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The SeaHorse optimization algorithm, which is the calculation method for energy consumption and outdoor
temperature for E-Buses, is presented in Figure A. 

 

 
 

Figure A. SeaHorse optimization algorithm 
 
Purpose: The purpose of this study is to estimate energy consumption and calculate the optimum outdoor
temperature for electric buses. The resulting estimation model can be adapted to all desired urban
transportation networks. 
 
Theory and Methods: In the study, the error rate of the energy consumption and outdoor temperature model
was tried to be reduced by using both regression and optimization methods. The data learning process was
accelerated with the Artificial Intelligence approach. An optimal prediction model was obtained with the
SeaHorse optimization approach. 
 
Results: As a result, the rural zone consumption (R1) was calculated as 3,285 kWh/km and the optimum
outdoor temperature value for this consumption was determined as 22.3 oC. For City-1 (R2) the consumption 
was calculated to be 2,943 kWh/km at 21.1 oC, for the highway zone (R3) 2,732 kWh/km at 23 oC and for 
City-2 University (R4) 3,012 kWh/km at 21.8 oC. Considering the analysis for the entire route (R), it is
calculated that the most efficient consumption is 3.02 kWh/km and this consumption value can be achieved
with a temperature of 21.5 oC. When the generated energy consumption and outdoor temperature models
were compared with the actual data provided by the E-Bus operating organization, it ensured that the
consumption calculation was made accurately with a difference of 0.98% on the entire route. This study will
also be a reference study for other electric vehicle manufacturers, especially electric buses, in determining
the range of vehicles in different climatic conditions. 
 
Conclusion: The main key outputs of this study are listed as follows; The combination of the mathematical
model of energy consumption and outdoor temperature provides a general model for all E-Bus routes to 
determine the most efficient consumption and the required outdoor temperature for the operational range. 
The effect of outdoor temperature on range can be calculated in detail with these models. Energy
consumption in E-Bus operation at high and low temperatures has become predictable. This will make it
easier for operating companies to calculate energy costs in advance, and for E-Bus manufacturers to predict 
the effect of geographical temperature in their designs according to the needs of their target markets. 
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Ö  N  E  Ç  I  K  A  N  L  A  R  
 Elektrikli Otobüsler için yeni nesil algoritmalar ile enerji tüketimi hesabı yapmak 
 Dış ortam sıcaklığının enerji tüketimi üzerinde etkisini incelemek 
 Gerçek zamanlı veriler ile saha verileri arasındaki hata oranını minimum seviyeye indirmek 
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DOI:  

 Elektrikli araçların (EA) enerji tüketimlerinin hesaplanmasında; dış ortam sıcaklığı, göz önünde bulundurularak tüketim
verimliliği ve sürüş menzilini optimize etmek çok önemlidir. Araştırmalar, çok düşük ve çok yüksek sıcaklıkların motor 
verimini düşürmekte ve enerji tüketimini önemli ölçüde artırırken, rejeneratif enerji geri kazanımını etkilediğini
göstermiştir. Dolayısıyla, sunulan çalışmada Elektrikli Otobüslerden (EO) elde edilen gerçek zamanlı büyük veriler
kullanılarak, dış ortam sıcaklığının menzil ve enerji tüketimi üzerindeki etkileri incelenmiştir. Çalışmanın saha
uygulaması, 22 adet 24,7 metrelik EO’lar ile gerçekleştirilmiştir. EO rotası, 4 farklı bölgeye ayrılmış ve her bölge için
enerji tüketimi ve bu tüketime karşılık gelen dış ortam sıcaklığının analizi regresyon teknikleri kullanılarak elde edilmiştir. 
İlk olarak enerji tüketim modeli oluşturularak her bölge için sürüş çevrimi hesaplanmıştır. Daha sonra tüm rota için sürüş
çevrimi oluşturulmuş ve rotadaki enerji tüketimi matematiksel model olarak ifade edilmiştir. Rotanın tamamının
hesaplamalarında Trilayered Neural Network (TNN) en iyi sonucu vermiştir. Son olarak SeaHorse optimizasyon yöntemi
kullanılarak TNN sonucunda elde edilen matematiksel model yeniden ele alınmıştır. Rotanın tamamı (R) için analizler 
göz önüne alındığında en verimli tüketimin 3,02 kWh/km olduğu ve bu tüketim değerinin 21,5oC sıcaklık ile elde 
edilebileceği hesaplanmıştır. Bu çalışma diğer elektrikli araç üreticilerinin de; araçların farklı iklim şartlarındaki 
menzillerini belirlemede referans bir çalışma olmuştur. 

10.17341/gazimmfd.1623529
 
Anahtar Kelimeler: 

 

Elektrikli araçlar,  
enerji tüketimi,  
yapay zekâ, büyük veri,  
optimizasyon,  
regresyon 

 
 

 

Effect of outside temperature on energy consumption of electric vehicles: Real-time big 
data and artificial intelligence-aided seahorse optimization approach 
 
H  I  G  H  L  I  G  H  T  S  
 Outside temperature model calculation 
 Energy consumption forecasting model calculation 
 Route integration and energy consumption analysi 

 

   

Article Info  ABSTRACT 
Research Article 
Received: 20.01.2025 
Accepted: 19.05.2025 
 
DOI: 

 In calculating the energy consumption of electric vehicles (EVs); it is very important to optimize the consumption
efficiency and driving range by considering the outdoor temperature. Studies have shown that very low and very high
temperatures reduce engine efficiency and significantly increase energy consumption, while affecting regenerative energy 
recovery. Therefore, in the presented study, the effects of outdoor temperature on range and energy consumption were
investigated using real-time big data obtained from Electric Buses (EO). The field application of the study was carried out 
with 22 24.7-meter EOs. The EO route was divided into 4 different regions and the energy consumption for each region
and the analysis of the outdoor temperature corresponding to this consumption were obtained using regression techniques.
First, the energy consumption model was created and the driving cycle was calculated for each region. Then, the driving
cycle for the entire route was created and the energy consumption on the route was expressed as a mathematical model.
Trilayered Neural Network (TNN) gave the best result in the calculations of the entire route. Finally, the mathematical
model obtained as a result of TNN was reconsidered using the SeaHorse optimization method. Considering the analysis
for the entire route (R), it was calculated that the most efficient consumption is 3.02 kWh/km and this consumption value
can be achieved with a temperature of 21.5oC. This study has become a reference study for other electric vehicle
manufacturers in determining the range of their vehicles in different climate conditions. 
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1. Giriş (Introduction) 
 
Ulaşım sektörü, yaşadığımız çevrenin kirlenmesinden ve sera gazı 
emisyonundan önemli derecede sorumlu bir etkendir [1], [2]. Bu 
durum, hükümetlerin acil önlem alma sürecini hızlandırmaktadır [3, 
4]. Ulaşım ağının elektrikli hale getirilmesi, sera gazı etkisinin 
azaltılmasını sağlamaktadır [5, 6]. İçten Yanmalı Motorlu (İYM) 
araçların mekanik anlamda çok fazla adet ve çeşitlilikte parçasının 
olması, enerji tüketim kayıpların artmasına ve verimliliğin azalmasına 
sebep olmaktadır [7]. Dolayısıyla, ulaşım sektöründe Elektrikli 
Araçların (EA) kullanılması ile hem çevresel hem de ekonomik olarak 
fayda sağlayabilir [8, 10]. Öte yandan, EA’ların ulaşım sektöründe 
yoğun olarak kullanılmasının önünde bazı engeller vardır [11]. Bu 
engellerin başında ise menzil kaygısı gelmektedir [12, 13]. Elektrikli 
araçların menzil problemi kullanıcıların araç seçimi aşamasında kafa 
karışıklığına yol açmaktadır [14]. Menzil sorunun ortadan 
kaldırılması, bu seçim sürecini elektrikli araçlar yönünde olumlu 
yönde etkileyecektir [15-17]. EA’ların menzilleri sürüş performansı 
ve dış faktörlerden önemli ölçüde etkilenmektedir [18]. Özellikle dış 
ortam sıcaklığı enerji tüketimini doğrudan etkilemede önemli bir rol 
oynar. Bataryalar, motorlar ve yardımcı sistemler dâhil olmak üzere 
bir aracın çeşitli termal yönlerinden ciddi seviyede etkilenir [19, 20]. 
 
EA’lar -20 oC ile 60 oC arasında çalışır ve bu aralıkta mekanik olarak 
güvenli sürüş gerçekleştirilir [21, 22]. Ancak elektriksel olarak 
verimlilik açısından 15 oC ile 25 oC arasındaki işletme faaliyetleri son 
derece verimli olarak kabul edilir [23-25]. Bu aralıkta, batarya 
verimliliği ve performansı en üst düzeye çıkarılır ve sürüş aralığını 
optimize eden bir ortam sağlanır [26]. Ancak, son derece düşük 
sıcaklıklar, artan iç dirence yol açar ve bu da daha yüksek güç 
kayıplarına ve azaltılmış kullanılabilir batarya kapasitesine neden olur 
[27-29]. Sonuç olarak, bu sürüş aralığında ve genel yakıt 
ekonomisinde önemli bir azalmaya neden olur [30]. Ayrıca, daha 
düşük sıcaklıklar artan hava yoğunluğuna yol açar ve bu da artan lastik 
yuvarlanma direncine ve araçta artan aerodinamik sürüklemeye neden 
olur [31-33]. Dahası, elektrikli araçlar soğuk havalarda ısıtıcılar ve 
sıcak havalarda klima gibi yolcu konforu için yardımcı cihazların 
kullanımı nedeniyle enerji tüketiminde önemli bir artış sağlarlar [34, 
35].   
 
EA’ların verimli çalışması için batarya grubunun kış aylarında 
ısıtılması ve yaz aylarında soğutulması kritik önem taşır. İstenilen 
menzili elde edebilmek için bataryaların fabrika verilerinde 
çalıştırılması gerekir. Bu sıcaklık değerini sağlamak için EA’larda ısı 
pompaları kullanılır. Isı pompaları yaz ayında batarya soğutma kış 
ayında ise ısıtma görevinde kullanılır. Bu sistem ise EA’ların yaklaşık 
%2 oranında enerji tüketimini artırmaktadır [36, 37].  
 
Elektrikli Otobüs (EO) üzerinde menzili etkileyen kritik parametreler 
korelasyon ile başta dış ortam sıcaklığı olmak üzere, yolculu araç 
ağırlığı, araç hızı, yolun eğimi, araç ivmelenmeleri, mekaniksel ve 
elektriksel arızalar ve rejeneratif frenleme olarak belirlenmiştir. 
Çalışma üç adımda ele alınmıştır. İlk adım, elektrikli otobüs rotası 
dört bölgeye ayrılarak her bölge için optimum menzile karşılık gelen 
dış ortam sıcaklığı verisi matematiksel olarak modellenmiştir. 
Çalışmanın ikinci adımında ise tüm bölgeler dâhil edilerek genel dış 
ortam sıcaklığı modeli Trilayered Neural Network (TNN) ile 
oluşturulmuştur. Çalışmanın son adımında ise dış ortam sıcaklığının 
elektrikli araç menzili üzerinde etkisi incelenmiş ve SeaHorse 
optimizasyon algoritması kullanılarak optimal dış ortam sıcaklığı 
belirlenerek; buna uygun enerji tüketimi hesaplanmıştır. Bu çalışma 
modeli kullanılarak EO’lar için dış ortam sıcaklığının menzil üzerinde 
etkisi incelenebilir ve dış ortam sıcaklığa bağlı olarak sürüş menzili 
tahmini yapılabilir. Bu sayede EO’lerin kullanılacağı coğrafi 
şartlarda, yapacağı operasyonel menzil doğru bir şekilde hesaplanarak 

bunun için ihtiyaca uygun batarya kapasitesi belirlenebilir. Bu 
çalışmanın yenilikçi yönleri aşağıda sunulmaktadır; 
 
 Elde edilen sürüş çevrimi ile farklı rotalardaki elektrikli otobüslerin 

en uygun menzile karşılık gelecek optimum dış ortam sıcaklığı 
verisi elde edilebilir ve operasyonel işletme analizi yapılabilir. 

 Gerçek zamanlı uygulama çalışmasından elde edilen sonuçlara göre 
en uygun menzil değeri 21,5 oC sıcaklıkta elde edilmiştir. Saha 
verileri ile çalışma sonucundan elde edilen veriler kıyaslandığında 
%0,98 oranında yakın bir değer elde edilmiştir. Çalışmayla sunulan 
modelin, gerçek veriler ile yüksek doğruluklu olduğu 
görülmektedir.  Böylelikle EO işletmecileri ve EO üreticilerinin bu 
model ile dünyanın farklı coğrafyalarındaki iklim şartlarına göre 
menzil hesabını yüksek doğrulukla hesaplayabilirler. 

 En sıcak ülkeler veya en soğuk ülkeler için dış ortam sıcaklığı 
parametresi matematiksel modeller üzerinde işlendiğinde gerçek 
menzil verisi elde edilebilir. Bu sayede çok düşük bir hata payı ile 
menzil hesaplanarak, operasyonel faaliyetler gerçekleştirilebilir. 

 Hizmet verilecek rotalarda dış ortam sıcaklığı modeli uygulanarak 
EA’ların menzil hesabı yapılabilir ve bu sayede rotalara en uygun 
batarya kapasitesine sahip EO’ler seçilerek filoya entegre edilebilir. 

 Uygulama yapılacak rotaların, dış ortam sıcaklığı ve menzil ilişkisi, 
elde edilecek sürüş çevrimi ile incelenip EO işletilecek rotaların 
optimizasyonu yapılabilir. 

 EO üreticileri farklı boyut ve batarya kapasitelerinde araçlar 
üretmekte ve bu araçları tüm dünyaya satmaktadırlar. Fakat 
araçların üzerindeki batarya kapasiteleri iklim şartlarına göre farklı 
menziller sunmaktadır. Sunulan çalışmadaki model ile EO 
üreticileri araçlarındaki batarya kapasitelerinin sağlayacağı 
menzilleri dış ortam sıcaklığının etkisine göre daha sağlıklı 
hesaplayarak son kullanıcıya sunabilme imkânı oluşturmaktadır.  
 

Dış ortam sıcaklığının elektrikli araçların menzili üzerindeki etkisi, 
çalışmada sunulan matematiksel modeller ve eşitlikler aracılığıyla 
ayrıntılı bir şekilde ortaya konulmuştur. Bu sayede, konuya ilişkin 
farkındalık oluşturulması ve hem araştırmacılara hem de teknoloji 
geliştiricilerine daha kapsamlı analizler yapabilmeleri için bilimsel bir 
temel sağlanması hedeflenmiştir.  
 
2. İlgili Çalışmalar (Related Works) 
 
EA’ların menzil kaygısı için çözüm yöntemlerinden birisi de dış 
ortam sıcaklığına bağlı olarak işletmenin yapılmasıdır. Bu alanda 
literatürde yapılan çalışmalar ve çözüm yöntemleri bulunmaktadır. 
Ramesh vd. [27], otoyol yakıt ekonomisi adı verilen sürüş testi (The 
Highway Fuel Economy Test-HWFET) modelini kullanarak bir EA 
sürüş testi gerçekleştirmişlerdir. Bu testin sonucunda ise düşük 
sıcaklıklarda enerji tüketiminde artışın meydana geldiğini tespit 
etmişler. 25℃’de yapılan test ile 10℃’de yapılan test 
kıyaslandığında; 25℃’de enerji tüketimi 0,15 kWh/km olarak 
hesaplanmış ve %18,7 oranında enerji tüketimin daha düşük olduğu 
ortaya konulmuştur. Düşük sıcaklıklarda bu etkinin yüksek oranda 
deşarj akımı olması ve rejeneratif frenlemenin tam olarak 
kullanılamamasının yol açtığı ortaya konulmuştur. Bu sayede şarj 
kapasitesinde ciddi oranda azalmalar meydana gelmiştir. 
 
Xu vd. [38] ise bir binek otomobil olan Tesla Model 3 üzerinde 
çalışmalarını yürütmüşlerdir. Bu çalışmada kentsel dinamometre adı 
verilen bir sürüş çizelgesi (Urban Dynamometer Driving Schedule-
UDDS) kullanılmıştır. Bu çalışma HWFET modları altında yeniden 
test edilmiştir. Tesla Model 3 aracı için 30 ℃'de yapılan testin sonucu 
350 km olarak hesaplanmıştır. Daha sonra bu test 35 ℃'de tekrar 
edilmiş ve menzilin 339,5 km’ye düştüğü görülmüştür. Test son 
olarak 40 ℃'de gerçekleştirilmiştir. Burada ise menzilin 304 km’ye 
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düştüğü görülmüştür. İlk test sonucunda menzil %3,3 oranında 
azalırken ikinci test sonucunda ise %13,4 oranında azalmıştır. 
Sıcaklıklardaki artış menzilin hızlı bir şekilde azalmasını sağlamıştır. 
 
Lora vd. [33] Federal Kentsel Sürüş Modu (Federal Urban Driving 
Mode - FUDS) ve Avrupa Sürüş Döngüleri (The New European 
Driving Cycle - NEDC) sürüş çevrimleri kullanarak Nissan Leaf 
binek otomobili için test çalışması yapmışlardır. Burada fark olarak 
ısıtıcılar da hesaba katılmıştır. İlk test 20 ℃'de gerçekleştirilmiş ve 
EA’ın menzili 150 km olarak görülmüştür. Daha sonra test 0 ℃'de 
tekrar edilmiş ve menzilin 65 km’ye kadar azaldığı hesaplanmıştır. 
Son test ise 15 ℃'de yapılmış ve menzilin 85 km olduğu görülmüştür.  
 
Yu vd. [24] NEDC modunu kullanarak 18 farklı EA’nın enerji 
tüketimini analiz etti İlk test 30 ℃’de gerçekleştirilmiştir. Sonraki 
testler ise 20 ℃ ve -7 ℃’de gerçekleştirilmiştir. 30 ℃’de 
gerçekleştirilen test ile 20 ℃’de yapılan test kıyaslandığında enerji 
tüketiminde %19,28 oranında artış meydana geldiği tespit edilmiş. 20 
℃ ile -7 ℃’deki test kıyaslandığında ise %67,3 oranında enerji 
tüketiminde artış olacağı hesaplanmıştır. Ilıman sıcaklıklarda 
EA’ların en ideal menzili yakalayacağı gözlemlenmiştir. 
 
Hao vd. [39], NEDC modunu kullanarak sıcaklık farklarını dikkate 
alarak ve her sıcaklık düşüşünde enerji verimliliği üzerine çalışma 
yapmışlar. 10 ℃'nin altındaki her 5 ℃ sıcaklık düşüşü için enerji 
tüketimini 100 km’de 2,4 kWh olarak hesaplanmıştır. 28 ℃'nin 
üzerinde ise her 5 ℃ sıcaklık artışında enerji tüketiminin 100 km’de 
2,3 kWh arttığını hesaplanmıştır. Sıcaklılar arttığında enerji 
tüketiminin her 100 km’de %7 ile %10 arasında artış gösterdiğini 
ortaya koydular. 
 
Wang vd. [40], EA’larda en uygun menzilin 17,5℃ sıcaklık ile elde 
edildiğini ortaya koymuştur. Bu sıcaklık ile en iyi verimliliğe sahip 
EA modeli ortaya çıkarılmıştır. Kai vd. [41], Japonya’da hâlihazırda 
işletilmekte olan 68 farklı EA üzerinde çalışmalarını yürütmüşlerdir. 
Bu çalışmalarda dış sıcaklığın enerji tüketimini nasıl etkilediği analiz 
edilmeye çalışılmıştır. Enerji verimliliği açısından en uygun dış 
sıcaklığın 21,8 ila 25,2 ℃ arasında olduğu hesaplanmıştır.  

Misanovic vd. [42], EO için dış ortam sıcaklığının tüketim üzerindeki 
etkisini incelemişler. Yapılan çalışma ilkbahar ve sonbahar 
mevsimlerini ele almıştır. 9 ℃ ile 23 ℃ arasında yapılan analizlerde 
EO tüketiminin 0,931 kWh/km ile 1,508 kWh/km arasında değiştiği 
hesaplanmıştır. 23 ℃ ile 40 ℃ arasında yapılan analizlerde ise enerji 
tüketiminin 2.108 kWh/km’ye kadar yükseldiği görülmüştür. 
 
Szilassy vd. [43], EO’larda dış ortam sıcaklığı arttıkça ısıtma 
sisteminin enerji tüketimi üzerinde çalışmalar yapmışlardır. Bu 
çalışmalarda dış ortam sıcaklığının 0 ℃’ye kadar düştüğü ortamlarda 
ısıtma sisteminin enerji tüketimini %45 oranında artırdığı ve menzilin 
bu oranda azaldığı hesaplanmıştır. 
 
Doulgeris vd. [44], EO menzilinin dış ortam sıcaklığı etkisi üzerinde 
simülasyon çalışması yapmışlardır. 15 ile 20 ℃ arasında yapılan 
simülasyonda EO menzili 170 km olarak hesaplanmıştır. Aynı test 30 
ile 40 ℃ arasında yeniden gerçekleştirilmiştir. EO menzili bu sıcaklık 
değerlerinde 123 km’ye kadar azalmıştır. EO için ideal sıcaklık 
değerinin 15 ile 20 ℃ arasında olması gerekliliği vurgulanmıştır. 
 
Yapılan çalışmalar EA’lardan en verimli enerji tüketim ve en uzun 
menzili elde edebilmek için gerekli olan dış ortam sıcaklığının 
hesaplanmasına yönelik olmuştur. Bu hesaplamalarda dış ortam 
sıcaklığı 21 oC - 23 oC arasında olduğunda en az enerji tüketimi ve en 
yüksek menzil değeri elde edilmiştir. 
 
3. Materyal ve Metot (Material and Method) 
 
3.1 Rota ve Araç Özellikleri (Route and Vehicle Specifications) 
 
Bu çalışmada, EO’lardan gerçek zamanlı büyük veriler bir yıl 
boyunca kara kutularda düzenli olarak kaydedilmiştir. Bu veriler 1 Hz 
frekans ile elde edilmiştir. Verilerin toplandığı EO’ler 2015 yılında 
faaliyete geçmiştir. Toplamda 22 adet EO’nun işletildiği bu rota Şekil 
1’de gösterilmiştir. 
 
EO işletme rotası 38 km’lik bir uzunluğa sahiptir. 19 km gidiş ve 19 
km dönüş rotasında toplamda 43 durak yer almaktadır. Kırsal bir 
konumdan başlayan rotanın son durağı ise İnönü Üniversitesi’dir.  

 
 

Şekil 1. EO işletme rotası (E-Bus operating route) 
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Rota üzerindeki işletme faaliyetleri sabah 06.00 şe başlar ve gece 
23.30 itibari ile tamamlanır. Gün içerisinde EO’lar maksimum 67 
km/s hıza ulaşır. Aynı zamanda maksimum %22.3’lük eğim altında 
çalışırlar. Bu eğim otoyol kısmında yer almaktadır. Yoğun saatlerde 
287 yolcu kapasitesi ile yaklaşık 3 adet 12 metre fosil yakıtlı otobüsün 
kapasitesine ulaşabilmektedir. Rotada en yoğun saatler öğlen 11.00 ile 
13.00 arası ve akşam 16.00 ile 18.00 arasıdır. Günlük 32.000 yolcuya 
hizmet verilmektedir.  Gün içerisinde saatlere göre yolcu dağılımı ve 

yüzdesel veri Şekil 2’de sunulmuştur. Veriler günün her anından ve 
her saatinden kayıt edilmiştir. Enerji tüketimi doğruluğu için EO’nun 
hem boş hem de dolu zamanları dikkate alınmıştır.  
 
3.2. Veri Seti ve Depolama (Data Set and Storage) 
 
Çalışmada elde edilen veriler EO üzerinde yer alan ve Proemion 
firması tarafından üretilen kara kutular ile sağlanmaktadır. Kara kutu, 

 
 

Şekil 2. EO saatlik yolcu durumu (E-Bus hourly passenger status) [45] 

 
Tablo 1. EO’nun teknik özellikleri (Technical specifications of the E-Bus) [46] 

 

Teknik Özellik Değeri  

Araç Boyu 24.700 mm  
Araç Genişliği 2550 mm  
Araç Yüksekliği 3467 mm  
Araç Ağırlığı  23700 kg  
Toplam Yolcu Kapasitesi  267 (34 oturan,113 Ayakta)  
%100 Alçak Taban  Evet  
Körük Sayısı  2  
Azami Hız  67 km/Saat  
Maksimum İvmelenme  1,1- 1,4 m/s²  
Fren Sistemi  Elektrikli ve Pnömatik  
Frenleme İvmesi  1,1- 1,4 m/s²  
Çıkabileceği maksimum eğim  18%  
Aks Sayısı  4  
Ön Aks  RL 75 EC  
Sürüş Aksı  (2. ve 3. Aks) ZF AV 132  
Arka Aks  ZF AVN 132  
Dişli Oranı  9,8  
En Küçük Dönüş Çapı  23,2 metre  
Tahrik Sistemi  Çift Akstan Tahrikli  
Elektrik Motor Tipi  Asenkron Motor  
Motor Gücü  250 kW 
Araç Nominal Gücü  2x250 kW  
Hat Voltajı  750 V Doğru Akım (DA) 
Araç OG seviyesi  380 V – 3 Faz Altermatif Akım (AA)  
Batarya Kapasitesi 110 kWh 
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araç içi haberleşme sistemi olan Controller Area Network 
(CANBUS)’e bağlanmıştır. Aracın tüm sistemlerinin veriler bu 
haberleşme sisteminden kara kutuya aktarılmaktadır. 32 GB hafıza ile 
30 gün veri kaydı yapabilmektedir. Her bir sistemin kendi kimlik 
bilgisine göre gruplama yaparak veri saklanmaktadır. Veriler The 
Society of Automotive Engineers (SAE) J1939 standardına göre bir 
kimlik numarası (identification - ID) verilip depolanmaktadır. SAE 
protokolü bir aracın içerisinde yer alan tüm elektronik sistemlerin 
gruplandırıldığı bir protokoldür. Aracın hızı, enerji tüketimi, motor 
sıcaklığı, su sıcaklığı seviyesi, balata seviyesi, yağ sıcaklığı, sürücü 
panel bilgileri gibi önemli verilerin kullanıcılara gösterilmesini 
sağlamaktadır. Kara kutuda toplamda 79 milyon veri kaydı 
gerçekleştirilmiştir [47]. Bu veriler gözlem verileri olarak 
adlandırılmaktadır. Donanım ve yazılım sorunları nedeniyle bu 
verilerin bir kısmı anormal veri olarak kaydedilir. Uygulanabilir bir 
veri seti için anormal verileri ortadan kaldırmak ve nihai veri setini 
oluşturmak gerekir çünkü anormal verilerin kaldırılması veri 
bütünlüğünü ve tahmin modelinin doğruluğunu artırır [48]. Bu 
nedenle, ilk adım ham verilerin işlenmesini, ardından ara verilerin 
kademeli olarak son veri setine dönüştürülmesini gerekir. Veri setinin 
ön işlem süreci aşağıdaki fazlar ile sunulmuştur. Çalışmada kullanılan 
verilerin ID’leri Tablo 2’de sunulmuştur. 
 
 Faz 1: EA kara kutusundaki veriler dâhili SD karttan bilgisayara 

aktarıldı. 2024 yılının 12 aylık toplam verileri, hafta, gün, saat ve 
saniyeye göre ayrıldı.  

 Faz 2: Ham verileri analiz için anlaşılır bir biçime dönüştürmek için 
Proemion Tools Converter yazılımı kullanıldı. Bu yazılımda, CNT 
dosyaları daha büyük veri boyutuna sahip CSV dosya biçimine 
dönüştürüldü. 

 Faz 3: İlk ham (RAW) veri kümesi oluşturuldu. Bu veri kümesi 
RAW_4410_BigData olarak adlandırıldı. 79 milyon gözlemden 
100.000 satır içeren bir veri kümesi rastgele seçildi. 

 Faz 4: Ham verilere dış sıcaklık, hız, ivme, ağırlık, sıcaklık ve 
arızalar gibi parametreler eklendi ve veri seti adı 
PPD_4410_BigData olarak kaydedildi. 

 Faz 5: Hexadecimal kara kutu kaydını okunabilir hale getirmek için 
Decimal biçimine dönüştürüldü. 

 Faz 6: Son veri kümesi 4410_BigData_PPD olarak kaydedildi.  
 

*PPD burada Önceden İşlenmiş Veri anlamına gelir. 
 
Kara kutudan elde edilen veriler bilgisayar ortamına virgülle ayrılmış 
değerler (Comma-separated values-CSV) dosyası olarak 
aktarılmaktadır. Her bir CSV dosyası 64 MB alan kaplamaktadır. 
Hexadecimal olarak elde edilen bu verilerin anlamlı hale 
getirilebilmesi için decimal formatına çevrilmesi gerekir. Bu işlem 
CSV formatının Excel formatına çevrilmesi ile gerçekleştirilmektedir. 
Decimal formatına çevrilen dokümanlar için Tablo 2’de sunulan 
ID’lerin filtreleme işlemleri yapılarak her verinin anlık olarak 
değişimi elde edilir.  
 

3.3. Regresyon (Regression) 
 
Regresyonda bir bağımlı değişken ve birden fazla bağımsız değişken 
seçilir. Regresyon tekniği istatistiksel analizler arasında yer alır. 
Bağımlı değişken, bağımsız değişkenlere bir yanıt parametresidir. 
Bağımsız değişkenler ise açıklayıcıdır. Regresyon, seçilen 
parametreler arasındaki ilişkiyi belirlemek için önemli bir yöntemdir. 
Ayrıca regresyon yöntemi gelecekteki enerji tüketim tahminlerini 
modellemek için de kullanılabilir. Çalışmanın bu aşamasında 
kullanılacak olan regresyon tekniği kıyaslama ölçütleri temel alınarak 
seçilmiştir. Bu kıyaslama ölçütlerinin ilki Root Mean Square Error 
(RMSE)'dir. RMSE, karesel hatalar açısından bir ölçüttür. Bu değer 
sıfıra ne kadar yakınsa hata oranı o kadar düşük demektir. R2 
belirleme katsayısıdır ve 1'e ne kadar yakınsa hata oranı o kadar 
küçüktür. Mean Absolute Error (MAE) ve Mean Squared Error (MSE) 
de regresyonda ölçüt olarak kullanılmaktadır [49]. Bu ölçütlerin 
matematiksel modelleri Eş. 1, Eş. 2, Eş. 3 ve Eş. 4 olarak sunulmuştur. 
 

RMSE=
෌ ሺ௒௜ା௑௜ሻమಿ

೔సభ  

ே
     (1) 

 

R2=
∑ሺȩ௜ିȩሻమ

∑ሺȩ௜ିȩሻమା ∑ሺʮ௜ାȩ௜ሻమ    (2) 

 

MAE=
ଵ

௡
∑ |𝑄𝑖𝑚 െ 𝑄𝑖𝑒|௡

௜ୀଵ    (3) 

 
MSE = Σ (yi − pi)2/n   (4) 
 
Burada ȩi regresyondan elde edilen amaç fonksiyonunun değeridir. ȩ 
kaydedilen veri setinin ortalama değeri ve ʮi ölçümden elde edilen 
değerdir. Qim enerji tüketiminin ölçülen gerçek kısmı ve Qie enerji 
tüketiminin tahmin edilen kısmıdır. Qim, n sayıda gözlem ile elde 
edilir. yi, i. gözlemlenen değerdir. pi, yi için karşılık gelen tahmin 
edilen değerdir ve n gözlem sayısıdır. Bu çalışmada gözlem değerleri 
79 milyon veri olarak alınmıştır [50]. EO rotası üzerinde hız, eğim ve 
yolcu yoğunluğu bakımından 1 yıllık süre içerisinde toplanan veri 
incelendiğinde bölgesel olarak farklılıklar gösterdiği analiz edilmiştir. 
Bu veriler kırsal, kentsel ve otoyol sektörlerinde keskin değişimler 
göstermektedir. Bu sebeple EO rotası 4 bölgeye ayrılmış ve tüm 
analizler bölgesel olarak gerçekleştirilmiştir. 
 
Bölge ayrımları Şekil 3’te gösterilmiştir. Her bir bölge için aracın 
işletme süresi, maksimum hızı, ortalama ivmelenmesi ve maksimum 
ulaştığı hız analiz edilmiş ve Tablo 3’te sunulmuştur. Daha sonra her 
rota için regresyon tekniği kullanılarak matematiksel olarak sürüş 
çevrimi elde edilmiştir. Bu sürüş çevrimi EO’un her bölge için km 
başına enerji tüketimini göstermektedir. Burada enerji tüketimi 
bağımlı değişken, diğer parametreler ise bağımsız değişken olarak 
seçilmiştir. Ayrıca her bölge için dış ortam sıcaklığı parametresi 
bağımlı değişken olarak seçilerek en verimli enerji tüketim değerine 
karşılık dış ortam sıcaklığı değeri elde edilmiştir. 
 

 

Tablo 2. Çalışmada kullanılan verilerin SAE ID numaraları (SAE ID numbers of the data used in this study) 
 

Veri Seti Parametresi ID Numarası 
Enerji Tüketim (kWh) 18FEF71E 
Hız (km/s) 0CFE6CEE 
Ağırlık – Yolcu Dâhil (kg) 1CA70021 
Eğim (%) 18FEE6EE 
Elektriksel Arıza (Adet) 1CA50021 
Mekanik Arıza (Adet) 1CA60021 
İvme (m/s2) 18FF20EF 
Rejeneratif Frenleme- Recuperation (kWh) 18FEF71E 
Dış Ortam Sıcaklığı (oC) 1CA60021 
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3.3.1. Trilayered Neural Network (TNN) 
 
Artificial Neural Network (ANN), insan beynindeki nöronların 
davranışını temel alan akıllı bir hesaplama yöntemidir. Doğrusal 
olmayan optimizasyon yöntemleri çözülürken eğitimli katmanlar 
kullanılarak optimum sonuçlar elde edilir. Tipik olarak bir ANN üç 
farklı katmandan oluşur. İlk katman girdi, ikinci katman gizli ve son 
katman çıktıdır [51]. Gizli katman sayısı arttıkça ANN'nin gerçek 
çözüme yakınlığı artar. ANN sürekli eğitilmesi gereken bir 
algoritmadır [52]. Bu eğitim süreci gerçek zamanlı büyük veri 
kullanılarak daha da geliştirilebilir. ANN performansını etkileyen üç 
önemli parametre vardır. Birincisi ara bağlantı modeli, ikincisi ara 
bağlantı düğümlerindeki ağırlık katsayıları ve üçüncüsü aktivasyon 
fonksiyonudur [53, 54]. ANN algoritması Şekil 4’te gösterilmiştir. 
 

 
Şekil 3. EO rotasının bölgelere ayrılmış hali  
(E-Bus route divided into sections) 

Bu çalışmada, enerji tüketimi ve dış ortam sıcaklığının matematiksel 
modellerinin en gerçekçi şekilde elde edilmesi için TNN (Trilayered 
Neural Network) yöntemi kullanılmıştır. TNN 10 giriş, 10 gizli ve 10 
çıkış katmanından oluşmaktadır. İterasyon sayısı 1000 olarak 
belirlenmiştir. TNN'i eğitmek için 100.000, test için 250.000 satırlık 
veri seti kullanılmıştır. Algoritma 1, çalışmada uygulanan TNN 
kodlarını içermektedir. Ayrıca Tablo 4, eğitim ve test verilerinin 
performans sonuçlarını göstermektedir. 
 
Algoritma 1. Uygulanan TNN yönteminin kodları 
function [trainedModel, validationRMSE] = 
trainRegressionModel(trainingData) 
inputTable = trainingData; 
predictorNames = {'Consumption', 'Speed', 'Weight', 
'OutsideTemperature', 'Slope', 'MechanicalFailure', 'Acceleration', 
'Recuperation'}; 
predictors = inputTable(:, predictorNames); 
response = inputTable.ElectricalFailure; 
isCategoricalPredictor = [false, false, false, false, false, false, false, 
false]; 
regressionNeuralNetwork = fitrnet(... 
    predictors, ... 
    response, ... 
    'LayerSizes', [10 10 10], ... 
    'Activations', 'relu', ... 
    'Lambda', 0, ... 
    'IterationLimit', 1000, ... 
    'Standardize', true); 
predictorExtractionFcn = @(t) t(:, predictorNames); 
neuralNetworkPredictFcn = @(x) 
predict(regressionNeuralNetwork, x); 
trainedModel.predictFcn = @(x) 
neuralNetworkPredictFcn(predictorExtractionFcn(x)); 
trainedModel.RequiredVariables = {'Acceleration', 'Consumption', 
'MechanicalFailure', 'OutsideTemperature', 'Recuperation', 'Slope', 
'Speed', 'Weight'}; 
trainedModel.RegressionNeuralNetwork = 
regressionNeuralNetwork; 
inputTable = trainingData; 
predictorNames = {'Consumption', 'Speed', 'Weight', 
'OutsideTemperature', 'Slope', 'MechanicalFailure', 'Acceleration', 
'Recuperation'}; 
predictors = inputTable(:, predictorNames); 
response = inputTable.ElectricalFailure; 
isCategoricalPredictor = [false, false, false, false, false, false, false, 
false]; 
partitionedModel = 
crossval(trainedModel.RegressionNeuralNetwork, 'KFold', 5); 
validationPredictions = kfoldPredict(partitionedModel); 
validationRMSE = sqrt(kfoldLoss(partitionedModel, 'LossFun', 
'mse')); 
 
3.4. Optimizasyon (Optimization) 
 
Metasezgisel algoritmalar (MA) iki ana aşamadan oluşur: keşif 
(çeşitlendirme) ve sömürü (yoğunlaştırma) [55]. Keşif süreci, arama 

 

Tablo 3. EO rotası için oluşturulan bölgelerin teknik bilgileri (Technical information for the zones created for the E-Bus route) 
 

Bölge Mesafe (km) Süre (saniye) Ortalama Hız (km/s) Maksimum Hız (km/s) Ortalama İvme (m/s2) 

R1 - R2 4,17 627 24,09 59 0,71 

R2 - R3 6,42 1118 21,46 47 0,46 
R3 - R4 6,09 689 38,62 67 1,1 
R4 3,02 572 19,32 43 0,5 
R 19,7 3006 23 67 0,9 
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alanının mümkün olduğunca geniş bir şekilde araştırılmasıdır. Yerel 
optimumlardan kaçınma bu aşama ile ilişkilidir. Bu adımın başarılı 
olması için rastgele operatörler gereklidir. Bu şekilde metasezgisel 
arama alanı küresel olarak araştırır. Keşif aşamasından sonra 
gerçekleşen sömürü aşamasında, tüm arama alanı incelenmez, 
yalnızca keşif aşamasında belirlenen arama alanı dikkate alınır [56, 
57]. Bu iki aşama arasındaki uygun denge, bir optimizasyon 
algoritmasının başarısı için çok önemlidir. Sürü zekasına dayalı 
optimizasyon algoritmalarının tümü bu özelliklere dayanarak 
geliştirilmiştir. Ancak, her biri farklı operatörler ve arama 
mekanizmaları benimsemiştir. Son yıllarda, farklı kısıtlamalara sahip 
optimizasyon problemlerini çözmek için birçok MA algoritması 
önerilmiştir. Bu algoritmalar geliştirilirken doğadaki elementlerden, 
bitkilerden, fiziksel olaylardan, hayvanların hareketlerinden, 
avlanmalarından ve iletişimlerinden ilham alınmaktadır. 
Araştırmacılar zor mühendislik problemleri için doğadan esinlenen 
birçok MA önermiştir. Bunlardan bazıları Parçacık Sürücü 
Optimizasyonu (PSO), Genetik Algoritma (GA), Gri Kurt 
Optimizasyonu (GKO), Aritmetik Optimizasyon (AO), Denge 
Optimizasyonu (DO), Deniz Yırtıcıları Algoritması (DYA) ve Balina 
Optimizasyon Algoritması (BOA) vb. Ancak bu çalışmada 
optimizasyon algoritması olarak Seahorse’un seçilmesinin nedenleri 
aşağıda sunulmuştur; 
 
 Farklı hareket modları, olasılıksal avlanma mekanizması ve 

denizatlarının benzersiz üreme karakteristiği ayrıntılı olarak 
matematiksel olarak inşa edilmiş ve ifade edilmiştir. 

 Önerilen algoritma, CEC2014 kıyaslama fonksiyonları ile test 
edilmiş ve bu test sonucunda diğer optimizasyon algoritmalarından 
daha iyi sonuç elde edilmiştir. 

 İstatistiksel analiz, yakınsama analizi, Wilcoxon testi ve Friedman 
testi Seahorse optimizasyon algoritmasının performansını 
değerlendirmek için kullanılmış ve deneysel sonuçlar diğer 
algoritmalara kıyasla iyi sonuç vermiştir. 

 Seahorse’un kısıtlama programlaması altı yaygın mühendislik 
tasarım problemiyle başa çıkmak için incelenmiştir. Mühendislik 
problemlerinde PSO, GA, GKO, AO, DO, DYA ve BOA’ya göre 
daha iyi sonuç elde edilmiştir. 

Çalışmanın bu kısmında regresyon ile elde edilen enerji tüketiminin 
ve dış ortam sıcaklığının matematiksel modelleri SeaHorse 
algoritması ile yeniden ele alınmıştır. Her bir bölge için optimal enerji 
tüketim ve optimal dış ortam sıcaklığı ayrıntılı olarak hesaplanmıştır. 
Regresyon ile elde edilen amaç fonksiyonunun katsayıları, Seahorse 
optimizasyon algoritması ile yeniden hesaplanmıştır. 
 
3.4.1. SeaHorse Optimizasyon Algoritması  
(SeaHorse Optimization Algorithm) 
 
SeaHorse, ılık sularda yaşamayı seven ve boyu 2 cm ile 30 cm 
arasında değişen deniz canlısıdır. Seahore’un denizlerde yaşadığı 
bilinen yaklaşık 80 türü vardır. Bu canlılar uzun bir burun ve sarmal 
bir kuyruk yapısına sahiptir [58]. Uzun burunlu olmaları beslenme 
hızları ile ilgilidir. Sarmal bir kuyruk ise deniz içerisinde hızlı 
hareketini sağlar [59].  
 
Seahorse canlısı, deniz içerisinde iki farklı hareket ile avlanma 
davranışını gerçekleştirir. Bunlardan biri sarmal hareket yani Levy 
uçuşu diğeri ise Brownian hareketidir [60]. Bu iki hareket, 
araştırmacılar için yeni bir optimizasyon tekniğinin elde edilmesini 
sağlamıştır. Denizatlarının üreme davranışları da optimizasyon 
tekniğinin ana konusu haline gelmiştir [61]. Optimizasyon yöntemi ilk 
olarak bir popülasyon ile başlatılır ve bu başlatma Eş. 5 ile 
sunulmuştur. Popülasyon denklemi, üreme davranışı ile ilişkilidir. 
Üreme, denizatlarının ilk davranış biçimidir. Bu davranış 
hareketinden sonra ise beslenme davranışı ve avlanma stratejisi 
uygulanır. 
 

Seahorse= 
𝑥ଵ

ଵ ⋯ 𝑥ଵ
஽௜௠

⋮ ⋱ ⋮
𝑥௣௢௣

ଵ ⋯ 𝑥௣௢௣
஽௜௠

   (5) 

 
Burada pop, popülasyonun boyutunu, Dim ise değişkenin boyutunu 
gösterir. Çözümler LB ve UB arasında gerçekleşir. Burada UB üst 
sınır, LB ise alt sınırdır. Arama uzayındaki [LB, UB] i'inci bireysel 
Xi'nin ifadesi Eş. 6 ve Eş. 7 olarak gösterilmiştir [62]. 

 
 

Şekil 4. ANN algoritması yapısal görünüm (Structural representation of ANN algorithm) 
 

Tablo 4. Eğitim ve test veri seti performans sonuçları (Training and test dataset performance results) 
 

 Eğitim Veri Seti  Test Veri Seti 
Veri Oranı (%) %29 %71 
Performans (Hata ) Oranı (%) %1,77 %0,74 
İşleme Süresi (Saniye) 3200,97 1310,48 
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Xi = [𝑥௜
ଵ,……, 𝑥௜

஽௜௠]   (6) 
 

𝑥௜
௝= rand x (𝑈𝐵௝- 𝐿𝐵௝) + 𝐿𝐵௝  (7) 

 
rand [0, 1]'deki rastgele değeri ifade eder. 𝑥௜

௝, i. bireydeki j. boyutu 
ifade eder. i, 1 ile pop arasındaki değişken pozitif bir tamsayıdır ve j, 
[1, Dim] arasındaki pozitif bir tamsayı olarak ele alınır. UBj ve LBj, 
optimize edilmiş problemin j. değişkeninin üst ve alt sınırını ifade 
eder. Xelite burada problemi örnek alarak minimum uygunluktaki 
bireydir [63]. Xelite Eş. 8 ile elde edilebilir. 
 
Xelite = argmin(f(Xi)     (8) 
 
Burada f(⋅), problemin amaç fonksiyonudur. Bu amaç fonksiyonu EO 
verilerinden elde edilmiş ve Seahorse optimizayonunda kullanılmıştır. 
 
Denizatlarının ilk hareketi sarmal yani Levy uçuşu olarak adlandırılır. 
Bu hareket beslenme davranışı ile ilgilidir. Avına hızlı bir şekilde 
yaklaşmasını sağlar ve Eş. 9 ile ifade edilir.  
 
𝑋௡௘௪

ଵ (t+1) = 𝑋௜(t) + Levy(λ)((Xelite(t)- 𝑋௜(t))ൈ x ൈ y ൈ z + Xelite(t)) 
 (9) 
 
Burada x = ρ × cos (θ), y = ρ × sin (θ) ve z = ρ × θ, sırasıyla sarmal 
hareket altındaki koordinatların (x, y, z) güncellenmesine yardımcı 
olan üç boyutlu arama ajanlarının pozisyonlarının bileşenlerini 
gösterir. ρ = u × eθv olarak verilen spiral sabitleri logaritmik olarak 
değişir ve u ile v tarafından tanımlanan gövdelerin uzunluğunu temsil 
eder (u değeri 0.05 ve v değeri 0.05 olarak belirlendi). Θ ise 0 ile 2π 
arasında ele alınan rastgele bir değerdir. Levy(z) fonksiyonu Lévy 
dağılımına aittir ve Eş. 10 ile hesaplanır [64]. 
 
Levy(z) = s ൈ 

௪ ൈ ఙ 

|௞|భ
ഊ

      (10) 

 
Eş. 11’deki λ değeri 0 ile 2 arasında seçilen rastgele bir sayıdır. Bu 
çalışmada λ, 1,5 olarak belirlenmiştir.  s ise 0,01 değerinde bir katsayı 
olarak ele alınmıştır. w ve k değerleri de 0 ile 1 arasında seçilen 
rastgele sayılardır. σ aşağıda sunulan denklem ile hesaplanabilir. 
 

σ = ( 
௰ሺ௟ାఒሻൈ௦௜௡ ሺ

ഏഊ
భ

ሻ

௰ቀ
೗శഊ

మ
ቁൈఒൈଶሺഊష೗

మ ሻ
 )   (11) 

 
2.harekette ise Brownian davranışı Eş. 12 ile sunulmuştur. 
 
𝑋௡௘௪

ଵ (t+1) = 𝑋௜(t) + rand*l*βt * (𝑋௜(t) - βt * Xelite       (12) 
 
Burada l sabit katsayıdır (bu çalışmada l = 0.05 olarak ayarlandı). βt, 
Brownian hareketinin rastgele yürüyüş katsayısıdır ve rastgele bir 
değer alır. Eş. 13’de bu rastgele yürüyüş ifade edilir. 
 

βt = 
ଵ

√ଶ஠
 exp (െ

௫మ 

ଶ
)      (13) 

Toplamda, bu iki durum, denizatının t iterasyonundaki yeni 
konumunu elde etmek için aşağıdaki gibi formüle edilebilir. 
 
  𝑋௡௘௪

ଵ (t+1)= 𝑋௜ሺ𝑡ሻ ൅  𝐿𝑒𝑣𝑦ሺ𝜆ሻሺሺ𝑋௘௟௜௧௘ሺ𝑡ሻ െ 
                     𝑋௜ሺ𝑡ሻ  ൈ 𝑥 ൈ 𝑦 ൈ 𝑧 ൅  𝑋௘௟௜௧௘ሺ𝑡ሻ        r1 >0         (14) 
𝑋௜ሺ𝑡ሻ + rand * l * βt *(𝑋௜ሺ𝑡ሻ - βt * 𝑋௘௟௜௧௘)            r1 ≤ 0 
 
Burada r1 değeri randn () olarak atanır ve bu rastgele bir sayıdır. Şekil 
5, iki tür farklı hareket modu olan spiral veya Brownian hareketini 
takip ederek denizatının konum güncelleme diyagramını 
göstermektedir ve her ikisi de denizatının rastgele hareketini 
göstermektedir. Güncellenen konum ile birlikte denizatları, beslenme 
davranışı sırasında avlarının yeni konumlarını belirleyebilir ve 
başarılı bir avlanma stratejisi uygulayabilir. Spiral hareket avın yukarı 
ve aşağı eksendeki konumunu, Brownian hareketi ise avın ileri geri 
yöndeki konumunu belirlemede kullanılır. 
 
Seahorse, gerçek dünya mühendislik problemlerinin çözümünde etkili 
bir yöntemdir. Mekanik mühendislik problemlerinden 
germe/sıkıştırma yayı tasarım, basınçlı kap dizaynı gibi mühendislik 
sorunlarına hızlı çözümler üretebilir. Elektrik motorları için redüktör 
tasarım problemleri ve enerji tüketim hesaplamalarında hata 
oranlarını minimize etmektedir. İnşaat mühendislik problemleri 
arasında yer alan konsol kiriş tasarım çözümlerini sağlamaktadır. 
Ayrıca kaynak mühendislik problemlerinden biri olan kaynaklı kiriş 
tasarımı için ideal çözümler üretilebilir [65]. Bu çalışmada Seahorse 
optimizasyonu, elektrikli araçlarda enerji tüketimi ve dış ortam 
sıcaklığı ilişkisini temel alan mühendislik probleminin çözümü 
aşamasında kullanılmıştır. 
 
3.4.2 SeaHorse Optimizasyon Algoritmasının Modifikasyonu 
(Modification of the SeaHorse Optimization Algorithm) 
 
Bu çalışmada kullanılan SeaHorse optimizasyon yöntemi, 
mühendislik problemleri için en fazla iki farklı değişken çözebilen bir 
algoritma olarak kullanılmıştır. Bu değişkenler EO çalışması için 
modifiye edilerek 8 farklı değişkenin optimizasyonunu sağlayacak 
kodlar ile modifiye edilmiştir. Parametrelerin alt sınır (Lower Limit – 
LB) ve üst sınır (Upper Limit – UB) değerleri Algoritma 2'de 
gösterilmiştir.  
 
Algoritma 2. EO parametrelerinin alt ve üst değerleri 
 
    case 'F25' 
        fobj = @F25; 
        LB= [2.9,  0, 24800, (-21.67), 0, 0, (-2.52), 213]; 
        UB= [3.5, 67, 41900, (22.3), 3, 2, 1.68,   357]; 
        UB=UB'; 
        LB=LB'; 
        Dim=8;   
 
Yukarıda gösterilen değerler incelendiğinde hız verilerinin 5 km/s ile 
67 km/s arasında değiştiği, araç ağırlığı verilerinin ise 24.800 kg ile 
41.900 kg arasında yolculu olarak değiştiği görülmektedir. EO 
rotasının eğiminin -21,67 ile 22,3 arasında olduğu ve enerji 
tüketiminin km başına 2.9 ile 3.5 kWh olduğu verilerden elde 

 
Şekil 5. a) Seahorse spiral hareketi b) Seahorse brownian hareketi ( a) Seahorse spiral movement b) Seahorse Brownian motion) 
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edilmiştir. EO, yıl boyunca en fazla günlük 3 elektrik arızası ve 2 
mekanik arıza yaşamaktadır. Aracın hem kış hem de yaz aylarındaki 
maksimum ivmesi 1,68 m/s2 olarak hesaplanırken minimum ivmesi -
2,52 m/s2 olarak hesaplanmıştır. İşletilen EO’lar, tüm rotada 
minimum 213 kW ve maksimum 357 kW rejeneratif frenleme gücüne 
sahiptir. Algoritma 3, regresyon sonucunda elde edilen matematiksel 
denklemi göstermektedir. Bu denklem SeaHorse algoritmasında 
Benchmark Fonksiyonu bölümüne eklenmiştir. Seahorse çalışmasının 
limitasyonları aşağıdaki şekilde açıklanmıştır. 
 
 Dış ortam sıcaklığı -10 oC ile 45 oC arasında belirlenmiştir. 
 Enerji tüketimi 0 ile 612 kW arasında belirlenmiştir. 
 EO yolcu kapasitesi maksimum 287 kişi olarak limitlenmiştir. 
 Geleneksel Seahorse optimizasyon algoritması popülasyon 

başlatma stratejisini rastgele oluşturma olarak benimser, bu 
yöntemin dezavantajı ise rastgeleliğin büyük olmasıdır. İlk 
başlatma noktası bu yayında rastgele (random) olarak seçilmiştir. 

 Seahorse optimizasyon algoritmasının yavaş yakınsama hızı yerel 
ve genel en iyi çözüme ulaşmada gecikmelere neden olmaktadır. Bu 
nedenle optimizasyon süresi uzun olarak belirlenmiştir. 

Algoritma 3. EO denklemlerinin SeaHorse algoritmasına eklenmesi 
[66].  
 
% f(x) E-Bus Data Function 
% F25 250ThousandData 
function o = F25(x) 
o=regression equations; 
end 
 
4. Sonuçlar ve Tartışmalar (Results and Discussions) 
 
Çalışmanın bu bölümünde regresyon tekniklerinin karşılaştırılması ve 
çalışma için uygun teknik belirlenmiştir. Belirlenen regresyon tekniği 
ile EO’lerin enerji tüketiminin matematiksel modeli elde edilmiştir. 
Daha sonra bu matematiksel denklem SeaHorse optimizasyon 
algoritması ile optimum hale getirilmiştir. 
 
4.1. Enerji Tüketimi ve Dış Ortam Sıcaklık Modeli  
(Energy Consumption and Outside Temperature Model) 
 
Regresyon çalışması için MATLAB R2021b programından 
faydalanılmıştır. 

 

 
Şekil 6. a) R1 bölgesi sürüş çevrimi grafiği b) R1 bölgesi dış ortam sıcaklığı grafiği  

( a) R1 region driving cycle graph b) R1 region outside temperature graph)  
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Analizler için Regresyon toolbox sekmesi kullanılmıştır. Bu sekmede 
yer alan Gauss, Doğrusal, İkinci Dereceden ve Kübik regresyon 
yöntemlerinin tamamı veri seti üzerinde test edilmiştir. Bu test 
sonucunda, Gauss Process (GP), Decision Tree (DT), Support Vector 
Machine (SVM), Ensemble ve TNN, en az hata oranına sahip 
regresyon yöntemleri olarak belirlenmiştir. Her bir bölgenin veri seti 
bu regresyon yöntemleri ile analiz edilmiştir.  R1 bölgesinde durak 
sayısı ve yolcu yoğunluğu az olduğu için Ensemble en uygun enerji 
tüketim değerinin elde edilmesini sağlamıştır. R2 bölgesinde durak 
sayısı ve yolcu sayısı fazla olduğu için GP, R3 bölgesinde yüksek hız 
ve az durak sayısından dolayı SVM ve R4 bölgesinde durak sayısı 
fazla ve düşük hız nedeniyle GPR en uygun sonuçları vermiştir. Tüm 
bölgeler birleştirilip genel rota için (R) tüketim verisi hesaplandığında 
ise TNN en uygun sonucu ortaya çıkarmıştır. Tablo 5’te bu çalışmada 
uygulanan regresyon tekniklerinin sonuçları sunulmuştur.  

Regresyon analizine göre her bölge için enerji tüketimin matematiksel 
modeli elde edilmiştir. Bu model bir EO’un km başına tüketiminin 
hesaplanmasını sağlamaktadır. Araç parametreleri değişse bile bu 
model ile her EO’un km başına enerji tüketimi ile sürüş çevrimi verisi 
elde edilebilir. Her bölge için elde edilen matematiksel tüketim modeli 
Eş. 15, Eş. 16, Eş. 17, Eş. 18 ve Eş. 19 ile sunulmuştur. 
 
YR1= 361 - 20,14*x1 + 0,4603*x2

2 - 0,004327*x3
3 + 2,145*e-5*x4

4 - 
(6,068*e-8*x5

5 + 9,858*e-11*x6
6 -  8,568*e14*x7

7 + 3,089*e-17*x8
8  

  (15) 
 
YR2= 394,2 - 21,55*x1 + 0,4823*x2

2 - 0,004438*x3
3 + 2,165*e-5*x4

4 - 
6,054*e-8*x5

5 + 9,747*e-11*x6
6 -  8,408*e14*x7

7 + 3,012*e-17*x8
8 

  (16) 
 

 

 
Şekil 7. a) R2 bölgesi sürüş çevrimi grafiği b) R2 bölgesi dış ortam sıcaklığı grafiği  

( a) R2 region driving cycle graph b) R2 region outside temperature graph)  
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YR3= 480,4 – 30,34*x1 + 0,7065*x2
2 - 0,006755*x3

3 + 3,368*e-5*x4
4 – 

9,517*e-8*x5
5 + 1,538*e-11*x6

6 - 1,382*e-14*x7
7 + 4,753*e-17*x8

8 

  (17) 
 
YR4= 614,1 – 9,253*x1 + 0,07414*x2

2 - 0,0003037*x3
3 + 7,701*e-7*x4

4 

- 1,238*e-9*x5
5 + 1,233*e-12*x6

6 -  6,959*e16*x7
7 + 1,703*e-19*x8

8 

  (18) 
 
YR= 460,8 – 3,2*x1 + 1,026*x2

2 - 0,0007456*x3
3 + 1,232*e-4*x4

4 - 
1,336*e-6*x5

5 + 1,233*e-9*x6
6 -  6,995*e13*x7

7 + 1,526*e-16*x8
8 

  (19) 
 
Burada Y, km başına enerji tüketim değerini ifade etmektedir. x1 araç 
hızını (km/s), x2 yolculu araç ağırlığını (kg), x3 dış ortam sıcaklığı 
(oC), x4 yol eğimini (%), x5 elektriksel arıza sayısını, x6 mekaniksel 
arıza sayısını, x7 ivmelenmeyi (m/s2), x8 ise rejeneratif frenlemeyi 
(kWh) göstermektedir. Eşitlikler enerji tüketim grafiklerinde yerine 

konulduklarında bölge bazında sürüş çevrim ve dış ortam sıcaklık 
değer grafikleri ise Şekil 6, Şekil 7, Şekil 8 ve Şekil 9’da sunulmuştur. 
 
Her bir parametrenin km başına enerji tüketim değeri üzerinde etkisi 
korelasyon analizi ile ortaya çıkarılmıştır. EO’nun CAN haberleşme 
sistemi üzerinde toplamda 112 adet veri iletilmektedir. Bu verilerin en 
kritik 8 tanesi enerji tüketimi üzerinde etkilidir. Tablo 6’da enerji 
tüketimi üzerinde etkili olan en önemli 8 parametrenin korelasyon 
sonucu sunulmuştur.  
 
Korelasyon sonucuna göre enerji tüketimi üzerinde en etkili olan 
parametre hız verisidir. Daha sonra sırası ile yolun eğimi, yolculu araç 
ağırlığı, ivme, elektriksel arıza, mekaniksel arıza, rejeneratif frenleme 
ve dış ortam sıcaklığı tüketim üzerinde etkili olan parametrelerdir.  
 
Çalışmanın son bölümünde ise her bölge üzerinde en uzun menzile 
karşılık gerekli olan dış ortam sıcaklığı verisi yine regresyon analizi 

  

 
Şekil 8. a) R3 bölgesi sürüş çevrimi grafiği b) R3 bölgesi dış ortam sıcaklığı grafiği  

( a) (R3 region driving cycle graph b) R3 region outside temperature graph) 
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ile hesaplanmıştır. Daha sonra tüm rotanın en uygun menzile karşı 
tahmin edilen dış ortam sıcaklık verisi de hesaplanmıştır. Ayrıca 
verilerin, elde edilen enerji tüketim ve dış ortam sıcaklığı modeli ile 
uygunluk ve doğruluk oranının analizi de varyans analizi (ANOVA) 
testi ile gerçekleştirilmiştir.  

Regresyon çalışmasında, R1 bölgesi için Ensemble, R2 için SVM 
Linear, R3 için DT ve R4 için en uygun sonucu veren regresyon tekniği 
SVM Quadratic olmuştur. Rotanın tamamı için ise TNN en iyi sonucu 
vermiştir. Tablo 7’de bölgelere göre regresyon analizi sonuçları 
sunulmuştur. 

 

 
Şekil 9. a) R4 bölgesi sürüş çevrimi grafiği b) R4 bölgesi dış ortam sıcaklığı grafiği  

( a) R4 region driving cycle graph b) R4 region outside temperature graph) 
 

Tablo 6. Enerji tüketim üzerinde etkili olan parametrelerin korelasyon analizi  
(Correlation analysis of parameters affecting energy consumption) 

 

 C1 C2 C3 C4 C5 C6 C7 C8 
Ortalama Tüketim (kW) 0,94 0,88 0,49 0,91 0,8 0,76 0,83 0,73 
C1: Hız (km/s), C2: Ağırlık (kg), C3: Dış Ortam Sıcaklığı (Derece), C4: Yolun Eğimi (%), C5: Elektriksel Arıza (Adet), C6: Mekaniksel Arıza 
(Adet), C7: İvmelenme (m/s2), C8: Recuperation (kWh) 

 
Tablo 7. Dış ortam sıcaklık hesabı için bölgelere göre en ideal regresyon yöntemleri  

(The most ideal regression methods for outdside temperature calculations by region) 
 

Regresyon Tipi RMSE R2 MSE MAE 
Ensemble (R1) 0,10387 1 0,0782 0,014 
SVM Linear (R2) 0,12445 0,98 0,11 0,124 
DT (R3) 0,64145 0,97 0,36789 0,147 
SVM Ouadratic (R4) 0,71442 0,97 0,40894 0,152 
TNN (R) 0,74199 0,96 0,41197 0,169 
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Regresyon sonucunda her bölge için matematiksel dış ortam sıcaklığı 
modeli elde edilmiştir. Bu model ile en uzun menzili sağlayan en 
uygun sıcaklık değerleri elde edilebilir. Hesaplanan matematiksel dış 
ortam sıcaklığı modelleri Eş. 20, Eş. 21, Eş. 22, Eş. 23 ve Eş. 24 ile 
sunulmuştur. 
 
OR1= 815,4 – 246,4*x1 + 32,18*x2

2 – 2,342*x3
3 + 0,1044*e-5*x4

4 – 
0,002921*e-8*x5

5 + 5,014*e-11*x6
6 -  4,833*e-14*x7

7 + 2,006*e-17*x8
8 

  (20) 
 
OR2= 359,6 – 88,37*x1 + 9,37*x2

2 – 0,056*x3
3 + 0,259*e-5*x4

4 – 
0,0048*e-8*x5

5 + 0,000699*e-11*x6
6 -  5,711*e-14*x7

7 + 2,07*e-17*x8
8 

  (21) 
 
OR3= 1422 – 371,2*x1 + 42,25*x2

2 – 2,718*x3
3 + 0,1084*e-5*x4

4 – 
0,002742*e-8*x5

5 + 4,299*e-11*x6
6 -  3,821*e-14*x7

7 + 1,473*e-17*x8
8 

  (22) 
 
OR4= 49,64 – 2,81*x1 + 8,763*x2

2 – 0,1348*x3
3 + 0,8529*e-7*x4

4 – 
0,002956*e-9*x5

5 + 0,0005887*e-12*x6
6 -  6,331*e-16*x7

7 + 2,861*e-

19*x8
8 

  (23) 
 
OR= 1,943 – 0,4923*x1 + 0,3347*x2

2 – 0,539*x3
3 + 0,1289*e-7*x4

4 – 
0,03186*e-9*x5

5 + 0,0004775*e-12*x6
6 -  4,07*e-16*x7

7 + 1,515*e-19*x8
8 

  (24) 
 

Burada “O”, dış ortam sıcaklığının hesaplandığı bağımlı değişkendir. 
x1 enerji tüketimi, x2 hız, x3 yol eğimi, x4 mekanik arıza sayısı, x5 araç 
ağırlığı, x6 elektriksel arıza sayısı, x7 ivmelenme ve x8 ise rejeneratif 

frenlemeyi ifade eden bağımsız değişkenlerdir. Matematiksel 
modellerin doğruluk analizinde tüm verilerin ANOVA testi 
yapılmıştır. Bu sayede hem enerji tüketimi hem de dış ortam sıcaklığı 
modelinin istatistiksel güvenilirliği artırılmıştır. ANOVA testi 
sonuçları Tablo 8’de sunulmuştur. 
 
Tablo 8 incelendiğinde df, varyans kaynakları ile ilişkili serbestlik 
derecelerinin sayısını ifade etmektedir. SS kareler toplamıdır. Toplam 
SS ile karşılaştırıldığında kalan SS ne kadar küçükse, model verilere 
o kadar iyi uyar. Elde edilen her iki modelin SS oranı son derece 
küçüktür ve veriler modellere son derece uygundur. MS ise ortalama 
kareyi ifade eder. F, F istatistiği ya da sıfır hipotezi için F-testini 
gösterir. Modelin genel anlamlılığını test etmek için kullanılır. 
Anlamlılık F, F'nin P-değeridir. P değeri sıfıra ne kadar yakın olur ise 
model doğruluğu o kadar yüksek olur. Anlamlılık F oranı analiz 
edildiğinde sıfıra son derece yakındır ve modelimizin doğruluk oranı 
son derece yüksektir. İstatistiksel analizlere göre veriler ile elde edilen 
modelin doğruluk oranı son derece yüksektir. 
 
4.2. Optimizasyon Sonuçları (Optimization Results) 
 
SeaHorse optimizasyon algoritmasın başlatılırken popülasyon 30, 
iterasyon sayısı 500 olarak seçilmiştir. R1, R2, R3, R4 ve R bölgeleri 
için oluşturulan tüketim ve dış ortam sıcaklığı regresyon modelleri, 
SeaHorse algoritmasında yeniden analiz edilmiştir. Analiz sonuçları 
Tablo 9 ve Tablo 10’da sunulmuştur. 
 
Tablo 8 incelendiğinde R1 bölgesinde tüketimin 3,285 kWh/km 
olduğu ve Tablo 9’daki dış ortam sıcaklık verisi incelendiğinde 

Tablo 8. Enerji tüketim ve dış ortam sıcaklık modellerinin ANOVA test sonuçları  
(ANOVA test results for energy consumption and outdoor temperature models) 

 

 df SS MS F Anlamlılık F 

Regresyon 8 733138,0633 81459,78481 6361,626181 2,4046e-147 
Fark 100599 1434,145239 12,80486821   

Toplam 100607 734572,2086    

 
Tablo 9. SeaHorse optimizasyonu sonucunda hesaplanan bölge bazında enerji tüketimi  

(Energy consumption calculated on a regional basis as a result of SeaHorse optimization) 
 

Bölge Mesafe (km) 
Süre 

(saniye) 
Ortalama Hız 

(km/s) 
Maksimum Hız 

(km/s) 
Ortalama 

İvmelenme (m/s2) 
Tüketim (kWh/km) 

R1 4,17 627 24,09 59 0,71 3,285 
R2 6,42 1118 21,46 47 0,46 2,943 
R3 6,09 689 38,62 67 1,1 2,732 
R4 3,02 572 19,32 43 0,5 3,012 
R 19,7 3006 36,9 67 0,9 3,02 

 
Tablo 10. SeaHorse optimizasyonu sonucunda hesaplanan bölge bazında dış ortam sıcaklık verisi  

(Outside temperature data calculated by region as a result of SeaHorse optimization) 
 

Bölge R1 R2 R3 R4 R 

Regresyon Sonucu (oC) 22,3 21,1 23 21,8 21,5 
 

Tablo 11. MOTAŞ verileri ile hesaplanan veriler ve farklar (Data calculated using MOTAŞ data and differences) 
 

Bölge Gerçek Enerji Tüketim (kWh/km) Hesaplanan Enerji Tüketim (kWh/km) Fark (%) 

R1 3,35 3,285 -1,9 
R2 2,91 2,943 1,12 
R3 2,7 2,732 1,17 
R4 3,1 3,012 -2,83 
R 3,05 3,02 -0,98 
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22,3oC olması gerektiği hesaplanmıştır. R2 bölgesi için 21,1 oC 
sıcaklıkta tüketimin 2,943 kWh/km, R3 bölgesinde 23 oC sıcaklıkta 
2,732 kWh/km ve R4 bölgesinde 21,8 oC sıcaklık için enerji 
tüketiminin 3,012 kWh/km olduğu hesaplanmıştır. 
 
Rotanın tamamı için hesaplamalar göz önüne alındığında en verimli 
enerji tüketiminin 3,02 kWh/km olduğu ve bu enerji tüketim değerinin 
21,5 oC sıcaklık ile elde edilebileceği hesaplanmıştır. Rotada işletilen 
EO’lar için en uzun menzili sağlayan sıcaklık 21,5 oC olarak 
belirlenmiştir. Bu sıcaklık değeri, sonbahar ve ilkbahar mevsiminde 
klimanın ve ısıtma sisteminin çalışmadığı günlerde meydana 
gelmiştir. Isıtma ve soğutma sistemi çalışmadığı zaman klima 
tüketimi minimum seviyeye inmektedir. Bu durum enerji tüketiminin 
en uygun seviyeye düşmesini sağlamıştır. 
 
Tablo 11’de ise sürüş çevrimi ve enerji tüketim modeli, verilerin 
alındığı EO işletmesinden elde edilen gerçek veriler ile kıyaslanmıştır. 
R1 ve R4 bölgeleri ile tüm rotada gerçek enerji tüketiminden daha 
düşük bir tüketim değeri elde edilirken; R2 ve R3 bölgelerinde ise 
gerçek enerji tüketiminden daha fazla bir tüketim tahmini yapılmıştır. 
R2 bölgesinde durak sayısının fazla olması ve R3 bölgesindeki yolcu 
yoğunluğunun az olması, enerji tüketim modelinin diğer bölgelerdeki 
tahminlerine kıyasla hata oranının artmasını sağlamaktadır. Yüzdelik 
olarak incelendiğinde ise gerçek zamanlı saha verilerine son derece 
yakın bir enerji tüketim hesabı oluşturulan modeller ile elde edilmiştir. 
 
Bu çalışmada EO’lar için en verimli enerji tüketim ve en uzun menzil 
değerine karşılık gerekli olan dış ortam sıcaklığının hesaplanması ve 
tahminine yönelik analizler yapılmıştır. İlk adımda regresyon ile 
enerji tüketim ve dış ortam sıcaklık verilerinin matematiksel modelleri 
elde edilmiştir. Daha sonra SeaHorse optimizasyonu ile bu modeller 
yeniden analiz edilmiş ve en ideal enerji tüketimine karşı gerekli olan 
dış ortam sıcaklığı hesaplanmıştır.  
 
Enerji tüketimi ve sürüş çevrimi çalışmasında R1 bölgesi için 
Ensemble, R2 bölgesi için DT ve R3 bölgesi için SVM ve R4 bölgesi 
için GPR en uygun sonuçları vermiştir. Tüm bölgeler birleştirilip 
genel rota için enerji tüketim verisi hesaplandığında ise TNN ile en 
uygun sonuca ulaşılabildiği sonucuna varılmıştır. R1 için enerji 
tüketimi 3,285 kWh/km, R2 için 2,943 kWh/km, R3 için 2,732 
kWh/km, R4 için ise 3,012 kWh/km olarak hesaplanmıştır. Tüm rota 
için EO’un en verimli olduğu dış ortam sıcaklık değerinde enerji 
tüketimi 3,02 kWh/km olarak hesaplanmıştır. Bu enerji tüketim 
değerlerine karşılık gelen dış ortam sıcaklıkları ise sırası ile 22,3 oC, 
21,1 oC, 23 oC, 21,8 oC ve 21,5 oC olarak hesaplanmıştır.  
 
Enerji tüketim modeli, işletmeci kuruluştan elde edilen veriler ile 
kıyaslandığında R1 için %1,9 oranında da az tüketim hesabı 
yapılmıştır. R2 için %1,12, R3 için %1,17 oranında daha fazla tüketim 
hesabı yapıldığı sonucuna varılmıştır. R4 için ise %-2,83 oranında 
enerji tüketim farkı ve tüm rota için %-0,98 oranında daha düşük bir 
tüketim hesaplanmıştır. Bu da çalışmayla sunulan modelin, gerçek 
zamanlı verilere son derece yakın olarak tüketim hesabı 
yapılabildiğini göstermektedir. Bu sayede EO üreticileri ve işletmeleri 
coğrafi olarak en sıcak ve en soğuk ülkeler de dâhil olmak üzere tüm 
rotalara sunulan bu modeli uygulayıp, dış ortam sıcaklığına karşı 
gerçek menzil hesabını çok düşük bir hata payı ile yapılabilir.  
 
Çalışmanın yapıldığı dönem boyunca EO, 1.400.000 km yol kat 
etmiştir. Bu süre içerisinde ise işletmeci kuruluş tarafından 
hesaplanan veriler doğrultusunda 3.375.454 kWh enerji tüketimi 
gerçekleştirilmiştir. Çalışmamızda kullanılan SeaHorse modeli 
uygulandığında ise enerji tüketimi 3.307.945 kWh olarak 
gerçekleştirilebilir. İşletme süresi boyunca EO’lar üzerinde Seahorse 
modeli kullanılarak 67.509 kWh’lik enerji tasarrufu sağlanabilir.  

EO işletmecileri, mevcut rota ve coğrafi şartları dikkate alarak bu 
model ile EO dönüşümü yapılacak rotaların analizlerini 
gerçekleştirebilir. Öncelikle uygulama yapılacak rota için enerji 
tüketim tahmin modeli kullanılarak tüketim değeri tahmin edilebilir. 
Daha sonra ideal dış sıcaklık modeli ile coğrafi şartlara göre en düşük 
ve en yüksek tüketimler hesaplanır. Bu sayede yıl boyunca işletmenin 
aksamaması için gerekli olan batarya kapasitesi hesabı yapılabilir. 
Kuruluşların en az hata oranı ile bir batarya kapasitesi tahmini, doğru 
bir araç satın alma süreci oluşturulabilir. Bu hesaplama, maliyetleri 
düşürmede önemli bir etki oluşturmaktadır. 
 
Diğer taraftan, EO’nun işletilmesi için dış ortam sıcaklığı 
hesaplamaları ile işletme için uygunluk kontrolü yapılabilir. Batarya 
sağlığı için aşırı sıcak ve aşırı soğuk rotalarda işletme faaliyetleri 
problemli olarak devam edebilir. Burada çözüm olarak batarya ısıtma 
ve soğutma sistemleri de ek yapılabilir. Dış ortam sıcaklığı ve tüketim 
analizi ile işletmeci kuruluşların batarya üzerinde rotalara göre ekstra 
güvenlik tasarımları yapılması planlanabilir. Yapılan bu çalışmanın 
ana kilit çıktıları aşağıdaki gibi sıralanmıştır; 
 
 Gerçek zamanlı büyük veriler kullanılarak elde edilen enerji 

tüketimine dair sürüş çevrimi EO üretici ve işletmeleri, sunulan 
modeli operasyonel olarak planladıkları tüm rotalar için temel 
alarak kullanabilirler. 

 Enerji tüketiminin ve dış ortam sıcaklığının matematiksel 
modelinin birlikte kullanılması, tüm EO rotaları için en verimli 
tüketim ve operasyonel menzile karşılık gerekli olan dış ortam 
sıcaklığının belirlenmesini sağlayacak genel bir model elde 
edilmiştir. 

 Dış ortam sıcaklığının menzil üzerindeki etkisi bu modeller ile 
ayrıntılı olarak hesaplanabilir. Yüksek ve düşük sıcaklıklarda 
yapılacak olan EO işletmesinde enerji tüketimi öngörülebilir hale 
gelmiştir. Bu durum, işletmeci firmaların enerji maliyetlerini 
önceden hesaplamasını kolaylaştırırken, EO üreticileri için de hedef 
pazarların ihtiyaçlarına göre yapacakları tasarımlarda, coğrafi 
sıcaklığın etkisini de öngörülebilir kılacaktır. 
 

Gelecekte yapılacak olan çalışmalarda 24V DC tüketimleri için sensör 
izolasyonları sağlanarak tüketim hesabının daha net olarak elde 
edilmesi planlanmaktadır. İşletmeci kuruluşların EO kıyası 
yapabilmesi için farklı tip ve model EO ile benzer çalışmaların 
yapılması ve farklı optimizasyon algoritmaların kullanılması 
hedeflenmektedir.  
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