Eylül/September 2025, 22(3) **Başvuru/Received:** 20/01/25 **Kabul/Accepted:** 19/08/25 **DOI:** 10.33462/jotaf.1623406 http://dergipark.gov.tr/jotaf http://jotaf.nku.edu.tr/ # ARAŞTIRMA MAKALESİ ## RESEARCH ARTICLE # **Developing A Field Test Method for Automatic Steering Systems** Otomatik Dümenleme Sistemleri için Bir Arazi Testi Yöntemi Geliştirme # Maksut Barış EMİNOĞLU1*, Uğur YEGÜL2, Ufuk TÜRKER3 ### **Abstract** Precision agriculture (PA) refers to planning and managing the processes from tillage to harvest using modern technology and techniques in order to increase the productivity of the cultivated crops. One of the most important components of PA equipment is the location determination and verification unit. Automatic steering systems, which have started to be included in developing agricultural machines, enable reaching the targeted locations with the least deviation from the determined route. These systems are provided accurately to navigate the fields, ensuring that crops are planted, fertilized, sprayed and harvested with precision. By reducing overlaps and skips in planting and other tasks, farmers can optimize their resources and maximize yields. The use of automatic steering systems in precision agriculture not only increases efficiency but also helps to minimize environmental impact by reducing the use of inputs such as fertilizer and pesticides. In this study, simple equipment that can be connected to the tractor's three-point linkage system was developed for pass-to-pass verification tests of the automatic steering systems in the field. For the field test, the narrowest and widest inter-row spacing that the automatic steering system was adjusted to have been taken into consideration. For the narrowest inter-row spacing, it was set to 3m; for the widest inter-row spacing, it was set to 18m. The automatic steering system was tested three times for each of the two different inter-row spacings. At the same time, the position information during the trial hours was compared with the records in the log files in the software part of the automatic steering system. Pass-to-pass tests were conducted based on ISO 12188-2:2012(EN) Tractors and Machinery for Agriculture and Forestry (Part 2). As a result of the evaluations, statistically significant difference wasn't found between the values obtained from the field trials with developed equipment and the results obtained from the log files of the automatic steering system. The results show that this developed equipment can be used practically in pass-to-pass tests in the field. Keywords: Automatic steering system, Pass to pass test, Accuracy ^{1*}Sorumlu Yazar/Corresponding Author: Maksut Barış Eminoğlu, Ankara University, Faculty of Agriculture, Department of Agricultural Machinery and Technologies Engineering, Ankara, Türkiye. E-mail: eminoglu@agri.ankara.edu.tr DorcID: 0000-0003-3264-3636 ²Uğur Yegül, Ankara University, Faculty of Agriculture, Department of Agricultural Machinery and Technologies Engineering, Ankara, Türkiye. E-mail: yegul@ankara.edu.tr D OrcID: 0000-0003-2139-4080 ³Ufuk Türker, Ankara University, Faculty of Agriculture, Department of Agricultural Machinery and Technologies Engineering, Ankara, Türkiye. E-mail: 0.05). Therefore, it can be said that both measurement methods yield the same results. Graphs showing the confidence intervals for both methods at 3 m and 18 m working widths are provided in *Figure 6* and 7. These values are also the narrowest and widest inter-row distances defined in the interface of the automatic steering system used to test the developed method. Additionally, the statistical analysis of measurements confirmed that there was no significant difference between the methods tested for both working widths. This suggests that the developed method can be confidently applied in practical field settings. Table 2. Measured working width values during field tests | Working width values | | | | | | | | | | | |--------------------------------------------|-----------------------------|-------------------|--------------------------------------------|------------------------------|-------------------|--|--|--|--|--| | Distance
from
reference
point (m) | 3m Developed Method (mm) | Log Files
(mm) | Distance
from
reference
point (m) | 18m Developed Method (mm) | Log Files
(mm) | | | | | | | 5 | 2995 | 3003 | 5 | 17994 | 18003 | | | | | | | 5 | 3005 | 2998 | 5 | 18005 | 17997 | | | | | | | 5 | 3001 | 3007 | 5 | 18001 | 18007 | | | | | | | 10 | 3007 | 3000 | 10 | 18007 | 18000 | | | | | | | 10 | 3000 | 3004 | 10 | 18000 | 18004 | | | | | | | 10 | 3003 | 2999 | 10 | 18004 | 17998 | | | | | | | 15 | 2994 | 3002 | 15 | 17994 | 18002 | | | | | | | 15 | 3002 | 2998 | 15 | 18002 | 17998 | | | | | | | 15 | 3003 | 3007 | 15 | 18003 | 18007 | | | | | | | 20 | 3006 | 3001 | 20 | 18006 | 18001 | | | | | | | 20 | 3000 | 3004 | 20 | 18000 | 18004 | | | | | | | 20 | 3002 | 2999 | 20 | 18004 | 17999 | | | | | | | 25 | 2996 | 3004 | 25 | 17996 | 18004 | | | | | | | 25 | 3004 | 2999 | 25 | 18004 | 17999 | | | | | | | 25 | 3002 | 3008 | 25 | 18002 | 18008 | | | | | | | 30 | 3008 | 3002 | 30 | 18010 | 18002 | | | | | | | 30 | 3001 | 3005 | 30 | 18001 | 18005 | | | | | | | 30 | 3005 | 2999 | 30 | 18005 | 17997 | | | | | | Table 3. Descriptive statistics of methods | Tuble 3. Descriptive statistics of methods | | | | | | | | | | |--|-----------------------|----------------------|------|-----------------------|-------|-------|--|--|--| | | | Working width values | | | | | | | | | | | 3 m | | 18 m | | | | | | | Methods | Mean±SEM ¹ | Min | Max | Mean±SEM ¹ | Min | Max | | | | | Developed Method | 3001.9±0.921 | 2994 | 3008 | 18002±1.01 | 17994 | 18010 | | | | | Log files | 3002.2 ± 0.768 | 2998 | 3008 | 18002 ± 0.834 | 17997 | 18008 | | | | ¹SEM: Standard error of mean Figure 6. Confidence intervals for 3 m working width Figure 7. Confidence intervals for 18 m working width #### 4. Conclusions This research introduced a novel method for assessing the accuracy and reliability of automatic steering systems in field trials. The method utilizes a specially designed apparatus. When the values obtained during the field tests were compared, the difference between the methods was not found to be statistically significant. When looking at the study's results, the findings indicated that the equipment developed for testing automatic steering systems in the field gave results that were similar to the XTE tests done with the classical method for the smallest and largest row spacing distances of the automatic steering system that was used as the material. With this developed device, it is aimed to further develop the automatic steering system in the future in order to control the maintenance of the distance between the rows in the field after the normal standard tests. Especially tractors working with soil machines may cause the tractor to deviate from the working direction under the effect of lateral forces in the field. Since these deviations of the systems take a certain period of time, these deviations take effect and may cause the lines not to be formed properly in the next turn. In order to evaluate the reactions of a tractor equipped with an automatic steering system to the lateral forces it may encounter while working with soil machines, it is aimed to modify the designed device in the ongoing studies and use it together with soil tillage equipment. With the designed apparatus and measurement method, it is aimed to practically perform the calibration and validation of the automatic steering system's XTE test under field conditions. Processing the position data obtained from the memory of automatic steering systems in a computer environment requires qualified operators and/or personnel. Therefore, this method has been developed to enable farmers and/or operators to perform practical control in the field. In the following studies, the apparatus developed will be suitable for working with tractors and equipment in the field. For future work, researchers aim to integrate to verify the reliability and sensitivity of the developed testing method using advanced technologies such as cameras and drones. ## **Ethical Statement** There is no need to obtain permission from the ethics committee for this study. #### **Conflicts of Interest** We declare that there is no conflict of interest between us as the article authors. ### **Authorship Contribution Statement** Concept: Eminoglu M.B., Türker., U.; Design: Türker, U., Eminoğlu, M.B.; Data Collection or Processing: Eminoglu M.B., Yegül, U., Türker., U.; Statistical Analyses: Eminoglu M.B.; Literature Search: Yegül, U., Eminoglu M.B.; Writing, Review and Editing: Eminoglu M.B., Yegül, U., Türker., U. ### References - Burgers, T. and Vanderwerff, K. (2022). Vision and radar steering reduces agricultural sprayer operator stress without compromising steering performance. *Journal of Agricultural Safety and Health*, 28: 163-179. https://doi.org/10.13031/jash.15060 - D'Antonio P., Mehmeti A., Toscano F. and Fiorentino C. (2023). Operating performance of manual, semi-automatic, and automatic tractor guidance systems for precision farming. *Research in Agricultural Engineering*, 69(4): 179–188. - ISO 12188-2:2012(en) Tractors and Machinery for Agriculture and Forestry Test procedures for Positioning and Guidance Systems in Agriculture Part 2: Testing of Satellite-Based Auto-Guidance Systems During Straight and Level Travel. - Jing, Y., Li, Q., Ye, W. and Liu, G. (2023). Development of a GNSS/INS-based automatic navigation land levelling system. *Computers and Electronics in Agriculture*, 213 (2023): 108187. https://doi.org/10.1016/j.compag.2023.108187 - Li, S., Xu, H., Ji, Y., Cao, R., Zhang, M. and Li, H. (2019). Development of a following agricultural machinery automatic navigation system. Computers and Electronics in Agriculture, 158: 335-344. https://doi.org/10.1016/j.compag.2019.02.019 - Lipiński, A. J., Markowski, P., Lipiński, S. and Pyra, P. (2016). Precision of tractor operations with soil cultivation implements using manual and automatic steering modes. *Biosystems Engineering*, 145: 22-28. https://doi.org/10.1016/j.biosystemseng.2016.02.008 - Ming L., Imou K., Wakabayashi K. and Yokoyama S. (2009). Review of research on agricultural vehicle autonomous guidance. *International Journal of Agricultural and Biological Engineering*, 2(3): 1–16. https://doi.org/10.3965/j.issn.1934-6344.2009.03.001-016 - Özgüven M. M. and Türker U. (2009). The production economics of precision farming and its possible application for grain corn in Turkey. Journal of Tekirdag Agricultural Faculty, 7(1): 55-70. (In Turkish) - Topcueri, M., Keskin, M. and Şekerli, Y. E. (2024). Efficiency of GNSS-based Tractor auto steering for the uniformity of pass-to-pass plant inter-row spacing. *Journal of Tekirdag Agricultural Faculty*, 21(1): 46-63. https://doi.org/10.33462/jotaf.1231452 - TS ISO 730 (2021). Agricultural Wheeled Tractors Rear-Mounted Three-Point Linkage Categories 1N, 1, 2N, 2, 3N, 3, 4N and 4. (In Turkish) - Yang, Y., Zhang, G., Chen, Z., Wen, X., Cheng, S., Ma, Q., Qi, J., Zhou, Y. and Chen, L. (2022). An independent steering driving system to realize headland turning of unmanned tractors. *Computers and Electronics in Agriculture*, 201 (2022) 107278, https://doi.org/10.1016/j.compag.2022.107278. - Ye, Q., Wang, R., Cai, Y. and Chadli, M. (2020). The stability and accuracy analysis of automatic steering system with time delay. *ISA Transactions*, 104: 278-286. https://doi.org/10.1016/j.isatra.2020.04.004