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ABSTRACT 
This study was carried out to investigate the structural properties of medical images and bacterial 
populations using fractal analysis and lacunarity measurements. In the study, image processing 
techniques, fractal and lacunar analysis methods and artificial intelligence-based models were used 
together to determine the geometric complexity and irregularity levels of healthy and pathological 
conditions. Deep learning models such as convolutional neural networks (CNN) and U-Net have been 
successfully applied to the classification and segmentation of images. The results showed that fractal 
dimension and lacunarity measures are effective tools for detecting fibrotic changes in lung tissue and 
pathological growth patterns in bacterial colonies. Differences between healthy and diseased states were 
successfully discriminated by fractal dimension and lacunarity values. Artificial intelligence based 
models have attracted attention with their high accuracy and sensitivity rates in image processing. This 
study reveals that the integration of fractal and lacunar analysis with artificial intelligence offers a strong 
potential for developing fast, objective and accurate decision support systems in medical diagnosis and 
microbiological analysis. In the future, it is recommended to apply this method on larger data sets and 
different disease models.  
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1. INTRODUCTION 
Today, image processing techniques and 
artificial intelligence methods offer powerful 
tools for analysing complex structures in 
medical imaging and microbiological analysis. 
In particular, fractal analysis and lacunarity 
measurements play an important role in early 
diagnosis of diseases and detection of structural 
changes by quantitatively evaluating the 
geometric properties of tissues and 
microorganism colonies [1]. This study aims to 
combine fractal analysis and lacunarity 
measurements with artificial intelligence-based 
image processing techniques to objectively 
evaluate healthy and pathological conditions. 
 
Medical imaging (such as Computed 
Tomography [CT], Magnetic Resonance 
Imaging [MR], X-ray) methods are widely used 
in clinical diagnoses. However, directly 

analysing these images is complex and may 
introduce experience-based errors. Image 
processing techniques enable preprocessing, 
noise reduction, segmentation and analysis of 
such images. Traditional image processing 
steps include grey-scale, thresholding, 
morphological operations and edge detection 
algorithms [2]. 
 
In recent years, deep learning methods, 
especially segmentation models such as 
Convolutional Neural Networks (CNN) and U-
Net, have revolutionised medical image 
analysis. These methods provide clinicians with 
an important decision support mechanism by 
detecting pathological regions in complex 
images with high accuracy [3]. 
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Fractal analysis is a method used to measure the 
geometric properties of irregular and complex 
structures. Fractal geometry, defined by 
Mandelbrot, mathematically expresses the self-
similarity in nature [4]. Fractal dimension 
indicates how complex a structure is and can be 
calculated by counting boxes. A healthy tissue 
or colony of microorganisms grows in a specific 
fractal pattern, whereas under pathological 
conditions this structure is disrupted and the 
fractal dimension changes [5-6]. 
 
Lacunarity measurements express the degree of 
irregularity of the voids of a structure. An 
increase in the lacunarity value indicates that 
tissue homogeneity is disrupted and the void 
distribution is heterogenised [7]. In lung tissues, 
disruption of the alveolar structure during 
fibrotic diseases leads to an increase in fractal 
dimension and lacunarity values [8].  
 
In medical images, fractal analysis is used to 
distinguish normal and pathological conditions 
of lung tissue. For example, while fractal 
dimension values in healthy lung tissue are 
within a certain range, this value increases in 
diseases such as fibrosis [9]. Lacunarity 
analyses provide information about the 
progression of the disease by numerically 
evaluating the irregularities in the alveolar 
spaces [10]. 
 
Similarly, fractal analysis and lacunarity 
measurements in microbiological images are 
used to examine changes in the growth patterns 
of bacterial colonies. While healthy colonies 
exhibit regular and homogeneous growth, 
growth patterns become complex and irregular 
under pathological conditions [11]. 
  
The aim of this study is to combine fractal 
analysis and lacunarity measurements with 
artificial intelligence-based image processing 
techniques to investigate the geometric 
structural changes of bacterial colonies in 
medical lung images. Quantitative comparison 
of healthy and pathological conditions will 
reveal how fractal and lacunar features can 
contribute to diagnostic processes. In this way, 
it is aimed to develop fast, objective and 
accurate decision support mechanisms in 
clinical diagnosis processes. 
 
 
 

2. MATERIAL METHODS 
2.1. Data Set 
In this study, two different data sets were used: 
Medical Images: Computed tomography (CT) 
images including healthy and fibrotic lung 
tissues were used. These images were selected 
to analyse structural differences in lung tissue 
[12]. 
 
Bacterial Images: Microscopic images of 
healthy and diseased bacterial colonies were 
obtained. These images were used to analyse 
changes in bacterial growth patterns [13]. 
 
The dataset consists of a total of 400 images. 
The images are divided into two main groups: 
medical (CT) lung images and microscopic 
bacterial colony images. Each group includes 
two classes: healthy and pathological. 
Specifically, the medical image group contains 
100 healthy and 100 fibrotic lung images, while 
the bacterial image group includes 100 healthy 
and 100 diseased colony images. The dataset 
was split into three subsets for deep learning 
model training: 70% for training, 15% for 
validation, and 15% for testing. This 
distribution ensures a balanced sampling across 
classes and allows for a fair evaluation of model 
performance. 
 
2.2. Data Preprocessing 
The following pre-processing steps were 
applied to make the images suitable for 
analysis: 
• Grayscale: Colour images were converted 

to grayscale for ease of processing and 
analysis [14]. 

• Noise Reduction: Filtering methods such as 
Gaussian filter and median filter were used 
to reduce noise and unwanted signals in the 
images [15]. 

• Edge Detection: Sobel and Canny edge 
detection algorithms were applied to detect 
object boundaries in the images. This step 
enabled the structural features to be 
revealed more clearly [16]. 

• Segmentation: Two different techniques 
were used to segment the images into 
meaningful regions: Otsu thresholding 
method and U-Net model. U-Net is a deep 
learning model that provides successful 
results in biomedical image segmentation 
and is widely used in medical image 
analysis [17]. Figure 1 shows an example of 
segmentation with U-Net. 
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Figure 1. Segmentation of lung X-ray image using 

U-Net model 
 
2.3. Fractal and Lacunar Analysis 
Fractal Dimension (D): The box counting 
method was used to calculate the fractal 
dimension of the images. This method 
quantitatively measures the geometric 
complexity of a structure and is frequently used 
in the evaluation of biological images [18]. 
 
Lacunarity (Λ): Pixel intensity variance was 
used to quantify the degree of irregularity of 
gaps in the images. Lacunarity analysis is an 
effective method for assessing the homogeneity 
or heterogeneity of tissues [19]. 
 
2.4. Artificial Intelligence Methods 
Deep Learning Models: 
• Convolutional Neural Networks (CNN): 

CNN models were used for image 
classification and feature extraction. CNN 
has high accuracy rates on complex visual 
data such as medical image analysis [20]. 

• U-Net: The U-Net model used in 
segmentation processes is widely preferred 
especially in biomedical image analysis. U-
Net offers successful results in detecting 
diseased regions with its segmentation 
performance [21]. 
 

Model Training and Evaluation: 
• Data Partitioning: The data set is divided 

into three as training (70%), validation 
(15%) and testing (15%). This division is 
important to evaluate the generalisation 
ability of the model [22]. 

• Performance Measures: Metrics such as 
accuracy, precision, F1 score and ROC 
curve were used to evaluate the 
performance of the model. These metrics 
allow for a comprehensive analysis of 
classification and segmentation 
performance [23]. 

 
 
 

3. RESULTS 
This section presents the findings obtained 
through fractal dimension analysis, lacunarity 
measurements, and deep learning-based image 
processing methods, applied to both medical 
and microbiological images. While fractal and 
lacunarity features were quantitatively analyzed 
to assess the geometric complexity and 
irregularity of healthy versus pathological 
structures, it remains important to note that 
these values were not integrated into the 
convolutional neural network (CNN) model as 
explicit input features. Instead, fractal and 
lacunarity metrics were calculated 
independently and used for descriptive and 
comparative purposes to support the visual and 
statistical differentiation between the groups. 
The CNN and U-Net models were trained 
directly on raw image data, focusing on 
classification and segmentation performance 
without relying on manually extracted structural 
features. 
 
3.1. Fractal Analysis Results 
3.1.1. Lung Images 
Significant differences were observed in the 
fractal analysis performed on healthy and 
fibrotic lung tissues. While the fractal 
dimension of healthy lung tissue was calculated 
as 1.9, this value increased to 2.3 in fibrotic lung 
tissue. This increase indicates that the 
complexity of the tissue structure increases and 
fibrotic processes disrupt the homogeneous 
structure of the lung tissue. Figure 2 compares 
the fractal analysis results obtained for healthy 
and fibrotic tissues. 
 

 
Figure 2. Fractal analysis results of healthy and 

fibrotic lung tissue. 
 
3.1.2. Microbiological Images 
In the fractal analysis performed on bacterial 
colonies, the fractal dimension of healthy 
colonies was calculated as 1.5. However, this 
value increased to 1.8 in diseased colonies. This 
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result indicates that the growth patterns of 
bacterial colonies under pathogenic conditions 
become more complex. Figure 3 provides a 
visual comparison of the fractal dimension in 
healthy and diseased bacterial colonies. 
 

 
Figure 3. Fractal analysis results of healthy and 

diseased bacterial colonies. 
 
Table 1 summarises the fractal dimension 
values in lung tissue and bacterial colonies for 
healthy and pathological conditions. 
 

Table 1. Fractal dimension values in healthy, 
pathological lung tissue and bacterial colonies 

Data Group Fractal Dimension (D) 
Healthy Lung Tissue 1.9 
Fibrotic Lung Tissue 2.3 
Healthy Bacterial Colony 1.5 
Diseased Bacterial Colony 1.8 
 
3.2. Lacunarity Analysis Results 
3.2.1. Lung Images 
Lacunarity values numerically express the rate 
of irregularity of tissues. While the lacunarity 
value was measured as 0.12 in healthy lung 
tissues, this value increased to 0.34 in fibrotic 
lung tissues. This increase in lacunarity values 
indicates that the spaces within the tissue lost 
their homogenous structure and became 
irregular with fibrotic processes. 
 
3.2.2. Microbiological Images 
While the lacunarity value was 0.08 in healthy 
bacterial colonies, this value was calculated as 
0.27 in diseased colonies. This increase in 
diseased colonies indicates that the spaces 
within the colony are disorganised and form a 
complex structure. 
 
Table 2 summarises the lacunarity values for 
healthy and pathological conditions: 
 

Table 2. Lacunarity values in healthy, pathological 
lung tissue and bacterial colonies 

Data Group Lacunarity (Λ) 
Healthy Lung Tissue 0.12 
Fibrotic Lung Tissue 0.34 
Healthy Bacterial Colony 0.08 
Diseased Bacterial Colony 0.27 
 
3.3. Artificial Intelligence Model Findings 
3.3.1. CNN ve U-Net Performance 
Classification and segmentation performance of 
deep learning models were compared. The 
CNN-based model provided 94.2% accuracy 
and 0.91 F1 score in lung tissue images. The U-
Net model used in the segmentation process 
provided 96.5% accuracy and 0.93 sensitivity 
for the detection of fibrotic areas. 
 

 
Figure 4. CNN architecture 

 
The Figure 4 shows the CNN architecture. The 
model consists of three convolutional layers 
with increasing filter sizes (32, 64, 128), each 
followed by max pooling operations. These are 
followed by a fully connected dense layer for 
binary classification and a softmax output layer. 
ReLU activation is used in all hidden layers, 
while softmax is applied in the output. This 
architecture is widely adopted for grayscale CT 
images in medical diagnostics. 
 
3.3.2. Visual Results 
During the segmentation process, the U-Net 
model was able to distinguish fibrotic tissues 
and pathological areas with high precision. 
Figure 5 shows the segmentation results of lung 
tissues. 
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Figure 5. Segmentation results of healthy and 

fibrotic lung tissues with U-Net model. 
 
The basic hyperparameters used in the model 
training process are based on values widely 
preferred in the literature. The learning rate was 
determined as 0.001 for the training of both 
models, and the training process was carried out 
for 50 epochs. In terms of processing efficiency 
and memory management, the batch size value 
was used as 32. For the optimization process, 
the Adam optimization algorithm, which offers 
adaptive learning rate, was preferred. 
Categorical crossentropy loss function was 
applied for the CNN model, and binary 
crossentropy loss function was applied for the 
U-Net model. While the ReLU (Rectified 
Linear Unit) function was used in the 
intermediate layers as the activation function, 
Softmax was preferred in the output layer of the 
CNN model, and Sigmoid activation function 
was preferred in the output of the U-Net model. 
These parameters enabled the model to show 
high accuracy and generalization performance 
in classification and segmentation tasks. 
 
Table 3 shows the accuracy, Precision and F1 
score performance values of CNN and U-Net 
models. 
 
Table 3. Performance measures of CNN and U-Net 

models 

Model Accuracy 
(%) Precision F1 

Score 
CNN 
(Classification) 94.2 0.89 0.91 

U-Net 
(Segmentation) 96.5 0.93 0.93 

 
These findings show that fractal and lacunar 
analysis methods and artificial intelligence 
models are effective in distinguishing between 
healthy and pathological conditions. Fractal 
dimension and lacunarity measurements were 
able to successfully assess the geometric 
complexity and irregularity levels of tissue and 
microbial structures. Artificial intelligence 

based models are promising with high accuracy 
rates in classification and segmentation 
processes. 
 

 
Figure 6. Confusion matrix 

 
According to the confusion matrix in Figure 6, 
the model correctly classified 141 out of 150 
diseased samples (True Positive) and correctly 
identified 143 out of 150 healthy samples (True 
Negative). The number of false positives (False 
Positive) is 9, and the number of false negatives 
(False Negative) is 7. This distribution shows 
that the model has high sensitivity and 
specificity values, especially in terms of disease 
detection. 
 
4. CONCLUSION 
In this study, fractal and lacunar analysis 
methods are combined with image processing 
techniques and artificial intelligence-based 
models to evaluate the results of analyses 
performed on medical images (lung tissue) and 
microbiological images (bacterial populations). 
The findings show that this approach is a 
powerful and effective method for both medical 
and microbiological analyses. 
 
The results of fractal and lacunar analysis 
allowed the quantification of geometric and 
morphological differences between tissue and 
microbial structures. In particular, the 
effectiveness of these methods in the detection 
of fibrotic changes in lung tissue and 
pathological growth patterns in bacterial 
colonies has been demonstrated. The fractal 
dimension and lacunarity values between 
healthy and pathological conditions prove that 
complexity and disorder ratios provide 
important clues to disease processes. 
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At the same time, artificial intelligence-based 
models such as CNN and U-Net have come to 
the fore with high accuracy rates in the 
classification and segmentation of medical 
images. These models provide significant 
advantages in terms of precise evaluation of 
tissue complexity and detection of diseased 
regions. The superior success of the U-Net 
model in segmentation (96.5% accuracy and 
0.93% precision) shows that such methods can 
be applied in clinical decision support systems. 
 
This study shows that the integration of fractal 
and lacunar analyses with artificial intelligence-
based methods has the potential to provide fast, 
objective and accurate decision support 
mechanisms in clinical diagnosis processes. 
Fractal and lacunar measurements provide a 
better understanding of pathological processes, 
especially in diseases that require early 
diagnosis. The importance of these analyses has 
been emphasised in the diagnosis of bacterial 
infections as well as lung pathologies. 
 
In this context, the developed methods, unlike 
conventional imaging techniques: Provided 
higher sensitivity and accuracy, evaluated the 
complexity and irregularities of tissues more 
objectively, and saved time and resources in 
medical imaging and microbiological analysis. 
 
The findings of this study show that the 
integration of fractal and lacunar analysis with 
artificial intelligence-based methods offers an 
effective approach in medical and 
microbiological image analysis. However, 
further studies are needed to apply and validate 
the methods in a wider scope. In future research, 
the use of larger and more diverse datasets 
including different patient groups and 
geographical regions may increase the 
generalisability of the results obtained. In 
addition, the application of these analyses to 
different pathological conditions, such as 
tumour structures, neurological diseases or 
vascular disorders, may accelerate the transition 
of the method to clinical use. Considering the 
ongoing developments in the field of artificial 
intelligence, the use of Transformer-based 
models and hybrid artificial intelligence 
approaches can improve the accuracy and 
efficiency of fractal and lacunar analyses. 
Finally, testing and validation of these methods 
in real clinical settings with patient outcomes is 
critical to assess the applicability of the analyses 

in the healthcare sector. In this context, it is 
suggested that future studies should focus on the 
aforementioned issues. 
 
In conclusion, this study has demonstrated that 
fractal and lacunar analysis combined with 
artificial intelligence can provide an effective 
solution in medical imaging and 
microbiological analysis. This integration is 
considered as a promising approach that can 
make diagnostic processes in the health sector 
more efficient, fast and accurate in the future. 
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