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Improving Long Non-Coding RNA Prediction through Recursive
Feature Elimination and XGBoost

Highlights
< Presenting a robust machine learning pipeline for distinguishing IncRNA sequences from protein-coding
RNAs (messenger RNAS).

7

« Employing recursive feature elimination as the feature selection algorithm to address the dimensionality
issue of the feature dataset.

«* Accessing higher predictive performance in the context of INcRNA prediction compared to three established
IncRNA prediction tools in the literature.

Graphical Abstract

We followed several steps and employed some machine learning algorithms as it is seen in bellow Figure to predict
IncRNA sequences.
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Figure. Proposed pipeline for IncRNAs prediction.
Aim
This study aims to distinguish IncRNAs from mRNAs by designing a robust machine learning pipeline.
Design & Methodology

As IncRNAs feature dataset, We utilized the INCRNA feature dataset from an existing research paper in the literature.
To address the dimensionality issue, we applied the Recursive Feature Elimination (RFE) algorithm. Subsequently,
we employed various machine learning classification algorithms to predict InCRNAs.

Originality
While most of studies in the literature often employ deep learning or design novel decomposition models to reduce

dimensionality and achieve high accuracy in predicting INCRNAs, our study proposes a robust pipeline using existing
machine learning algorithms, which demonstrates higher accuracy rates than most of them.

Findings

Recursive Feature Elimination (RFE) with XGBoost Classifier achieved the highest accuracy rate (92.57%) compared
to combinations of RFE with other classifiers used in this study.

Conclusion

This study amied to distinguish IncRNAs from protein-coding RNAs by empolying RFE algorithm as features selection
algorithm and SVM, NN, REPTree, LR and RF as classifiers. Concequently, combination of RFE and RF has gained
the higherst accuracy rate of 93.42%.

Declaration of Ethical Standards
The authors of this research paper state that the materials and methods used in this study do not require ethical
committee permission and/or legal-special permission.
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ABSTRACT

In recent years, advancements in high-throughput technologies have uncovered numerous cor@!l
Ribonucleic Acids (ncRNAS), shifting the protein-centric view of genomes. NcCRNAs, previously consi

aims to distinguish these two RNA classes from each other by designing g
Recursive Feature Elimination (RFE) for dimensionality reduction of dataset

IncRNA identification tools in the literature, our pipeline demgnstrated

94.19% respectively. [
Keywords: Recursive Feature Elimination, XGBoost, IncR

Tekrarlayan Ozellik [Eli
Uzun Kodlamayaf R

F1 puanini kullal
%94,19'da {istiin tahmin dogrulugu ve kesinlik gosterdi.

. Long non-coding
y biological functions,

#arities between INcCRNAs
as INcRNAs do not. This study

wand F1-score. Compared to three existing
i@aprediction accuracy and precision at 93.42% and

atics, Machine Learning.

nasyonu ve XGBoost ile
ahmininin yilestirilmesi

0z

saglam bir makine 6grenimi (ML) boru hatti tasarlayarak bu iki RNA sinifini birbirinden ayirmayi
alismalar, veri kiimesi 6zelliklerinin tamamini kullanarak makine grenimi modellerini egitmis ve test

. Literatiirdeki {ic mevcut IncRNA tanimlama araciyla karsilastirildiginda, boru hattimiz sirasiyla %93,42 ve

Anahtar Kelimeler : Ozyinelemeli Ozellik Giderme, XGBoost, IncRNA'lar, Biyoinformatik, Makine Ogrenm.

1. INTRODUCTION

Over the past few years, there has been considerable
progress in handling and interpreting biological data
[1][2]. Advancements in high-throughput technologies
have uncovered numerous concealed layers known as
Non-Coding Ribonucleic Acids (ncRNAs), situated
between transcription and translation processes. These
RNAs are not translated into proteins [3]. NcRNAs, once
considered as transcriptional noise [4] because of their

*Sorumlu Yazar (Corresponding Author)
e-posta : Freshta.Alizada579@gmail.com

poor conservation [5] and insignificant segments of
genomes, in recent years, have emerged as essential
functional components in both prokaryotic and
eukaryotic organisms [6]. NcRNAs have become one of
the stars of modern biology [7]. NcRNAs are commonly
categorized into two primary groups based on transcript
length. Small Non-Coding RNAs (sncRNAs) refer to
shorter sequences [6], while Long Non-Coding RNAs



(IncRNAs) are designated for transcripts longer than 200
nucleotides [6-11] and have no protein potential [3, 4],
[8], [12, 13]. The initial set of INcRNAs was identified
about two decades ago [14]. As research has advanced,
IncRNAs, previously dismissed as dark matter or
insignificant, have gradually come to light. In 2007, Rinn
et al. from Stanford University initiated formal IncRNA
research with an article published in Cell, marking a
significant starting point [15]. Recent studies have
underscored the pivotal role of IncRNAs in crucial
biological processes such as cellular differentiation,
epigenetics [11], and regulation [1, 3], [6]. Additionally,
IncRNAs have been implicated in gene expression [3], [6,
71, [12], [16], [17], translation, transcription [18], and the
pathogenesis of complex diseases [16]. Differentiating
between protein-coding transcripts (i.e., messenger
RNAs) and IncRNAs proves to be a surprisingly
challenging task in practice [19] because IncRNAs and
mRNAs share similarities in their sequence lengths, poly
(A) tails, and splicing structures. Additionally, INCRNAs
occasionally tend to encode long open reading frame
(ORF) [12] and the primary distinction between
IncRNAs and mRNAs is the absence of discernible
coding potential in IncRNAs [20]. Consequently,
distinguishing between INcRNAs and mMRNAS remains a
challenge. A variety of computational algorithms have

been proposed in recent years to distinguish betweeiy
®

IncRNAs and mRNAs [12].
More information on existing methods for differentiatin
them and the current study will be given in the e
works section.

1.1 Related Works
Approximately 2% of the human genol

ncRNAs [21, 22]. Consequently,dl is large
part of the genome from prot RNASs) helps
scientists delve deeply mto lutions for

machine learning (V¥
integrate biologi

intrinsic complexity behind

their hu causes the existence of high-
dimension ingompleteness, bias, heterogeneity,
dynamism, noise.  Conversely,  numerous

bioinformatics Applications utilize ML algorithms for
analyzing sequence data. Since most ML algorithms
accept numerical data, sequences have to be transformed
into numbers. To avoid long sequences of numbers, the
most efficient approach is choosing relevant features
from the sequences.

Relevant features selected in various studies include:
Guanine and Cytosine (GC) content, sequence length, k-
mer (k=1 up to 6), and open reading frame (ORF) [1]; k-
mer (k= 1 up to 5), sequence-order, and correlation
coefficient factors [12]; sequence features such as k-mer
(2-15), CG content, and structured features including
binary and Quadri nary representations, as well as

minimum free energy [3]; k-mer frequency features and
spectrum features [24]; weighted k-mer ( k=1 up to 3),
pseudo nucleotide composition, hexamer usage bias,
Fickett score, ORF, UTR regions, and HMMER score
[21].

During recent years, many different computational
algorithms have been developed for differentiating
IncRNAs. These include: Decomposing model for
feature selection in IncRNAs [1], IDIncRNA using ML
algorithms [3], LNCRI [21], NCYPred [6], LncDLSM
[24], ncRFP [16], LPGNMF [17], FexRNA [25],
IPCARF [26], RFLDA [27]. These tools applied machine
learning algorithms across multiple species, particularly
plants, humans, and animals. This appf@ach has provided
enhanced insights into INCRNAs. Acco

features
IncRNAs,

ensional feature
of dimensionality
e performance of ML
], the process of feature
step aimed at identifying the

dataset contributes
problem, whic
algorithms®

fundamental objective of FS is to
the data, thereby mitigating the risk
d improving the predictive performance
. Consequently, FS involves selecting a
pr Bubset of features that exhibit superior or
garable predictive performance, particularly in the
atExt of predictive modeling (supervised models). By
utlllzmg fewer features, ML algorithms improve their
ability to generalize across heterogeneous datasets,
reduce computational costs, and simplify the model's
complexity.

To distinguish INcRNAs from mRNAs, the existence of
high-dimensional feature datasets has led us to pursue
efficient FS techniques. In academic literature, there are
multiple approaches using different FS techniques to
reduce the dimensionality of feature datasets for
biological data classification. For instance, [1] (reduced
from 5468 to 10 IncRNAS) reports experiments using
Metaheuristics and a decomposition model containing
rounds and a voting scheme, [24] (reduced from 1355 to
8 IncRNAS) describes the use of the hierarchical neural
network (HINN) algorithm for FS, and [23] (reduced
from 3435 to 234 IncRNAS) reported using Tree-based,
L1-based, and Variance threshold algorithms for FS.[25]
used 7 different FS algorithms (e.g., for the Filter-based
FS category, chi-squared is used. For wrapper-based,
RFE using random forest (RF), RFE using logistic
regression, RFE with k-fold cross-validation using LR
and RF models are used. Finally, for the embedded FS
category, embedded based on LR and RF classifiers are
used) and applied them on 17 extracted features of
IncRNAs. However, we observed a lack of studies
focused on FS using RFE for high-dimensional datasets
of IncRNAs.



RFE has been employed in numerous studies as a feature
selection (FS) technique and has consistently yielded
favorable outcomes. As reported in [25], in CPC2, a list
of 23 features is compiled. Subsequently, the RFE feature
selection technique, in conjunction with 10-fold cross-
validation, is applied to this set of candidate features. The
outcome of this process is the selection of 4 features
deemed as the most significant for estimating the coding
potential of a transcript. Similarly, in the case of CPC2,

[25] applies RFE to its extracted 17 features to identify

the most relevant features providing sufficient

information about IncRNAs. Therefore, based on the
successful results of RFE in previous works with small
numbers of features, we propose using RFE on high-
dimensional datasets of IncRNAs to identify the best
features. In our approach, we employed RFE on a dataset
with a dimensionality of 5467 features. Furthermore, we
examined the impact of the features chosen by the
decomposition model on the predictive performance of
three ML algorithms: J48, REPTree, and Random Forest,

in the classification of InNCcRNAs task. According to [1],

we selected these machine learning algorithms because

they generate interpretable predictive models, enabling a

deeper understanding of the internal decision-making

mechanisms. As a result, domain experts can verify the
knowledge employed by the models for classifying new
sequences. The main contributions of our work are: @

e Presenting a robust machine learning pipeline ®
distinguishing IncRNA sequences from protei
coding RNAs (messenger RNAS).

e Employing recursive feature eliminationf as
feature selection algorithm to addr
dimensionality issue of the feature set.

e Accessing higher predictive performagce in the
context of IncRNA predictj to two

the

methods in section 2, expefiments,
in section 3, and con i

2. MATERI

In this research paper, we outline our
method pRrogth crafted to attain the intended
aims. To o objective we integrated machine
learning metho igure 1 summarizes our methodology
in this study.

2.1 Dataset

The dataset utilized in this study, sourced from recent
literature [1], comprises 18,040 RNA sequences (i.e.,
9020 IncRNAs and 9020 mRNAs) from five species:
Arabidopsis thaliana, Cucumis sativus, Glycine max,
Oryza sativa, and Populus trichocarpa. Each species
contributes 1,804 IncRNA sequences and 1,804 mRNA
sequences. Within this dataset, two classes are identified:
the positive class, consisting of IncRNAs, and the
negative class, consisting of protein-coding genes
(mRNAs). The IncRNA data were obtained from two

public databases, PLNIncRbase and GreenNC (as
described in [1]), while the mRNA sequences were
extracted from Phytozome (further explanation is
provided in [1]).

Split Data
A4 Y
80% Training ‘ 20%Testing
Dataset Dataset
) 4
< | Feature Selection
> Optimal Features
v

ML Model Training
Y Y
ML Model Testing

h 4

Prediction Results

\ 4

Performance Evaluation

\FTgure 1. Our methodology diagram

art of the data preprocessing, sequence redundancy
o eliminated at 80% identity using CD-HIT-EST
(more description in [1], [21]), and only sequences longer
than 200 nucleotides were retained. To construct the
feature vector and extract the most relevant features, four
indicators—Guanine and Cytosine content or GC
content, k-mer (k= 1 up to 6), sequence length, and
ORF—were considered [1]. As a result, four feature
vectors were derived for each sequence in the dataset,
including GC content with 1 feature, k-mer frequencies
with 5460 features, sequence length with 1 feature, and
ORF with 5 features.
According to [28], combining multiple feature sets into a
single, joined feature vector preserves the unique
discriminating information from each original set while
reducing redundancy caused by correlations between
different sets. This approach enhances the robustness and
predictive performance of models. Therefore, all four
feature vectors were concatenated, resulting in a dataset
with 18,040 rows and 5,467 columns. In previous studies
[5] and [21], training and testing datasets were split using
70:30 and 80:20 ratios, respectively. Following the
approach in [21], we used an 80:20 split, where 80% of
the dataset was used for training and 20% for testing, as
illustrated in Figure 1.
2.2 Feature Selection
Feature selection involves identifying relevant subsets of
features within a dataset [29][30]. As the more features
in a dataset means the more expensive and time-
consuming computational complexity and our used
dataset [1] is with dimension 18040 x 5467, Choosing the



most relevant features through feature selection (FS) is
crucial for enhancing the performance of any MI
algorithms [25]. Therefore, we decided to apply the
wrapper method (i.e., Recursive Feature Elimination) for
FS to reduce the high-dimensionality problem of dataset.
2.2.1 Recursive feature elimination
RFE is a backward feature selection algorithm
categorized under Worapper methods, wherein it
recursively reduces the feature set size using a specific
underlying algorithm to choose features [31]. The RFE
selection method involves a repetitive process where
features are ranked based on their importance. During
each iteration, the importance of each feature is assessed,
and the least relevant feature is removed. This process
continues until reaching the desired number of features
which is declared by programmer [32].
For instance, if there is a dataset which has N features
such asfi, f,, f3,--- fn , therefore, the importance of each
feature is gained according to equation (1)

T
FI(fl) :ZL=1ATGt(fL) (1)
Where FI refers to feature importance, AG.(f;) is the
reduction in impurity for feature f; in tree t, and T is the
total number of trees in the random forest.
Then features are ranked and according to equation (2)
the feature with the least importance is deleted.
F =F — {fieast}
Where F is the set of all the features and fi.,; is the lea
important feature.
2.3 Evaluation Metrics
In our study, the success percentages of ML aldorith

were assessed by five measures: recall (RE) [23],
accuracy (ACC), precision (PR), F1-scogg (F1)

error rate (ER). These measures were utilfegd to assess
the ML model’s predictive per testing
dataset. Four quantitative varial (TP),
true negative (TN), false positj e negative
(FN)—were computed for [33] where,

correctly predicted
where negative

rrectly predicted as
negatives where positive

ed as mMRNAs
(3)
4)
Precision =
recision = ———0p T FP )
TP
Recall = 7 (6)
Error Rate = 1 — Accuracy (7

2.4 McNemar’s Test

There are different statistical methods such as Wilcoxon
signed-rank test, R test, J test [34], and McNemar’s test
[35] to assess and determine the statistical significance of
predictive performance between binary classifiers.
Therefore, the best binary classification models can be
identified from a statistical standpoint.In this study, the

29

same of literature [35] we employed McNemar’s test to
evaluate the predictive performance between all the
classification models used to classify IncRNAs and
mRNAs. According to this literature, McNemar’s test is
a non-parametric method which is employed to assess the
error rates of two binary classifiers applied on the same
dataset. It determines whether the difference in predictive
performance between two binary classifiers is
statistically significant. McNemar’s test formula is given
in equation (8).

¥ = (Inyo — nos| — 1)°

Ny t Moy

If we consider A and B as two bi
models, in equation (8), x? represen

®

ry classification
cNemar’s test

the differences between the
isbi€ally significant, this
alue for each pairwise

ph 3.11.4) and PyCharm (Version 2022.2.2
e development environment. To achieve
al performance in training and prediction from the
Pine learning models, we employed the grid search
od for hyper-parameter tuning. The hyper-
parameters located in Table 1 were determined through
grid search for our ML models.

3.2 Feature Selection Process

In our study, we employed RFE with Random Forest as
the underlying estimator to train the model with all
features. We applied RFE to our training dataset with the
purpose of reducing the dimension of it . The same of
literature [1], the desired number of features which
should be found by RFE in our case was set to 10 as well.
Table 2 presents the 10 optimal features which were
extracted by RFE and the best decomposing model of
literature [1]. According to Table 2, it is significant to
highlight both algorithms has extracted score and
cdsSizes features jointly in their optimal feature datasets.
3.3 Training and Testing Phase

In order to assess the efficiency of the optimal features
extracted by the RFE FS algorithm, we had to choose an
optimal classifier. Therefore, we chose six state-of-the-
art classification algorithms which work perfect in binary
classification task such as, REPTree [1][10], Random
Forest [36],[37],[38][39] Support Vector Machine
(SVM)[19] [36],[40],[41] Logistic Regression [36],[42],
and Avrtificial Neural Network (ANN) [43][44][45], and
XGBoost (XGB) [21]. We trained them using the RFE’s
optimal features dataset. Then, to evaluate the prediction
performance of each ML model, we used testing dataset
to assess the prediction performance of each ML model
and recorded the results.



Table 1. lllustrates the hyper-parameters for utilized classifiers in this article.

Model Parameter Value
bootstrap true
max-depth 10
Random Forest mean-samples-leaf 4
mean-samples-split 2
n-estimators 100
c 0.001
max-iter 100
Logestic Regression
penalty
solver newt
c 1
Support VVector Machine gamma ® 1
kernel \ lin€ar
activation . logistic
alpha W 0.001
o hidden-laye™®&izes \ 10
Artificial Neural Network
learning \ constant
adam
200
entropy
REPTree A °
mples-leaf 1
in-samples-split 2
colsample-bytree 0.8
learning-rate 0.01
XGBoost max-depth 3
subsample 0.8
n-estimators 50

Table 2. Featurfﬂwed b and M1-GA
FRE M1-GA
AC GTCCCC
GG CCGGCA
TA CGCCTC
TT CGGAGT
GGA CGTTAG

tamanho CTAGGT
cdsStop GGGGGG
score score
cdsSizes cdsSizes
cdsPercent TCACGG

As shown in Table 3, SVM demonstrates the lowest
performance among the models,

with an ACC of 92.07% and PR of 86.45%. Following
SVM, the performances of ANN, LR, and REPTree are

also relatively lower, with accuracies of 92.12%, 92.37%,
and 93.37%, respectively, and corresponding precision
values of 92.48%, 87.45%, and 94.12%. The highest
performance is owned by both RF and XGB models, with
the same accuracy (ACC) of 93.42%. However, XGB
was chosen as the best algorithm due to its precision (PR)
of 94.19%, slightly outperforming RF, which has a
precision of 94.17%.

In addition to computing the evaluation metrics, we
conducted McNemar’s test to statistically assess the
classification models and identify the most effective one
to be used in conjunction with the RFE feature selection
algorithm. Table 4 contains the results of McNemar’s test
for all the pairs of classifiers and the values which are
statistically significant are shown in bold. According to
the received results from Table 4, RF, REPTree and
XGBoost Classification models’ predictive
performances are not so different because the p-value



between them is not smaller than 0.05 and RF and we introduced RFE feature selection combined with
XGBoost classification models’ predictive performances ~ XGB as the optimal model for our study because of the
are almost the same because the result is infinite. superior performance that it had in precision and

Consequently, although according to McNemar’s test RF outperformed the RF model.

and XGBoost predictive performances are the same,

Table 3. Depicting the prediction performance of ML models trained with RFE’s optimal features, on test dataset. In this table
the highest and the lowest values are bold for more visibility

Features Reduction

. ML Prediction Algorithm ER ACC PR Recall F1 score
Algorithm
Random Forest 6.57%  93.42% 94.17% 93.542% 93.40%
REPTree 6.62%  93.37%  94.12% 93.37' 93.34%
SVM 7.92%  92.07%  86.45% 9.77%\ 92.64%
RFE ,

ANN 7.62%  92.37% 87.45% .84%
LR 787%  92.12% 92. 92.09%
XGB 6.57%  93.42% QA 93.40%

Model Performance Comparison
Precision

RF
LR
REPTree
SVM
NN

XGB

Recall ‘ ‘ - | | »|Accuracy

F1-Score

ure 2)Fadar chart showing the performance of ML models based on ACC, PR, Recall and F1-score

Table 4. McNemar’s results between all the pairs of binary classification models’ predictive performances.
p-value < 0.05

Classifiers RF LR REPTree SVM ANN XGBoost
0.0001 0.4795 0.0001 0.0001 infinite

0.0001 0.8802 0.0077 0.0001
0.0001 0.0001 0.4795
0.1183 0.0001

REPTree

XGBoost




3.4 Evaluation with Other Classifier Tools

To evaluate the performance of our best model (i.e., RFE-
XGB), like article [16], we compared it with two tools in
the literature: M1-GA [1] and IPCARF [26]. As mutual
dataset between our proposed method and the two other
methods mentioned before, we utilized our dataset which
is detailed in Section 2. For each tool, we utilized the FS
classification models as described in their respective
methodologies. To ensure a fair comparison, we used the
same 80:20 ratio for training and testing datasets as in our

Table 3. Comparison of RFE-XGB algorithm performance with two literature tools. The highest and lo

proposed method, RFE-XGB. The results of this
comparison are presented in Table 3.

As shown in Table 3, RFE-XGB achieved the highest
values for ACC, PR, Recall, and F1-score, as well as the
lowest ER, demonstrating the success of our model in this
study. Figure 3 illustrates the ROC curve, depicting the
prediction performance of our proposed method
alongside the two other tools on the testing dataset.
Notably, the performance of M1-GA and RFE-XGB is
very close, while IPCARF exhibits the lowest prediction
performance on the testing dataset.

st values are

highlighted in bold for clarity.

Tools ER ACC PR Recall F1 score
RFE-XGB 6.57% 93.42% 94.19% 93.42% ®° 10
M1-GA 6.65% 93.34% 94.1% 93.34%
IPCARF 11.77% 88.22% 88.68% 88.22%& .19%
Y
1o ROC Curve of Our Model with Other Tools
. —
//
//
0.8 /’
g ,/’/
& 0.6 L
2 7
g .
o 0.4 -7
= e
I/,
021 /’ —e— RFE-XGB (AUC = 0.93)
’ PR —8— M1-GA (AUC = 0.93)
/’ —e— IPCARF (AUC = 0.88)
= = Random Guessing
0.0 r . : .
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
Figure 3. RO omp. 's{n between RFE-XGB and two other IncRNAs identification tools.

4. CONCLUSION
In this study,
machine learni

a” validated and robust
line to¥feduce the dimensionality
d mRNAs and accurately
m. We utilized a dataset from
ich consists of 5,467 features of
NAs from five plant species. To
identify the 4Mnost relevant features and reduce
dimensionality, we employed the RFE algorithm,
extracting the 10 most relevant features. For
classification, we evaluated six machine learning
classifiers: RF, REPTree, ANN, SVM, LR and XGBoost.
Among these, XGBoost demonstrated the best prediction
performance on the testing dataset and was selected as
the optimal classifier to pair with the RFE algorithm.

To assess the effectiveness of our pipeline, we compared
its performance with two other IncRNA identification
tools from the literature. As shown in Table 3, our
method outperformed these existing tools, achieving
higher percentages in ACC, PR, recall and F1-score.

One limitation of this work is the exclusive use of
machine learning classification algorithms. As future
work, we plan to integrate RFE with deep learning
classifiers and evaluate their performance. The findings
of this study have the potential to be further utilized in
advancing IncRNA prediction methodologies.
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