
 

March 2025, Vol:3, Issue:1 

International Journal of New 
Findings in Engineering, Science 

and Technology  

  journal homepage: https://ijonfest. gedik.edu.tr/  

 

https://doi.org/10.61150/ijonfest.2025030104                                                                                                                Copyright © 2023 IJONFEST 

Estimation of Battery Remaining Life-time with Machine Learning 

Methods 

Kardelen Kamisli
a*

, Iclal Cetin Tas
b
 

aOstim Technical University, Department of Software Engineering, Ankara, Türkiye, 210904002@ostimteknik.edu.tr,  

ORCID: 0000-0002-5526-2767 (*Corresponding Author) 
bBaskent University, Department of Computer Engineering, Ankara, Türkiye, icetintas@baskent.edu.tr, ORCID: 0000-0002-1101-9773  

Abstract 

The swift proliferation of renewable energy sources and electric grids causes discrepancies between energy supply and 

demand. This scenario causes variations in voltage and frequency levels due to discrepancies between energy generation and 

consumption, jeopardizing the stability of energy networks. The intrinsically fluctuating and unpredictable characteristics of 

renewable energy sources, such as the sun and wind, intensify these oscillations. In contrast to conventional have to have energy-

producing systems, renewable energy systems have energy-producing systems and a restricted ability to adapt immediately to 

demand. In this environment, energy storage devices arise as a vital solution for the effective management of renewable energy 

generation and for sustaining grid stability. Research on Remaining Useful Life (RUL) and State of Charge (SoC) of batteries is 

essential for battery reliability, user satisfaction, and environmental sustainability. These studies provide benefits in energy 

efficiency, increased mobility, diminished battery replacement requirements, and superior waste management. Estimating battery 

longevity facilitates the efficient management of battery-operated equipment and the strategic planning of energy requirements. 

Deep learning techniques have made substantial progress in estimating battery capacity and longevity. Long-lasting batteries with 

substantial energy storage capacity, favored in industrial applications, are more efficiently assessed utilizing deep learning 

methodologies. This study analyzes the outcomes derived from the application of the Scaled Conjugate Gradient (SCG) 

technique for estimating battery capacity. It seeks to enhance the efficient management of battery systems and devise strategies 

that promote the sustainability of energy storage technology. This study's performance measures, comprising 1.098% MAPE, 

0.9823 R², 0.0019 MSE, and 0.0302 MAE, enhance the effective management of energy storage systems, the optimal use of 

energy resources, and strategic planning to fulfill energy demands. This study's performance measures, 1.098% MAPE, 0.9823 

R2, 0.0019 MSE and 0.0302 MAE obtained in this study on battery estimation, it supports the efficient management of energy 

storage systems, effective use of energy resources and strategic planning for energy demands. 

 
Keywords: Battery, Battery management system, Deep learning, Predictive algorithm, Remaining useful life. 

1. INTRODUCTION 

The increase in energy demand, the increasing complexity of energy storage systems, the continuous development 

of energy storage systems, the increasing demand for electric vehicles and the incentives accompanying the 

development and changes; have made it necessary to make significant developments in battery management systems 

and battery technology. These developments have addressed predictive challenges, including remaining RUL and 
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SoC. Estimating the remaining useful life of a battery is essential for informing people about its longevity. The 

capacity to forecast when a battery requires charging or replacement significantly influences planning and improves 

user experience. 

Battery life prediction studies are very important for battery-based systems in terms of reliability, performance 

optimization and energy efficiency, especially with the expected increase in future electric vehicles and storage 

facilities. These studies reduce battery replacement; reduce waste management and mitigate environmental impact. 

They contribute to sustainable energy management with their environmental impact. In industrial products, extended 

service life and significant energy storage capacity are highly sought-after features, and machine learning techniques 

used for battery life prediction are expected to increase the accuracy of battery life projections. 

Supervised learning algorithms are considered an important technique in data science and are frequently used in 

forecasting with input data such as energy, health, and population. Prediction algorithms, which focus on topics such 

as energy consumption and electrical grid stability, which require investment and where future projections are 

critical, have also been implemented in industrial processes together with diagnostic algorithms such as anomaly 

detection [1, 2, 3,4]. 

Prediction and diagnostic algorithms are widely preferred in industrial processes compared to traditional methods 

due to their fast-processing capacity, adaptability to real-time data, and ability to work simultaneously with 

alternative solutions [4, 5, 6]. With the rise of Industry 4.0, the importance of prognostic algorithms focusing on 

anomaly detection has increased. Machine learning methods, in particular, play a critical role in solving complex 

prediction problems such as estimating the operational life and remaining usage times of equipment in real-time 

systems. These methods increase prediction accuracy by dynamically modeling large and complex data sets and 

effectively use various variables to predict diagnostic or prognostic results. Predictive strategies provide approaches 

to estimate diagnostic and prognostic results through algorithms or models, thus increasing efficiency and preventing 

unexpected failures in industrial processes [6,7, 8]. 

Contemporary electricity production/transmission/distribution system and infrastructure have been developed to 

meet the increasing energy demand with technological innovations such as smart grids (SG), artificial intelligence 

(AI) and Internet of Things (IoT). Electricity consumption is increasing worldwide and energy demand is getting 

worse with population growth. In response to the increasing energy demand, investments in power plants are 

emphasized, while distributed energy technologies have emerged as an alternative to traditional methods. Demand 

side management (DSM), which aims to reduce electricity consumption and carbon emissions by balancing supply 

and demand, has emerged as an alternative method. DSM aims to balance the load curve and protect energy supply 

security by distributing demand and restricting excessive energy consumption [9,10]. 

Turkey’s 2017-2023 National Energy Efficiency Action Plan (NEEAP) emphasizes increasing demand side 

participation. As detailed in Action E10, the importance of establishing a market mechanism for demand side 

participation is emphasized [11]. 

The demand side participation mechanism, which includes adjusting the energy load produced by prosumers to 

provide the supply-demand balance of the electricity distribution grid and as a sustainable system, reduces the need 

for low-efficiency power plants and reduces the energy import costs spent to provide the supply-demand balance. 

DSM encourages adaptive energy use during periods of low demand to reduce technical losses and consumer costs 

and increase energy efficiency. In this way, a mechanism that works for the benefit of both sides of the network is 

ensured [10, 12]. With current technological developments, consumers will be able to react to real-time price signals 

from network operators. Energy service companies (ESCOs) are developing innovative business models using DSM. 

These developments, combined with daily, monthly and annual settlement opportunities and various rates, allow 

DSM to expand in the network, and the expected benefits are expected to increase even more in the future [12,13]. 
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Energy consumption forecasting is very important for managing energy resources. Energy companies, distribution 

operators, policy makers, energy suppliers and institutions use these forecasting models that take into account 

seasonal changes, weather forecasts, economic factors, demographic data, past energy consumption data and 

consumption trends, industrial activities and market demands. Statistical methods, time series algorithms, regression 

analysis methods, neural networks and various data analytics methodologies are used for demand forecasting. Highly 

accurate and reliable future projections are critical for balancing energy supply, optimizing demand management, 

planning energy distribution infrastructure investments and planning the optimum use of energy resources. Demand 

projections enable electricity distribution and transmission system operators to make decisions with scientifically 

based methodologies regarding planning their investments and supply processes, managing inventory and 

warehouses, creating pricing strategies and balancing energy supply with projected demand. Consequently, energy 

demand forecasting is essential to ensure efficient and sustainable energy management, facilitate optimum use of 

energy resources, improve planning procedures and assist in making strategic decisions in the energy sector 

[14,15,16]. 

Estimating State of Health (SoH) and RUL is crucial for maintaining the reliability and efficiency of lithium-ion 

batteries in many areas such as electric vehicles, energy storage systems, and consumers. SoH measures the 

degradation of the battery by comparing the capacity of the battery at the moment of measurement with its nominal 

capacity and serves as an important indicator to evaluate the change in battery health over time. RUL estimation 

estimates the remaining life of the battery before its usable capacity is exhausted, thus providing input for a proactive 

maintenance plan that can minimize the impact of operational processes. SoH and RUL estimations are crucial for 

improving battery utilization processes and reducing operational downtime. Advanced machine learning methods, 

including hybrid models that integrate temporal data analysis methods with feature extraction from datasets, have 

demonstrated significant accuracy in explaining and predicting the complex, nonlinear degradation and capacity 

decay mechanisms of lithium-ion batteries. The described methodological approaches increase the probability of 

more accurate prediction of temporal attributes of battery performance compared to traditional physics-based linear 

models. They facilitate the use of battery management systems by providing accurate, close to scientific approaches 

[17,18]. 

The rapid expansion of renewable energy sources (RES) in the transmission and distribution grid has led to 

imbalances in energy supply and demand. Due to the fluctuations in voltage and frequency levels originating from 

RES production, the interest in energy storage facilities, which are alternatives that will ensure that the levels remain 

stable, has increased and research studies have increased. With the increasing demand for BMSs, the importance of 

the need for advances in Energy Management Systems (EMS) and battery technologies has been emphasized. 

Research on SoH and RUL estimation of batteries and the integration of BMSs into transmission/distribution grid 

topologies has accelerated [19,20,21,22]. 

This study aims to estimate the RUL of lithium-ion (Li-Ion) batteries. In the study, five different machine 

learning algorithms/models were implemented independently and the performances of the models were evaluated 

with the same performance metrics. The research results are expected to encourage the development of BMSs and 

future innovations with RUL estimation. 

2. MATERIALS AND METHODS 

2.1 Data Acquisition 

 

The models used in this study were implemented using MATLAB version 2022b on a computer with an Intel 

Core i5 processor and an NVIDIA GeForce RTX 3050 Ti graphics card. The study used the "Battery Dataset" from 

the NASA Ames Prognostics Data Repository [23] and used data such as current, voltage, and temperature for RUL 

estimation with the dataset [24]. Table 1. provides the usage of this study dataset's detailed information and 

descriptions. 
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Table 1. Dataset Variables Descriptions 

Variable Name Description 

cycle Shows the number of charge-discharge cycles the battery has gone through in its history. 

ambient_temperature The ambient temperature during operation is measured in degrees Celsius. 

datetime Shows the date and time when battery data was measured. 

capacity Reflects the remaining capacity of the battery for its performance and shows the battery charge capacity, measured 

in ampere-hours (Ah). 

voltage_measured The actual output voltage of the battery measured at the relevant datetime, measured in volts (V). 

current_measured The actual output current value of the battery measured at the relevant datetime, measured in amperes (A). 

temperature_measured The internal temperature of the battery measured at the relevant datetime, measured in degrees Celsius (°C). 

current_load The current demand applied to the battery output load, measured in amperes (A). 

voltage_load The voltage demand applied to the battery by the output load, measured in volts (V). 

time The time elapsed since the beginning of the current cycle or measurement, measured in seconds or minutes. 

flag The indicator used to indicate the state of charge or discharge during data collection. 

 

The NASA Ames Battery Dataset provides data for estimating RUL for lithium-ion batteries based on various 

parameters and conditions. It includes the number of charge-discharge cycles the battery has undergone since its 

first use and battery capacity data. Current, voltage and internal temperature data, which affect the internal 

functionality of the battery, are critical for battery capacity estimation, as are temperature data related to 

environmental factors. The dataset parameters provide the necessary data for accurate estimation of RUL, while also 

providing input to proactive maintenance plans related to operational requirements that will ensure safe and efficient 

operation of BMSs. 

 
Figure 1. Data analysis chart 

Figure 1 compares the voltage, current and temperature profiles of a new cell (cycle 1) with an old cell (cycle 

2000), highlighting changes due to capacity deterioration and increased internal resistance with the number of 

cycles, i.e. usage. While the new cell performs consistently and as expected, the old cell operating at cycle 2000 

shows inconsistent and erratic performance. Complementary variable data such as changing load characteristics and 
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time in use enhance the dataset by reflecting the details of operational demands and evolving cycle-specific 

behaviors, while flag information indicates critical events in charge-discharge cycles for accurate analysis. This 

comprehensive dataset facilitates the creation of machine learning models that predict SoH and RUL as close as 

possible to the truth, and improves battery management systems for improved reliability, performance and proactive 

maintenance in battery application areas such as electric vehicles and energy storage systems [17,23]. 

 

Figure 2. Correlation Matrix of Battery Dataset Variables 

Figure 2. shows a correlation heat map analyzing the linear relationships between various variables used in 

industrial processes. Correlation coefficients range from -1 to +1, and are expressed in shades of red for positive 

correlation and blue for negative correlation. A correlation coefficient of +1 indicates a perfect positive relationship 

between two variables, while a correlation coefficient of -1 indicates a perfect negative relationship. However, the 

findings show that the correlations between the variables are largely low and there is no clear linear relationship. 

This indicates that the data considered may have more complex and non-linear relationships[10,24]. 

In particular, the negative correlation of -0.23 between cycle and capacity indicates that the capacity decreases 

with the increase in the number of cycles, and the positive correlation of 0.09 between flag and current_load 

suggests that under certain conditions, an increase in the load amount may affect the flag variable. However, the 

correlations between other variables are generally close to zero, indicating that there is no significant linear 

relationship between these variables. A detailed examination of the correlation matrix suggests that effective and 

reliable prediction can be achieved with the use of nonlinear models, especially advanced machine learning methods 

such as decision trees, support vector machines or neural networks. 

2.2 Methods 

The RUL estimation of lithium-ion batteries has emerged as a critical issue in energy storage and management 

systems, considering their safety, reliability, and sustainability implications. Lithium-ion batteries are widely used in 

electric vehicles, energy storage systems, and consumer electronics products [15,16]. Depending on usage, batteries 

experience capacity changes due to complex chemical and physical problems, including electrolyte decomposition, 

formation of electrode surface films, and structural degradation. The challenges brought by these degradation 

mechanisms are important parameters for prediction models that require advanced computational methodologies. 

While traditional physics-based models provide valuable information about fundamental electrochemical processes, 

they have difficulty in calculating the variability parameters present in real usage scenarios [24]. Machine learning 
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algorithms and statistical approaches have gained importance in understanding nonlinear data and ensuring 

relationality. Random Forest (RF) and Gaussian Process (GP) algorithms are effective in quantitative measurement 

of uncertainty in nonlinear data sets. Optimization techniques such as Levenberg-Marquardt (LM) and Scaled 

Conjugate Gradient (SCG) combined with Bayesian Regularization (BR) technique minimize the risk of overfitting 

and are known to increase model accuracy. RUL estimation algorithms increase the possibility of BMS monitoring 

and enable the achievement of sustainable operational processes with safe, efficient and proactive maintenance 

plans. 

 

The LM algorithm is an algorithm developed from the Gauss-Newton approach used for estimating parameters in 

nonlinear problems. The Gauss-Newton approximation efficiently determines the least squares problem with linear 

approximation. The LM algorithm, which is a version of the Gauss-Newton technique that stands out in the 

difficulties regarding the acceptable accuracy of the result; applies a correction factor during estimation. With this 

factor, the relativity of nonlinear problems is increased. When the factor is minimum; linearity decreases and the 

result accuracy moves away from reality. Thanks to this factor, the LM algorithm performs optimization by 

integrating linear and nonlinear parameters. The optimization approach and the minimization of the error are 

provided by the continuous change of the parameter, which is the correction factor. The LM algorithm is widely 

used in nonlinear data sets, regression analysis and optimization problems [25,26,27]. 

 

The SCG algorithm stands out as an optimization technique used to specify function parameters and is widely 

used with machine learning algorithms and artificial neural network models. SCG, which uses gradient-based 

techniques and is based on iteration of optimization, works with the approach of determining the minimum values of 

function parameters. SCG, produced from the Conjugate Gradient (CG) technique, increases the speed and accuracy 

of the optimization function with the factor called the scaling factor. The factor assigns values to determine the 

effect of the parameters on the function and is used for adjustments such as gradient calculations, parameter 

adjustments and parameter updates. The SCG technique offers fast convergence without critical computation or high 

memory demands and is useful for problems with large parameter details. In summary, the SCG algorithm, unlike 

the CG algorithm, has a scaling factor, thus; is a gradient-based optimization technique used to determine fast, stable 

and optimized function parameters [28,29,30]. 

 

The BR technique is a statistical methodology and a technique that reduces the overfitting problem encountered in 

regression models by applying the Bayesian framework. The overfitting problem is defined as the situation where a 

regression model fits the training data correctly but shows poor generalization ability and as a result leads to 

insufficient prediction accuracy in new data (test data). The BR approach reduces the overfitting problem by 

referencing the basic principles of Bayesian statistics. BR techniques provide more stable and reliable predictions by 

improving the generalization abilities of regression models [31,32]. 

 

The RF, a powerful ensemble learning technique, is extensively employed in regression and classification 

applications owing to its proficiency in generalization through the aggregation of predictions from numerous 

decision trees. Nonetheless, overfitting remains a significant concern to other machine learning models, especially 

when the model encounters noisy or insufficient input. Methods such as BR are essential in alleviating these 

problems. By implementing prior distributions on the model parameters and progressively refining these priors 

using the data, BR guarantees that RF models attain a balance between fitting the training data and preserving their 

capacity to generalize to unseen data. This adherence to Bayesian principles allows RF to deliver more consistent 

and dependable predictions in contexts such as battery RUL estimates, where consistency in predictions is essential 

[33]. 

 

The GP models are for RUL prediction problems because of their non-parametric characteristics and intrinsic 

ability to quantify uncertainty. Notwithstanding their adaptability, GP models may experience overfitting, especially 

in high-dimensional or sparse datasets. BR methods tackle this issue by integrating prior knowledge into the model 
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training procedure. By establishing hyperparameters hyperparameter distributions and optimizing the marginal 

likelihood, Bayesian Regression facilitates the balance between model complexity and fit. This regularization 

enhances the GP model's generalization capacity, allowing it to deliver dependable forecasts and uncertainty 

bounds, which is particularly beneficial for essential applications like battery RUL forecasting [34,35]. The 

algorithm details of the models used in the study by correlating with different features are given in Table 2 and 

Table 3. 

 
Table 2. LM – BR – SCG Model Details 

Model Details 

Algorithm/Model Hidden Layer Size Epoch 

Division of Data for 

Training, Validation, 

Testing (Holdout 

validation) 

Levenberg-Marquardt  10 

Automatically determined by 

Levenberg-Marquardt 
backpropagation algorithm 

(trainlm) 

Train : %70 

Validatin: %15 

Test: %15 

Bayesian-Regularization  10 1000 

Train : %70 

Validatin: %15 
Test: %15 

SCG  10 1000 
Train : %70 
Validatin: %15 

Test: %15 

 
Table 3. GP - RF Model Details 

Model Details  

Algorithm/Model Functional Details 

Division of Data for Training, 

Validation, Testing (Holdout 

validation) 

Gaussian Process Kernel RBF Function 

Train : %70 

Validatin: %15 
Test: %15 

RF 
n_estimators:100 

(Number of Trees) 

Train :%70 
Validatin: %15 

Test: %15 

 

2.3 Performance Metrics 

In this study, we employ regression metrics to evaluate the performance of our predictive model, focusing on the 

continuous nature of the output. The selected performance metrics R² (coefficient of determination), Mean Absolute 

Error (MAE), Mean Absolute Percentage Error (MAPE) and Mean Square Error (MSE) allow for a comprehensive 

assessment of the accuracy of the prediction algorithms and models. The selected performance metrics provide 

different quantitative assessments of the models 

 

R² (Coefficient of Determination): R² quantifies the probability that the selected dependent variable variance can 

be predicted by the independent variables and represents the comprehensiveness of the model [37]. 

 

𝑅2 = 1 −
∑(𝑦𝑖 − 𝑦�̂�)2

∑(𝑦𝑖 − 𝑦�̅�)2                                                                                                                                      (1)[37]                           

 

Mean Absolute Error (MAE): MAE is the average of model prediction errors and is a simple measure of model 

accuracy [36]. 

 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 −  𝑦�̂�|

𝑛
𝑖=1                                                                                                       (2)[36] 
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Mean Absolute Percentage Error (MAPE): MAPE is the percentage value of model prediction errors and allows 

comparison of model accuracy over different scales [36]. 

 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦𝑖 − 𝑦�̂�

𝑦𝑖
|𝑛

𝑖=1 𝑥100                                                                                              (3)[36] 

 

Mean Squared Error (MSE): MSE is a measure that allows the evaluation of average errors by squaring the 

differences between model estimates and dataset values. Its weight increases according to model deviations [37]. 

 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑛

𝑖=1 𝑦𝑖 −  𝑦�̂�)
2                                                                          (4)[37]                           

 

Performance metrics provide a balanced perspective in evaluating algorithms or models. R² shows how well the 

model captures the variance, MAE and MAPE provide insights into the average prediction error, and MSE evaluates 

more significant deviations. Using these performance metrics collectively allows the model to be evaluated from 

different aspects, allowing for selection and improving algorithms for improved accuracy. 

A confusion matrix will be created for each method for the execution of the algorithms determined within the 

scope of the study and for the evaluation of performance metrics. 

3. EXPERIMENTAL RESULTS 

This study evaluates the results of LM algorithm, SCG technique, BR technique, RF algorithm and GP model 

used to estimate battery RUL. The aim of the study is to contribute to the efficient management of battery systems 

and to formulate strategies to increase the sustainability of energy storage system technologies. Input parameters 

from the “Battery Dataset” provided by NASA Ames Prognostics Data Repository are used to estimate the RUL of 

batteries. This study for RUL estimation independently runs multiple algorithms and models including LM 

algorithm, SCG technique, BR technique, RF algorithm and GP models and evaluates the accuracy of the models 

with the same performance metrics. 

 

The SCG model performance metrics were obtained as 1.098% MAPE, 0.9823 R², 0.0019 MSE and 0.0302 MAE. 

These metrics used for RUL estimation have the potential to contribute to the effective management and reliability 

of energy storage systems. The performance metrics obtained from the models used in the study are detailed in 

Table 4. and Table 5. to evaluate the metrics of the training and test data sets. 

 

In the next phases of this research, the performance metrics of the algorithms will be evaluated and improved for 

more accurate and reliable estimation of RUL. The models used in the research, which consist of optimization 

methods such as RF algorithm, GP model, LM algorithm and SCG technique, will be rigorously evaluated on the 

basis of estimation accuracy and computational efficiency. Comparative analyses will be performed to compare 

these algorithms with the methods frequently used in the literature, and the study will be advanced on solving the 

problems such as overfitting, uncertainty quantification, and adaptability to various operating environments. It is 

expected that these research findings will improve the methodological frameworks and significantly improve the 

RUL estimation with insights into the practical use of machine learning techniques in battery health monitoring 

systems. 
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Table 4. Train Dataset Obtained Results 

 

Algorithm/Model 

Performance Metric Results 

MSE MAE MAPE (%) R-Squared 

Levenberg-Marquardt  0.0021 0.0348 1.215 0.9789 

Bayesian-Regularization  0.0020 0.0315 1.140 0.9798 

SCG  0.0017 0.0295 1.100 0.9825 

Gaussian Process 0.0021 0.0332 1.1214 0.9789 

RF 0.0016 0.0287 1.072 0.9854 

 

Table 5. Test Dataset Obtained Results 

 

Algorithm/Model 

Performance Metric Results 

MSE MAE MAPE (%) R-Squared 

Levenberg-Marquardt  0.0023 0.0356 1.243 0.9756 

Bayesian-Regularization  0.0021 0.0321 1.150 0.9795 

SCG  0.0019 0.0302 1.098 0.9823 

Gaussian Process 0.0027 0.0365 1.324 0.9735 

RF 0.0020 0.0311 1.115 0.9807 

4. CONCLUSION 

This study demonstrates that machine learning techniques have significant potential in accurately predicting 

battery life, providing remarkable advances in battery management systems and energy storage technologies. The 

findings, especially with the low performance metrics obtained in the training and testing stages of the SCG model, 

reveal that machine learning methods provide higher accuracy and precision compared to traditional mathematical 

methods. In this direction, the effective use of machine learning algorithms constitutes a reference for significant 

developments in areas such as electric vehicles and energy storage systems, where battery life extension, energy 

efficiency and safety are of critical importance. 

The performance of the machine learning-based algorithms used in this study was evaluated by comparing them 

with similar studies previously conducted in the literature. The obtained results show that especially RF and SCG 

models are comparable to methods such as LSTM, RNN, and GPR, which are widely used in the literature for 

battery life prediction, and even superior in some metrics. The RF model achieved the lowest error rate with an MSE 

value of 0.0016 in training and 0.0020 in testing, while the SCG model outperformed many models reported in the 

literature with an MAE of 0.0295. The superior performance of the RF model can be attributed to its ability to 

capture complex nonlinear relationships and interactions between battery parameters, while SCG's efficiency is 

likely due to its second-order optimization strategy, which accelerates convergence in training. In addition, when 

evaluated in terms of R² value, the RF model achieved the highest determinism with an R² value of 0.9854 in 

training and 0.9807 in testing, indicating that it is a strong model for battery life estimation. On the other hand, 

LSTM-based models generally exhibit an MAE value of 0.0210 and above in the literature, while the SCG and RF 

models in this study achieved lower error rates. This could be due to the tendency of LSTMs to require extensive 

hyperparameter tuning and large datasets for optimal performance, whereas RF and SCG are more robust with 

limited data. However, deep learning models like LSTM and RNN might still be preferable in scenarios involving 

highly time-dependent degradation patterns, where sequential modeling plays a critical role. As a result, the MSE, 

MAE, MAPE, and R² values obtained in this study exhibit competitive performance compared to previous studies, 
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indicating that the proposed methods support the potential for use in battery management systems and energy 

storage technologies. 

However, some limitations, such as the fact that the dataset used is based on only a specific battery type and 

hyper-parameter optimization is limited, may have negative effects on the generalizability of the obtained results. 

Therefore, it is recommended that future research focus on conducting comparative analyses of different machine 

learning techniques to optimize RUL prediction, developing algorithms by dividing the dataset at different rates and 

with cross-validation, and including parameters representing various battery types. In addition, it is important to 

integrate different datasets and develop hybrid models on these datasets to overcome the limitations of estimations 

based on only one dataset. Hybrid models can provide higher accuracy and generalization capacity by combining 

machine learning algorithms with physical models and statistical approaches. When this approach is supported by 

hybrid datasets representing the characteristics and usage conditions of different battery types, it will contribute to 

obtaining more robust and reliable results in RUL estimations. 

In addition, hyper-parameter optimization and direct comparisons with traditional mathematical models will 

ensure that the obtained results are based on more solid foundations. As the continuous developments in battery 

technologies and the demand for electric vehicles continue to accelerate, the development and use of machine 

learning methods in both industrial and academic contexts is of great importance. The positive impact of machine 

learning methods on battery management emphasizes the need for continuous research and improvement in RUL 

estimation aimed at meeting the changing demands in the framework of energy storage systems and sustainability. 

In this context, the implementation of the proposed improvements will not only provide higher accuracy and 

reliability in RUL estimation, but will also increase the acceptance of machine learning methods in industrial 

applications. 
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