of local pixels or small regional information in these studies is often insufficient, especially for large agricultural 

areas, making it crucial to capture long-range dependencies [9]. 

 

Based on these discussions, this study proposes a novel version of UNetFormer that includes a CNN-based 

encoder and a Transformer-based decoder to capture long-range dependencies [10]. In the UNetFormer 

architecture, the ResNet18-based CNN encoder integrates channel and spatial information to extract meaningful 

features. This study proposes a Convolutional Block Attention Module (CBAM) [11] used in UNetFormer 

design to emphasize meaningful features along the channel and spatial axes. Indicators of wheat yellow rust, 

such as leaf color changes and reduced chlorophyll content, are detected using near-infrared (NIR) wavelength 

reflection [12, 13]. The proposed CBAM module enables UNetFormer to automatically learn the importance of 

the NIR wavelength for disease detection and suppress irrelevant wavelengths. Additionally, using the CBAM 

module allows the detection of even small lesions appearing in the early stages of the disease, thus enhancing the 

information flow efficiency within the UNetFormer architecture. 

https://orcid.org/0000-0003-4998-607X
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The structure of this paper is in the following manner: 

Section II presents a comprehensive review of existing 

semantic segmentation studies using remote sensing 

images. Section III introduces the core components of 

the proposed architecture, while Section IV provides 

information about the WYR image set used in this 

study. Section V covers implementation details and 

evaluation metrics, followed by visualization and 

analysis of the test results in Section VI. Finally, 

Section VII discusses the study's conclusions. 

 

II. RELATED WORK 
This section presents the most common semantic 

segmentation architectures. Early approaches use 

CNN models, but recent efforts also utilize 

transformers to yield better performance.  

 

2.1. Convolutional Neural Networks (CNNs) 
U-Net, with its symmetric expansion-contraction paths 

architecture, offers a deep network capable of 

capturing context while providing precise localization 

[14]. SegNet, on the other hand, performs pixel-wise 

semantic segmentation with an encoder-decoder 

architecture, using pooling indices obtained from the 

encoder to enable nonlinear upsampling in the 

decoder, thus achieving memory- and computation-

efficient performance [15]. DeepLabv3+ combines 

atrous spatial pyramid pooling, which models 

contextual information at various scales, with a 

decoder module that enhances object boundaries, 

forming an efficient architecture [16]. BiSeNet is a 

real-time model balancing speed and segmentation 

performance by combining a spatial path that provides 

high-resolution location information with a context 

path that captures a large receptive field [17]. 

DFANet, an efficient CNN architecture, starts with a 

lightweight backbone and employs cascades of sub-

networks and sub-stages to aggregate discriminative 

features, aiming to reduce parameter count while 

balancing speed and segmentation performance 

through multi-scale feature propagation [18]. D-

LinkNet, designed for road extraction, combines 

dilated convolution and a pre-trained encoder while 

retaining the computational efficiency of the LinkNet 

architecture [19].  

 

There are also many CNN-based studies on the pixel-

wise classification of aerial imagery. For instance, 

LANet, a CNN-based architecture, improves 

performance in the semantic segmentation of remote 

sensing images by combining high-level semantic 

understanding with low-level location details [20]. 

Another CNN-based architecture, AFNet, performs 

effectively in complex urban landscapes with a Scale 

Feature Attention Module (SFAM) to detect objects of 

different sizes [21]. 

 

U-Net, with its symmetric expansion-contraction paths 

architecture, offers a deep network capable of 

capturing context while providing precise localization 

[14]. SegNet, on the other hand, performs pixel-wise 

semantic segmentation with an encoder-decoder 

architecture, using pooling indices obtained from the 

encoder to enable nonlinear upsampling in the 

decoder, thus achieving memory- and computation-

efficient performance [15]. DeepLabv3+ combines 

atrous spatial pyramid pooling, which models 

contextual information at various scales, with a 

decoder module that enhances object boundaries, 

forming an efficient architecture [16]. BiSeNet is a 

real-time model balancing speed and segmentation 

performance by combining a spatial path that provides 

high-resolution location information with a context 

path that captures a large receptive field [17]. 

DFANet, an efficient CNN architecture, starts with a 

lightweight backbone and employs cascades of sub-

networks and sub-stages to aggregate discriminative 

features, aiming to reduce parameter count while 

balancing speed and segmentation performance 

through multi-scale feature propagation [18]. D-

LinkNet, designed for road extraction, combines 

dilated convolution and a pre-trained encoder while 

retaining the computational efficiency of the LinkNet 

architecture [19]. 

 

2.2. Transformers 

The Vision Transformer (ViT), solely based on 

transformers, applies the transformer architecture to 

sequences of image patches, achieving excellent 

results on various image recognition benchmarks [22]. 

A high-performing vision transformer, DeiT [23], 

suggests a distillation strategy that leverages tokens, 

using a CNN model as the teacher on the ImageNet-1k 

dataset [24]. Swin Transformer is a hierarchically 

organized transformer architecture that extracts 

representations through shifted windows [25]. 

SegFormer combines Transformers with efficient 

multilayer perceptron (MLP) decoders, offering robust 

semantic segmentation that operates without 

positional encoding [26]. Segmenter, a transformer 

model, uses contextual information at the image patch 

level to achieve label consensus and offers high 

performance by modeling the global context from the 

initial layer to produce class labels from the 

corresponding embedded outputs of image patches 

[27]. The SEgmentation TRansformer (SETR) 

architecture represents the image as a sequence of 

patches and modeling the global context at each layer 

[28]. TransUNet uses transformers to model long-

range dependencies while capturing high-resolution 

local details with the U-Net architecture [29]. 

CCTUnet combines CNN and transformer to enhance 

the preservation of edge details in high-resolution 

input images and capture long-range dependencies 

[30]. 

 

Transformer-based architectures are also increasingly 

used with CNN-driven methods for the semantic 

understanding of remote sensing images, 

demonstrating superior performance. For instance, 
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EMRT, a hybrid architecture designed for high-

resolution remote sensing images, aims to enhance 

multi-scale representation learning by combining the 

strength of CNNs in deriving local features with the 

capability of transformers in learning global patterns 

[31]. CTCFNet, a fused CNN-transformer structure 

for remote sensing images, improves segmentation 

accuracy by integrating local and global information 

to overcome occlusions of objects and surface features 

at different scales [32]. One study [33] employs a 

Swin Transformer-based encoder and CNN structures 

in the decoder to better model long-range spatial 

dependencies. The CMTFNet model extracts and 

combines local and global contextual information at 

multiple scales for remote sensing images [34]. ST-U-

Net model strengthens the feature representation 

ability by embedding the Swin transformer within the 

U-Net structure for the pixel-wise classification of 

remote sensing imagery [35]. CSTUNet utilizes a two-

stream encoder comprising a CNN-based primary 

encoder and a Swin transformer-assisted secondary 

encoder [36]. UNetFormer [10] is designed for real-

time segmentation of urban scene images in remote 

sensing and uses a lightweight ResNet18 encoder, 

offering an effective attention mechanism that jointly 

processes global and local information. This study 

proposes to adaptively focus on essential features in 

both the channel and spatial dimensions by utilizing 

the CBAM module in the UNetFormer design for the 

semantic segmentation of wheat yellow rust disease. 

 

III. MATERIALS AND METHODS 
Figure 1 illustrates the proposed architecture, where 

each feature map obtained from the CNN-based 

encoder is passed through a separate CBAM module 

to enhance adaptive feature improvement. The CBAM 

modules generate attention maps along the channel 

and spatial dimensions. Then, these complementary 

attentions are multiplied with the input feature maps to 

serve as the refined output. This process allows the 

model to learn to emphasize features that are supposed 

to ease the detection of wheat yellow-rust objects 

while suppressing irrelevant ones. Finally, the 

transformer-based decoder generates the segmentation 

output. The following sections explain the details of 

the architecture. 

 

3.1. Encoder 

The encoder structure, consisting of four blocks and 

shown in Figure 1, is designed to extract multi-scale 

semantic features using the pre-trained ResNet18 

model [37]. ResNet18, chosen for its relatively 

lightweight architecture with four blocks, performs 

downsampling by a factor of 2 at each block. 

Assuming that 𝑅𝑘 represents the output of each 

ResNet block, where 𝑘 represents the block layer 

level, there are four levels in total. The resulting 

output is 𝐴𝑘 when using a CBAM module for each 

block 𝑘. Therefore, each ResNet block output 

processed through the CBAM module is as follows: 

 

𝐴𝑘 = 𝐶𝐵𝐴𝑀(𝑅𝑘)                                      (1) 
 

Each feature map 𝐴𝑘 produced by the CBAM is 

combined with the corresponding feature maps in the 

decoder using a weighted sum with a 1 × 1 

convolution. The final fused feature map, denoted as 

𝐹𝐹𝑘, is obtained as follows:  

 

𝐹𝐹𝑘 = 𝛼. 𝐴𝑘 + (1 − 𝛼). 𝐺𝐿𝐹𝑘                          (2) 
 

where 𝛼 is the weighting coefficient, and 𝐺𝐿𝐹𝑘 

represents the decoder feature map at the 

corresponding level. 

 

 
Figure 1. Overview of the proposed UNetFormer2 

architecture 

 

3.1.1. CBAM modules 

For each feature map 𝑅𝑘 ∈ 𝑅𝐶𝑘×𝐻𝑘×𝑊𝑘 obtained from 

the ResNet18 blocks, a separate CBAM module 

processes it to produce a channel attention map 𝑀𝑐 ∈
𝑅𝐶𝑘×1×1 and a spatial attention map 𝑀𝑠 ∈ 𝑅1×𝐻𝑘×𝑊𝑘 . 

Figure 2 illustrates the CBAM module operations, 

which are detailed below: 

 

𝐴′𝑘 = 𝑀𝑐(𝑅𝑘)⨂𝑅𝑘                                     (3) 
 

𝐴𝑘 = 𝑀𝑠(𝐴′𝑘)⨂𝐴′𝑘                                    (4) 
 

where ⨂ denotes element-wise multiplication, and 𝐴𝑘 

is the final output obtained for each level 𝑘. 

 

The CBAM obtains channel attention by compressing 

the spatial dimension using the average-pooled 

features 𝑅𝑎𝑣𝑔
𝑐  and max-pooled features 𝑅𝑚𝑎𝑥

𝑐 . Figure 2 

shows how these feature maps pass through a multi-

layer perceptron (MLP) network with a single hidden 
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layer, which then computes the channel attention map 

𝑀𝑐 ∈ 𝑅𝐶𝑘×1×1 by combining the output features 

element-wise as follows: 

 

𝑀𝑐(𝑅𝑘) = 𝜎 (𝑀𝐿𝑃(𝑅𝑎𝑣𝑔
𝑐 ) + 𝑀𝐿𝑃(𝑅𝑚𝑎𝑥

𝑐 ))             (5) 

= 𝜎 (𝑊1 (𝑊0(𝑅𝑎𝑣𝑔
𝑐 )) + 𝑊1(𝑊0(𝑅𝑚𝑎𝑥

𝑐 )))                    

 

where 𝑊0 ∈ 𝑅𝐶𝑘/𝑟×𝐶𝑘 and 𝑊1 ∈ 𝑅𝐶𝑘×𝐶𝑘/𝑟 are the 

weights of the MLP network. These weights remain 

shared across all inputs. The final sigmoid function 

appears as 𝜎, and a ReLU activation function applies 

after 𝑊0. 

 

 
Figure 2. CBAM structure 

 

To compute spatial attention, as shown in Figure 2, 

the outputs 𝑅𝑎𝑣𝑔
𝑠 ∈ 𝑅1×𝐻𝑘×𝑊𝑘  and 𝑅𝑚𝑎𝑥

𝑠 ∈ 𝑅1×𝐻𝑘×𝑊𝑘 , 

obtained by applying average pooling and max 

pooling operations along the channel axis, are 

combined. A convolutional layer with a filter size of 7 

× 7, denoted as  𝑓7×7, is then applied to this combined 

feature map to produce the spatial attention map 𝑀𝑠 ∈
𝑅𝐻𝑘×𝑊𝑘  as follows: 

 

𝑀𝑠(𝑅𝑘) = 𝜎 (𝑓7×7([𝑅𝑎𝑣𝑔
𝑠 ; 𝑅𝑚𝑎𝑥

𝑠 ]))                     (6) 

 

3.2. Decoder 

The decoder section consists of three global-local 

Transformer blocks and one feature enhancement 

head, as shown in Figure 1. The following sections 

explain all these processes in detail. 

 

3.2.1. Global-local transformer block (GLTB) 

Figure 3 illustrates the global-local attention structure 

that the GLTB block uses. It consists of parallel local 

and global branches that process the input 

simultaneously. Each feature map 𝐴𝑘 ∈ 𝑅𝐶𝑘×𝐻𝑘×𝑊𝑘 

obtained from the CBAM blocks undergoes a 1 × 1 

convolution operation, adjusting the channel size to a 

fixed value of 𝐶 = 64. The resulting feature map 

𝐴′′𝑘 ∈ 𝑅𝐵×𝐶×𝐻𝑘×𝑊𝑘 serves as input to both the local 

and global branches, with a batch size of 𝐵. The local 

branch extracts both small and large-scale local 

features from the 2D feature map 𝐴′′𝑘 by passing it 

through 1 × 1 and 3 × 3 convolution operations 

separately. After applying batch normalization (BN) to 

each output, the branch combines the results. 

 

 
Figure 3. Illustration of GLTB blocks 

 

The global branch aims to capture global context by 

applying window-based multi-head self-attention to 

the input 𝐴′′𝑘 ∈ 𝑅𝐵×𝐶×𝐻𝑘×𝑊𝑘, as shown in Figure 4. 

First, a 1 × 1 convolution is applied to the feature map 

𝐴′′𝑘 to triple the channel size. When the dimension 

becomes 𝑅𝐵×3𝐶×𝐻𝑘×𝑊𝑘, it provides more feature 

information related to each pixel. Next, the window 

partitioning operation sets the window size to 𝑤 × 𝑤, 

resulting in an output dimension of 

𝑅𝐵×3𝐶×(𝐻𝑘/𝑤)×(𝑊𝑘/𝑤)×𝑤×𝑤. The process resizes the 

information in each 𝑤 × 𝑤 window into a 1D array 

suitable for the attention mechanism.  

 

 

 
Figure 4. Illustration of window partitioning 

 

 
             (a)                         (b)                       (c) 

Figure 5. (a) Transformer block structure. (b) Swin 

Transformer block structure. (c) UNetFormer 

Transformer block structure. 

 

When the attention mechanism uses ℎ multi-heads, it 

defines the dimension for each head as 

𝑅𝐵×3×ℎ×(
𝐶

ℎ
)×(𝐻𝑘/𝑤)×(𝑊𝑘/𝑤)×(𝑤×𝑤)

. The 1D arrays 
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obtained for each head convert into query (𝑄), key 

(𝐾), and value (𝑉) vectors. 

 

The original Swin Transformer architecture uses a 

window shifting mechanism (Figure 5) to slightly shift 

the windows in consecutive Swin Transformer layers, 

allowing information interaction between neighboring 

windows; however, this process also increases the 

computational load. In contrast, UNetFormer employs 

a cross-shaped window context interaction module to 

capture intra-window and inter-window long-range 

relationships within a transformer layer at a lower 

computational cost. UNetFormer Transformer block is 

illustrated in Figure 5(c). 

 

The cross-shaped window context interaction module, 

visualized in Figure 6, combines two feature maps 

generated by horizontal and vertical average pooling 

layers to obtain global context. The dependency of any 

point 𝑝1
(𝑚,𝑛)

 in Window 1 on the point 𝑝2
(𝑚+𝑤,𝑛)

 in 

Window 2 is calculated as follows: 

 

𝑃1
(𝑚,𝑛)

=
∑ 𝑃1

(𝑚+𝑖,𝑛)𝑤−𝑚−1
𝑖=0 + ∑ 𝑃2

(𝑚+𝑤−𝑗,𝑛)𝑚
𝑗=0

𝑤
 

                                                                                            (7) 

=
∑ 𝐷𝑖(𝑃1

(𝑚,𝑛)
)𝑤−𝑚−1

𝑖=0 + ∑ 𝐷𝑗(𝑃2
(𝑚+𝑤,𝑛)

)𝑚
𝑗=0

𝑤
 

 

𝑃1
(𝑚+𝑖,𝑛)

= 𝐷𝑖(𝑃1
(𝑚,𝑛)

)                                      (8) 
 

𝑃2
(𝑚+𝑤−𝑗,𝑛)

= 𝐷𝑗(𝑃2
(𝑚+𝑤,𝑛)

)                                  (9) 
 

where 𝑤 denotes the window size and 𝐷 represents the 

self-attention computation used to model the 

interactions of pixel pairs within a window. For 

example, the interaction between a point 𝑝1
(𝑚,𝑛)

  from 

Window 1 and any other point 𝑝1
(𝑚+𝑖,𝑛)

 within the 

same window is expressed by equation (8).  

 

 

Figure 6. Illustration of cross-shaped window context 

interaction module operations 

 

Equation (9) calculates the interaction between a point 

𝑝2
(𝑚+𝑤,𝑛)

 within Window 2 and any other point 

𝑃2
(𝑚+𝑤−𝑗,𝑛)

 in this window. The horizontal 

relationship between the point 𝑝1
(𝑚,𝑛)

 in Window 1 

and the point 𝑝2
(𝑚+𝑤,𝑛)

 in Window 2 is established by 

equation (7). The same equation also enables the 

calculation of the vertical relationship between the 

point 𝑝1
(𝑚,𝑛)

 in Window 1 and a point 𝑝3
(𝑚,𝑛+𝑤)

 in 

Window 3. This process is beneficial to extract long-

range dependencies between any two windows and to 

construct the global context. 

 

3.2.2. Feature refinement head (FRH) 

The FRH structure aims to enhance segmentation 

accuracy by closing the information gap between 

shallow and deep feature maps through a refined 

merging process, using the combined feature map 𝐹𝐹𝑘 

shown in equation (2) as input. As illustrated in Figure 

7, a global average pooling layer creates a channel-

wise attention map 𝐶 ∈ 𝑅1×1×𝑐 with 𝑐 channel 

dimension. The reduce & expand operation applied at 

this stage consists of two 1 × 1 convolution layers that 

reduce the channel size by a factor of 4 and then 

expand it back to its original size. 

 

 
Figure 7. Illustration of FRH operations 

 

Meanwhile, a depth-wise convolution applies to 

produce a spatial-wise attention map 𝑆 ∈ 𝑅ℎ×𝑤×1 for 

ℎ and 𝑤 spatial resolutions. The feature maps obtained 

from the two parallel paths are combined. Adding the 

residual connection at this part is a powerful tool to 

prevent potential information loss. Subsequently, a 1 × 

1 convolution layer and an upsampling operation are 

applied. As a result, the process produces a 

segmentation map that encodes detailed spatial 

information and semantic meaning. 

 

IV. RESULTS 
The experiments evaluate the proposed UNetFormer2 

model on the wheat yellow rust disease image set and 

compare it with state-of-the-art (SOTA) semantic 

segmentation models. This section describes the 

implementation details, image set, and experimental 

results. 
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4.1. Implementation Details 

The models are trained with an initial learning rate of 

5 ∗ 10−5, using a strategy where the learning rate 

decreases by 9% every ten epochs on an NVIDIA 

Quadro RTX 5000 GPU. The selected optimizer is the 

Adam optimizer with a momentum value of 0.9 and a 

batch size of 8. The experiments run for 70 epochs, 

with 5-fold cross-validation employed. All images, 

originally sized 1336 × 2991 pixels, are divided into 

224 × 224 pixel-sized patches with overlap, resulting 

in 1299 patches. The image set, which is not publicly 

available, has a sample distribution of 72% for 

training, 20% for testing, and 8% for validation, with 

the split determined based on the convention 

established in [8]. Hyperparameters are manually 

tuned based on prior experience and experimental 

results. 

 

4.2. The Wheat Yellow-Rust (WYR) Image Set 

The WYR image set comes from field experiments 

conducted in 2019 at the Caoxinzhuang Experimental 

Station in the Yangling region of China to monitor 

yellow-rust disease in wheat plants [9]. The 

experiments focus on Xiaoyan 22 wheat, a variety 

susceptible to this disease. Yellow-rust inoculates 

wheat plots measuring 2 m × 2 m. 

 

   

   

Figure 8. Examples of the WYR image set. The first 

row shows the input images, which are visualized 

using three selected bands from the multispectral 

dataset mapped to the RGB channels. The second row 

shows the ground-truth binary masks for wheat yellow 

rust. 

 

A DJI Matrice 100 (M100) Quad-copter and a 

RedEdge multispectral camera capture images at a 

flight height of 20 meters, achieving a spatial 

resolution of 1.3 cm/pixel. The RedEdge camera 

captures images in the blue, green, red, red-edge, and 

NIR bands. Manual labeling identifies pixels 

representing yellow-rust disease in the images. 

Selected images from the WYR image set appear in 

Figure 8. 

 

4.3. Performance Evaluation 

IoU (Intersection over Union) and 𝐹1 score are the 

semantic segmentation evaluation metrics used in the 

experiments. IoU shows the intersection between the 

ground truth and predicted pixels. The 𝐹1 score is the 

harmonic mean of recall and precision calculations. 

Precision indicates the percentage of correctly 

predicted yellow-rust pixels among all pixels 

identified as yellow-rust. Recall measures how many 

of the actual yellow-rust pixels are correctly identified 

by the model. IoU and 𝐹1 score calculations are as 

follows: 

 

𝐼𝑜𝑈 =
𝑇𝑃

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃)
                                       (10) 

 
 𝐹1 =

(2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
                                  (11) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

(𝑇𝑃+ 𝐹𝑃)
                                  (12) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

(𝑇𝑃+ 𝐹𝑁)
                                       (13) 

 
where TP represents the yellow-rust pixels predicted 

correctly, FP represents the pixels incorrectly 

predicted as yellow-rust, FN represents the missed 

yellow-rust pixels, and TN represents the pixels 

correctly predicted as not yellow-rust. 

 

4.4. Experimental results 
The experiments compare the proposed UNetFormer2 

with various SOTA semantic segmentation models on 

the WYR image set. The selected SOTA models are 

U-Net [14], SegNet [15], DLinkNet [19], NestedU-

Net [38], DeepLabV3 [16], BiSeNet [17], DFANet 

[18], UNetFormer [10]. The quantitative results for 

RGB, NDVI, and NIR images are provided in Tables 

1, 2, and 3, respectively. 

 

Table 1. Quantitative comparison of the WYR test set 

results against SOTA models by using RGB images. 

The bold values indicate the best performance. 

 

 

Table 1 shows the experimental test results for 

semantic segmentation on the WYR image set using 

RGB images. UNetFormer2 surpasses the original 

Architectures 
RGB Images 

IoU 𝑭𝟏 

U-Net 0.521±0.294 0.647±0.333 

SegNet 0.545±0.347 0.620±0.372 

DLinkNet  0.608±0.296 0.702±0.295 

NestedU-Net 0.615±0.264 0.718±0.242 

DeepLabV3 0.426±0.315 0.527±0.321 

BiSeNet 0.435±0.318 0.535±0.319 

DFANet 0.489±0.321 0.587±0.320 

UNetFormer 0.664±0.241 0.769±0.203 

UNetFormer2 

(Proposed) 
0.685±0.235 0.784±0.210 
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UNetFormer with the best performance among all the 

SOTA models by a 2.1% gain in IoU on the test set. 

UNetFormer2 consistently outperforms lightweight 

semantic segmentation models, i.e., BiSeNet and 

DFANet, by 25% and 19.6%, respectively. In 

addition, against the CNN-based NestedU-Net, 

UNetFormer2 produces a promising gain of 7%, 

yielding a new state-of-the-art for RGB images with 

0.685 IoU. 

 

Table 2. Quantitative comparison of the WYR test set 

results against SOTA models by using NDVI images. 

The bold values indicate the best performance. 

 

In Table 2, the experiments inspect the effect of 

vegetation indices to find out which model is more 

promising for the semantic segmentation of NDVI 

images. Compared to UNetFormer, the proposed 

model performs more accurately in NDVI images and 

improves the IoU and 𝐹1 score metrics. It achieves 

4.6% in IoU, which outperforms the original 

UNetFormer model. Compared to the NestedU-Net, 

one of the best-performing models for NDVI images, 

the proposed model obtains the 𝐹1 score improvement 

of 1.3% on the test set. This result demonstrates that 

the output feature maps produced by UNetFormer2 

effectively emphasize more meaningful features 

semantically related to the wheat yellow-rust regions. 

Compared to U-Net, UNetFormer2 achieves 5.9% and 

8.4% gains on the IoU and 𝐹1 performances, 

respectively. 

 

The experimental test results in Table 3 analyze the 

effectiveness of UNetFormer2 by extending the 

spectral channels to NIR wavelengths. Compared to 

UNetFormer, the proposed model demonstrates a 3% 

improvement in IoU on NIR images, effectively 

capturing the wheat yellow-rust regions. 

UNetFormer2 increases IoU by 9.5% compared to 

DLinkNet, confirming that it can predict the wheat 

yellow-rust pixels more in line with ground truth. 

Moreover, UNetFormer2 improves IoU on NIR 

images by 14.4% compared to BiSeNet, the classical 

real-time model, while increasing the 𝐹1 score by 

12.8%. The proposed model also achieves promising 

performance among the classical CNN-based 

architectures like U-Net, SegNet, DLinkNet, NestedU-

Net, and DeepLabV3. The proposed model with the 

ResNet18 backbone outperforms all other SOTA 

models and sets new state-of-the-art with an IoU score 

of 0.718 on the NIR test set. 

 

Table 3. Quantitative comparison of the WYR test set 

results against SOTA models by using NIR images. 

The bold values indicate the best performance. 

 

The proposed model demonstrates that the CBAM 

blocks added to the UNetFormer enhance its ability to 

detect and localize regions related to wheat yellow-

rust disease, significantly improving IoU and 𝐹1 score 

metrics in RGB, NDVI, and NIR images compared to 

the experimental baseline. Results highlight how the 

enhanced model better identifies and emphasizes the 

relevant semantic regions associated with the disease. 

 

Figure 9 shows some example qualitative results. The 

predictions in the last column, generated by the 

proposed UNetFormer2 model, demonstrate several 

qualitative improvements over the other SOTA 

models. For instance, in the first and third rows, the 

UNetFormer2 predictions show larger light green 

areas closely matching the ground truth, indicating 

higher accuracy in detecting yellow-rust-affected 

pixels. Additionally, the boundaries of the diseased 

regions are more precisely delineated in the 

UNetFormer2 predictions, as seen in the second and 

fifth rows, suggesting that the proposed model 

captures the disease boundaries more accurately. 

Moreover, the reduced number of missed predictions 

across various samples highlights the UNetFormer2’s 

ability to minimize missed detections, providing a 

more comprehensive segmentation of affected areas. 

Architectures 
NDVI Images 

IoU 𝑭𝟏 

U-Net 0.502±0.355 0.582±0.353 

SegNet 0.469±0.366 0.545±0.378 

DLinkNet  0.472±0.298 0.575±0.304 

NestedU-Net 0.560±0.292 0.653±0.279 

DeepLabV3 0.465±0.311 0.565±0.308 

BiSeNet 0.497±0.297 0.605±0.299 

DFANet 0.448±0.323 0.546±0.330 

UNetFormer 0.515±0.320 0.615±0.313 

UNetFormer2 

(Proposed) 
0.561±0.290 0.666±0.282 

Architectures 
NIR Images 

IoU 𝑭𝟏 

U-Net 0.522±0.260 0.645±0.235 

SegNet 0.466±0.312 0.562±0.322 

DLinkNet  0.623±0.261 0.728±0.235 

NestedU-Net 0.677±0.194 0.786±0.152 

DeepLabV3 0.576±0.286 0.684±0.264 

BiSeNet 0.574±0.248 0.694±0.217 

DFANet 0.481±0.285 0.594±0.276 

UNetFormer 0.688±0.200 0.796±0.159 

UNetFormer2 

(Proposed) 
0.718±0.183 0.822±0.135 
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These improvements make the proposed model a 

robust choice for accurately identifying wheat yellow-

rust disease in NIR images. 

 

Finally, Table 4 shows the computational complexity 

comparisons of the UNetFormer2 with SOTA models 

regarding giga floating point operations per second 

(GFLOPs) and inference time in frames per second 

(FPS). The utilized GPU is NVIDIA Quadro RTX 

5000 for all inference time measurements with 224 × 

224 × 3 image resolution. UNetFormer2 has a slightly 

worse FPS value (103.61) than the baseline 

UNetFormer (104.92), yet it maintains roughly similar 

GFLOPs, suggesting a more accurate architecture with 

high efficiency. 

Table 4. Computational complexity comparisons. 

 

      

      

      

      

      

      

      
                            (a)                      (b)                      (c)                       (d)                          (e)                     (f) 

Figure 9. Visual results on NIR test set. Green represents accurate predictions, dark green marks undetected regions, and 

red highlights false positives. (a) Input images; (b) Ground-truths; (c) BiSeNet; (d) NestedU-Net; (e) UNetFormer; and (f) 

UNetFormer2 (Proposed).

Architectures GFLOPs FPS 

U-Net 190.07 20.48 

SegNet 245.80 18.44 

DLinkNet  51.43 47.90 

NestedU-Net 849.3 5.58 

DeepLabV3 133.7 18.30 

BiSeNet 34.82 80.60 

DFANet 2.73 48.12 

UNetFormer 17.95 104.92 

UNetFormer2 (Proposed) 18. 32 103.61 
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V. CONCLUSION 
This paper proposes UNetFormer2 for wheat yellow-

rust disease semantic segmentation in multispectral 

remote sensing imagery. This approach alleviates the 

limitations of existing CNN-based models that 

primarily process local pixel information. 

UNetFormer2 integrates the CBAM modules into the 

baseline UNetFormer model to prioritize NIR 

reflections and boost segmentation accuracy. The 

CBAM modules improve the discrimination of the 

relevant features along spatial and channel axes 

associated with the early disease indicators. These 

modules focus more on the discriminative NIR 

reflections to improve the early detection of wheat 

yellow-rust disease across large agricultural areas.  

 

The experimental results confirm that the 

UNetFormer2 model has superior performance, 

underscoring its capability to prioritize crucial features 

and suppress irrelevant information. Specifically, the 

model’s improved IoU and 𝐹1 scores indicate 

enhanced precision in detecting disease-affected 

regions, achieving an IoU improvement of 2.1% for 

RGB, 4.6% for NDVI, and 3% for NIR compared to 

baseline. These enhancements facilitate a more 

reliable solution for wheat yellow-rust disease 

monitoring, potentially reducing excessive pesticide 

application and promoting sustainable agriculture by 

targeting treatment areas accurately.  
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