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Improving Long Non-Coding RNA Prediction through Recursive 

Feature Elimination and XGBoost 
 

Highlights 

❖ Presenting a robust machine learning pipeline for distinguishing lncRNA sequences from protein-coding 

RNAs (messenger RNAs). 

❖ Employing recursive feature elimination as the feature selection algorithm to address the dimensionality 

issue of the feature dataset. 

❖ Accessing higher predictive performance in the context of lncRNA prediction compared to three established 

lncRNA prediction tools in the literature. 

Graphical Abstract 

We followed several steps and employed some machine learning algorithms as it is seen in bellow Figure to predict 

lncRNA sequences. 

 

Figure. Proposed pipeline for lncRNAs prediction. 

Aim 

This study aims to distinguish lncRNAs from mRNAs by designing a robust machine learning pipeline.  

Design & Methodology  

As lncRNAs feature dataset, We utilized the lncRNA feature dataset from an existing research paper in the literature. 

To address the dimensionality issue, we applied the Recursive Feature Elimination (RFE) algorithm. Subsequently, 

we employed various machine learning classification algorithms to predict lncRNAs. 

Originality  

While most of studies in the literature often employ deep learning or design novel decomposition models to reduce 

dimensionality and achieve high accuracy in predicting lncRNAs, our study proposes a robust pipeline using existing 

machine learning algorithms, which demonstrates higher accuracy rates than most of them. 

Findings  

Recursive Feature Elimination (RFE) with XGBoost Classifier achieved the highest accuracy rate (92.57%) compared 

to combinations of RFE with other classifiers used in this study. 

Conclusion  

This study amied to distinguish lncRNAs from protein-coding RNAs by empolying RFE algorithm as features selection 

algorithm and SVM, NN, REPTree, LR and RF as classifiers. Concequently, combination of RFE and RF has gained 

the higherst accuracy rate of 93.42%. 

Declaration of Ethical Standards  
The authors of this research paper state that the materials and methods used in this study do not require ethical 

committee permission and/or legal-special permission. 
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 ABSTRACT 

In recent years, advancements in high-throughput technologies have uncovered numerous concealed layers known as Non-Coding 

Ribonucleic Acids (ncRNAs), shifting the protein-centric view of genomes. NcRNAs, previously considered insignificant segments 

of the genome, are now recognized as essential functional components in prokaryotic and eukaryotic organisms. Long non-coding 

RNAs (lncRNAs) are a unique category of ncRNAs with 200 nucleotides length, which are instrumental in key biological functions, 

including cellular differentiation, regulatory mechanisms, and epigenetic modifications. Despite the similarities between lncRNAs 

and messenger RNAs (mRNAs), there is a fundamental difference: mRNAs encode proteins, whereas lncRNAs do not. This study 

aims to distinguish these two RNA classes from each other by designing a robust machine learning (ML) pipeline employing 

Recursive Feature Elimination (RFE) for dimensionality reduction of dataset and XGBoost (XGB) classification model. Whereas 

previous studies trained and tested machine learning models using the complete set of dataset features, we employ the RFE 

technique to reduce the number of features, thereby we achieve a more optimal dataset with relevant features. To evaluate the 

predictive performance of our pipeline, we used error rate, accuracy, precision, recall, and F1-score. Compared to three existing 

lncRNA identification tools in the literature, our pipeline demonstrated superior prediction accuracy and precision at 93.42% and 

94.19% respectively. 

Keywords: Recursive Feature Elimination, XGBoost, lncRNAs, Bioinformatics, Machine Learning. 

Tekrarlayan Özellik Eliminasyonu ve XGBoost ile 

Uzun Kodlamayan RNA Tahmininin İyileştirilmesi 
ÖZ 

Son yıllarda, yüksek verimli teknolojilerdeki ilerlemeler, kodlamayan Ribonükleik Asitler (ncRNA'lar) olarak bilinen çok sayıda 

gizli katmanı ortaya çıkararak genomların protein merkezli görüşünü değiştirdi. Daha önce genomun önemsiz bölümleri olarak 

kabul edilen NcRNA'lar, artık prokaryotik ve ökaryotik organizmalarda temel işlevsel bileşenler olarak kabul ediliyor. Uzun 

kodlamayan RNA'lar (lncRNA'lar), hücresel farklılaşma, düzenleyici mekanizmalar ve epigenetik modifikasyonlar dahil olmak 

üzere temel biyolojik işlevlerde etkili olan 200 nükleotid uzunluğundaki benzersiz bir ncRNA kategorisidir. LncRNA'lar ve haberci 

RNA'lar (mRNA'lar) arasındaki benzerliklere rağmen, temel bir fark vardır: mRNA'lar protein kodlar, oysa lncRNA'lar kodlamaz. 

Bu çalışma, veri kümesinin boyutsallığını azaltmak için Tekrarlayan Özellik Eliminasyonu (RFE) ve XGBoost (XGB) 

sınıflandırma modelini kullanan sağlam bir makine öğrenimi (ML) boru hattı tasarlayarak bu iki RNA sınıfını birbirinden ayırmayı 

amaçlamaktadır. Önceki çalışmalar, veri kümesi özelliklerinin tamamını kullanarak makine öğrenimi modellerini eğitmiş ve test 

etmişken, biz özellik sayısını azaltmak için RFE tekniğini kullanıyoruz, böylece ilgili özelliklere sahip daha optimum bir veri 

kümesi elde ediyoruz. Boru hattımızın tahmin performansını değerlendirmek için hata oranı, doğruluk, kesinlik, geri çağırma ve 

F1 puanını kullandık. Literatürdeki üç mevcut lncRNA tanımlama aracıyla karşılaştırıldığında, boru hattımız sırasıyla %93,42 ve 

%94,19'da üstün tahmin doğruluğu ve kesinlik gösterdi. 

Anahtar Kelimeler : Özyinelemeli Özellik Giderme, XGBoost, lncRNA'lar, Biyoinformatik, Makine Öğrenm. 

 
1. INTRODUCTION 

Over the past few years, there has been considerable 

progress in handling and interpreting biological data 

[1][2]. Advancements in high-throughput technologies 

have uncovered numerous concealed layers known as 

Non-Coding Ribonucleic Acids (ncRNAs), situated 

between transcription and translation processes. These 

RNAs are not translated into proteins [3]. NcRNAs, once 

considered as transcriptional noise [4] because of their  

 

poor conservation [5] and insignificant segments of 

genomes, in recent years, have emerged as essential 

functional components in both prokaryotic and 

eukaryotic organisms [6]. NcRNAs have become one of 

the stars of modern biology [7]. NcRNAs are commonly 

categorized into two primary groups based on transcript 

length. Small Non-Coding RNAs (sncRNAs) refer to 

shorter sequences [6], while Long Non-Coding RNAs 
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(lncRNAs) are designated for transcripts longer than 200 

nucleotides [6-11] and have no protein potential [3, 4], 

[8], [12, 13]. The initial set of lncRNAs was identified 

about two decades ago [14]. As research has advanced, 

lncRNAs, previously dismissed as dark matter or 

insignificant, have gradually come to light. In 2007, Rinn 

et al. from Stanford University initiated formal lncRNA 

research with an article published in Cell, marking a 

significant starting point [15]. Recent studies have 

underscored the pivotal role of lncRNAs in crucial 

biological processes such as cellular differentiation, 

epigenetics [11], and regulation [1, 3], [6]. Additionally, 

lncRNAs have been implicated in gene expression [3], [6, 

7], [12], [16], [17], translation, transcription [18], and the 

pathogenesis of complex diseases [16]. Differentiating 

between protein-coding transcripts (i.e., messenger 

RNAs) and lncRNAs proves to be a surprisingly 

challenging task in practice [19] because lncRNAs and 

mRNAs share similarities in their sequence lengths, poly 

(A) tails, and splicing structures. Additionally, lncRNAs 

occasionally tend to encode long open reading frame 

(ORF) [12] and the primary distinction between 

lncRNAs and mRNAs is the absence of discernible 

coding potential in lncRNAs [20]. Consequently, 

distinguishing between lncRNAs and mRNAs remains a 

challenge. A variety of computational algorithms have 

been proposed in recent years to distinguish between 

lncRNAs and mRNAs [12]. 

More information on existing methods for differentiating 

them and the current study will be given in the related 

works section. 

1.1 Related Works 

Approximately 2% of the human genome is dedicated to 

encoding proteins, while the remainder consists of 

ncRNAs [21, 22]. Consequently, distinguishing this large 

part of the genome from proteins (i.e., mRNAs) helps 

scientists delve deeply into them and find solutions for 

the types of diseases mentioned in articles [16] and [23], 

which claim thousands of human lives. According to [1], 

machine learning (ML) algorithms are utilized to 

integrate biological and biomedical datasets to identify 

lncRNAs, but numerous challenges lie in their way 

because these datasets have intrinsic complexity behind 

their huge size, which causes the existence of high-

dimensionality, incompleteness, bias, heterogeneity, 

dynamism, and noise. Conversely, numerous 

bioinformatics applications utilize ML algorithms for 

analyzing sequence data. Since most ML algorithms 

accept numerical data, sequences have to be transformed 

into numbers. To avoid long sequences of numbers, the 

most efficient approach is choosing relevant features 

from the sequences.  

Relevant features selected in various studies include: 

Guanine and Cytosine (GC) content, sequence length, k-

mer (k= 1 up to 6), and open reading frame (ORF) [1]; k-

mer (k= 1 up to 5), sequence-order, and correlation 

coefficient factors [12]; sequence features such as k-mer 

(2-15), CG content, and structured features including 

binary and Quadri nary representations, as well as 

minimum free energy [3]; k-mer frequency features and 

spectrum features [24]; weighted k-mer ( k=1 up to 3), 

pseudo nucleotide composition, hexamer usage bias, 

Fickett score, ORF, UTR regions, and HMMER score 

[21].  

During recent years, many different computational 

algorithms have been developed for differentiating 

lncRNAs. These include: Decomposing model for 

feature selection in lncRNAs [1], IDlncRNA using ML 

algorithms [3], LNCRI [21], NCYPred [6], LncDLSM 

[24], ncRFP [16], LPGNMF [17], FexRNA [25], 

IPCARF [26], RFLDA [27]. These tools applied machine 

learning algorithms across multiple species, particularly 

plants, humans, and animals. This approach has provided 

enhanced insights into lncRNAs. According to [1], some 

studies have explored the utilization of multiple features 

to extract meaningful information from lncRNAs, 

resulting in the creation of high-dimensional feature 

vectors. The presence of a high-dimensional feature 

dataset contributes to the curse of dimensionality 

problem, which can decrease the performance of ML 

algorithms. As stated in [25], the process of feature 

selection (FS) is a crucial step aimed at identifying the 

most pertinent features to enhance the performance of 

ML algorithms. The fundamental objective of FS is to 

eliminate noise from the data, thereby mitigating the risk 

of overfitting and improving the predictive performance 

of a model. Consequently, FS involves selecting a 

smaller subset of features that exhibit superior or 

comparable predictive performance, particularly in the 

context of predictive modeling (supervised models). By 

utilizing fewer features, ML algorithms improve their 

ability to generalize across heterogeneous datasets, 

reduce computational costs, and simplify the model's 

complexity. 

To distinguish lncRNAs from mRNAs, the existence of 

high-dimensional feature datasets has led us to pursue 

efficient FS techniques. In academic literature, there are 

multiple approaches using different FS techniques to 

reduce the dimensionality of feature datasets for 

biological data classification. For instance, [1] (reduced 

from 5468 to 10 lncRNAs) reports experiments using 

Metaheuristics and a decomposition model containing 

rounds and a voting scheme, [24] (reduced from 1355 to 

8 lncRNAs) describes the use of the  hierarchical neural 

network (HINN) algorithm for FS, and [23] (reduced 

from 3435 to 234 lncRNAs) reported using Tree-based, 

L1-based, and Variance threshold algorithms for FS.[25] 

used 7 different FS algorithms (e.g., for the Filter-based 

FS category, chi-squared is used. For wrapper-based, 

RFE using random forest (RF), RFE using logistic 

regression, RFE with k-fold cross-validation using LR 

and RF models are used. Finally, for the embedded FS 

category, embedded based on LR and RF classifiers are 

used) and applied them on 17 extracted features of 

lncRNAs. However, we observed a lack of studies 

focused on FS using RFE for high-dimensional datasets 

of lncRNAs. 



 

 

RFE has been employed in numerous studies as a feature 

selection (FS) technique and has consistently yielded 

favorable outcomes. As reported in [25], in CPC2, a list 

of 23 features is compiled. Subsequently, the RFE feature 

selection technique, in conjunction with 10-fold cross-

validation, is applied to this set of candidate features. The 

outcome of this process is the selection of 4 features 

deemed as the most significant for estimating the coding 

potential of a transcript. Similarly, in the case of CPC2, 

[25] applies RFE to its extracted 17 features to identify 

the most relevant features providing sufficient 

information about lncRNAs. Therefore, based on the 

successful results of RFE in previous works with small 

numbers of features, we propose using RFE on high-

dimensional datasets of lncRNAs to identify the best 

features. In our approach, we employed RFE on a dataset 

with a dimensionality of 5467 features. Furthermore, we 

examined the impact of the features chosen by the 

decomposition model on the predictive performance of 

three ML algorithms: J48, REPTree, and Random Forest, 

in the classification of lncRNAs task. According to [1], 

we selected these machine learning algorithms because 

they generate interpretable predictive models, enabling a 

deeper understanding of the internal decision-making 

mechanisms. As a result, domain experts can verify the 

knowledge employed by the models for classifying new 

sequences. The main contributions of our work are:  

• Presenting a robust machine learning pipeline for 

distinguishing lncRNA sequences from protein-

coding RNAs (messenger RNAs). 

• Employing recursive feature elimination as the 

feature selection algorithm to address the 

dimensionality issue of the feature dataset. 

• Accessing higher predictive performance in the 

context of lncRNA prediction compared to two 

established lncRNA prediction tools in the literature. 

The remainder of this article presents our materials and 

methods in section 2, experiments, results and discussion 

in section 3, and conclusions in the last part. 

 

2. MATERIAL AND METHOD 

In this part of our research paper, we outline our 

methodological approach crafted to attain the intended 

aims. To obtain our objective we integrated machine 

learning methods. Figure 1 summarizes our methodology 

in this study. 

2.1 Dataset 

The dataset utilized in this study, sourced from recent 

literature [1], comprises 18,040 RNA sequences (i.e., 

9020 lncRNAs and 9020 mRNAs) from five species: 

Arabidopsis thaliana, Cucumis sativus, Glycine max, 

Oryza sativa, and Populus trichocarpa. Each species 

contributes 1,804 lncRNA sequences and 1,804 mRNA 

sequences. Within this dataset, two classes are identified: 

the positive class, consisting of lncRNAs, and the 

negative class, consisting of protein-coding genes 

(mRNAs). The lncRNA data were obtained from two 

public databases, PLNlncRbase and GreenNC (as 

described in [1]), while the mRNA sequences were 

extracted from Phytozome (further explanation is 

provided in [1]).  

 
Figure 1. Our methodology diagram 

 

As part of the data preprocessing, sequence redundancy 

was eliminated at 80% identity using CD-HIT-EST 

(more description in [1], [21]), and only sequences longer 

than 200 nucleotides were retained. To construct the 

feature vector and extract the most relevant features, four 

indicators—Guanine and Cytosine content or GC 

content, k-mer (k= 1 up to 6), sequence length, and 

ORF—were considered [1]. As a result, four feature 

vectors were derived for each sequence in the dataset, 

including GC content with 1 feature, k-mer frequencies 

with 5460 features, sequence length with 1 feature, and 

ORF with 5 features. 

According to [28], combining multiple feature sets into a 

single, joined feature vector preserves the unique 

discriminating information from each original set while 

reducing redundancy caused by correlations between 

different sets. This approach enhances the robustness and 

predictive performance of models. Therefore, all four 

feature vectors were concatenated, resulting in a dataset 

with 18,040 rows and 5,467 columns. In previous studies 

[5] and [21], training and testing datasets were split using 

70:30 and 80:20 ratios, respectively. Following the 

approach in [21], we used an 80:20 split, where 80% of 

the dataset was used for training and 20% for testing, as 

illustrated in Figure 1. 

2.2 Feature Selection 

Feature selection involves identifying relevant subsets of 

features within a dataset [29][30]. As the more features 

in a dataset means the more expensive and time- 

consuming computational complexity and our used 

dataset [1] is with dimension 18040 x 5467, Choosing the 



 

 

most relevant features through feature selection (FS) is 

crucial for enhancing the performance of any Ml 

algorithms [25]. Therefore, we decided to apply the 

wrapper method (i.e., Recursive Feature Elimination) for 

FS to reduce the high-dimensionality problem of dataset. 

2.2.1 Recursive feature elimination 

RFE is a backward feature selection algorithm 

categorized under Wrapper methods, wherein it 

recursively reduces the feature set size using a specific 

underlying algorithm to choose features [31]. The RFE 

selection method involves a repetitive process where 

features are ranked based on their importance. During 

each iteration, the importance of each feature is assessed, 

and the least relevant feature is removed. This process 

continues until reaching the desired number of features 

which is declared by programmer [32]. 

For instance, if there is a dataset which has N features 

such as𝑓1, 𝑓2, 𝑓3,… 𝑓𝑛 , therefore, the importance of each 

feature is gained according to equation (1) 

𝐹𝐼(𝑓𝑖) =
∑ ∆𝐺𝑡(𝑓𝑖)

𝑇
𝑖=1

𝑇
                                                      (1) 

Where FI refers to feature importance,  ∆𝐺𝑡(𝑓𝑖) is the 

reduction in impurity for feature 𝑓𝑖 in tree t, and T is the 

total number of trees in the random forest.  

Then features are ranked and according to equation (2) 

the feature with the least importance is deleted. 

𝐹 = 𝐹 − {𝑓𝑙𝑒𝑎𝑠𝑡}                                                                  (2) 

Where F is the set of all the features and 𝑓𝑙𝑒𝑎𝑠𝑡 is the least 

important feature. 

2.3 Evaluation Metrics 

In our study, the success percentages of ML algorithms 

were assessed by five measures: recall (RE) [23], 

accuracy (ACC), precision (PR), F1-score (F1) [1], and 

error rate (ER). These measures were utilized to assess 

the ML model’s predictive performance on testing 

dataset. Four quantitative variables—true positive (TP), 

true negative (TN), false positive (FP), and false negative 

(FN)—were computed for the testing dataset [33] where, 

TP represents accurately predicted lncRNAs, TN denotes 

correctly predicted mRNAs, FP indicates false positives 

where negative entities are incorrectly predicted as 

lncRNAs, and FN signifies false negatives where positive 

entities are incorrectly predicted as mRNAs. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑖𝑡𝑦 =
𝑇𝑃 + 𝑃𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                           (3) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                                         (4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                     (5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑃
                                                                       (6) 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦                                        (7)  
2.4 McNemar’s Test 

There are different statistical methods such as Wilcoxon 

signed-rank test, R test, J test [34], and McNemar’s test 

[35] to assess and determine the statistical significance of 

predictive performance between binary classifiers. 

Therefore, the best binary classification models can be 

identified from a statistical standpoint.In this study, the 

same of literature [35] we employed McNemar’s test to 

evaluate the predictive performance between all the 

classification models used to classify lncRNAs and 

mRNAs. According to this literature, McNemar’s test is 

a non-parametric method which is employed to assess the 

error rates of two binary classifiers applied on the same 

dataset. It determines whether the difference in predictive 

performance between two binary classifiers is 

statistically significant. McNemar’s test formula is given 

in equation (8). 

𝜒2 =
(|𝑛10 − 𝑛01| − 1)2

𝑛10 + 𝑛01

                                                  (8) 

If we consider A and B as two binary classification 

models, in equation (8), 𝜒2  represents McNemar’s test 

result,  𝑛10 represents the number of instances classified 

as positive by A but negative by B, and 𝑛01   represents 

the number of instances classified as negative by A but 

positive by B. 

In order to determine whether the differences between the 

classification models are statistically significant, this 

study computed the p-value for each pairwise 

McNemar’s test result. 

 

3. RESULTS AND DISCUSSIONS 

3.1 Experimental Setups 

For all experiments reported in this study, we used 

Python Version 3.11.4) and PyCharm (Version 2022.2.2 

Edu) as the development environment. To achieve 

optimal performance in training and prediction from the 

machine learning models, we employed the grid search 

method for hyper-parameter tuning. The hyper-

parameters located in Table 1 were determined through 

grid search for our ML models. 

3.2 Feature Selection Process  

In our study, we employed RFE with Random Forest as 

the underlying estimator to train the model with all 

features. We applied RFE to our training dataset with the 

purpose of reducing the dimension of it . The same of 

literature [1], the desired number of features which 

should be found by RFE in our case was set to 10 as well. 

Table 2 presents the 10 optimal features which were 

extracted by RFE and the best decomposing model of 

literature [1]. According to Table 2, it is significant to 

highlight both algorithms has extracted score and 

cdsSizes features jointly in their optimal feature datasets. 

3.3 Training and Testing Phase 

In order to assess the efficiency of the optimal features 

extracted by the RFE FS algorithm, we had to choose an 

optimal classifier. Therefore, we chose six state-of-the-

art classification algorithms which work perfect in binary 

classification task such as, REPTree [1][10], Random 

Forest [36],[37],[38][39] Support Vector Machine 

(SVM)[19] [36],[40],[41] Logistic Regression [36],[42], 

and Artificial Neural Network (ANN) [43][44][45], and 

XGBoost (XGB) [21]. We trained them using the RFE’s 

optimal features dataset. Then, to evaluate the prediction 

performance of each ML model, we used testing dataset 

to assess the prediction performance of each ML model 

and recorded the results.  



 

 

Table 1. Illustrates the hyper-parameters for utilized classifiers in this article. 

Model Parameter Value 

Random Forest 

bootstrap true 

max-depth 10 

mean-samples-leaf 4 

mean-samples-split 2 

n-estimators 100 

Logestic Regression 

c 0.001 

max-iter 100 

penalty i2 

solver newton-cg 

Support Vector Machine 

c 0.1 

gamma 1 

kernel linear 

Artificial Neural Network 

activation logistic 

alpha 0.001 

hidden-layer-sizes 10 

learning-rate constant 

solver adam 

max-iter 200 

REPTree 

criterion entropy 

max-depth 5 

min-samples-leaf 1 

min-samples-split 2 

XGBoost 

colsample-bytree 0.8 

learning-rate 0.01 

max-depth 3 

subsample 0.8 

n-estimators 50 

 Table 2. Features extracted by RFE and M1-GA 

FRE M1-GA 

AC GTCCCC 

GG CCGGCA 

TA CGCCTC 

TT CGGAGT 

GGA CGTTAG 

tamanho CTAGGT 

cdsStop GGGGGG 

score  score 

cdsSizes cdsSizes 

cdsPercent TCACGG  

As shown in Table 3, SVM demonstrates the lowest 

performance among the models, 

with an ACC of 92.07% and PR of 86.45%. Following 

SVM, the performances of ANN, LR, and REPTree are 

also relatively lower, with accuracies of 92.12%, 92.37%, 

and 93.37%, respectively, and corresponding precision 

values of 92.48%, 87.45%, and 94.12%. The highest 

performance is owned by both RF and XGB models, with 

the same accuracy (ACC) of 93.42%. However, XGB 

was chosen as the best algorithm due to its precision (PR) 

of 94.19%, slightly outperforming RF, which has a 

precision of 94.17%.  

In addition to computing the evaluation metrics, we 

conducted McNemar’s test to statistically assess the 

classification models and identify the most effective one 

to be used in conjunction with the RFE feature selection 

algorithm. Table 4 contains the results of McNemar’s test 

for all the pairs of classifiers and the values which are 

statistically significant are shown in bold. According to 

the received results from Table 4, RF, REPTree and 

XGBoost Classification models’ predictive 

performances are not so different because the p-value 



 

 

between them is not smaller than 0.05 and RF and 

XGBoost classification models’ predictive performances 

are almost the same because the result is infinite.   

Consequently, although according to McNemar’s test RF 

and XGBoost predictive performances are the same, 

we introduced RFE feature selection combined with 

XGB as the optimal model for our study because of the 

superior performance that it had in precision and 

outperformed the RF model. 

 

Table 3. Depicting the prediction performance of ML models trained with RFE’s optimal features, on test dataset. In this table 

the highest and the lowest values are bold for more visibility 

Features Reduction 

Algorithm 
ML Prediction Algorithm ER ACC PR Recall F1 score 

RFE 

Random Forest 6.57% 93.42% 94.17% 93.542% 93.40% 

REPTree 6.62% 93.37% 94.12% 93.37% 93.34% 

SVM 7.92% 92.07% 86.45% 99.77% 92.64% 

ANN 7.62% 92.37% 87.45% 98.94% 92.84% 

LR 7.87% 92.12% 92.48% 92.12% 92.09% 

XGB 6.57% 93.42% 94.19% 93.542% 93.40% 

 

 

 
Figure 2. Radar chart showing the performance of ML models based on ACC, PR, Recall and F1-score 

 

Table 4. McNemar’s results between all the pairs of binary classification models’ predictive performances. 

p-value < 0.05 

Classifiers RF LR REPTree SVM ANN XGBoost 

RF  0.0001 0.4795 0.0001 0.0001 infinite 

LR   0.0001 0.8802 0.0077 0.0001 

REPTree    0.0001 0.0001 0.4795 

SVM     0.1183 0.0001 

ANN      0.0001 

XGBoost       



 

 

3.4 Evaluation with Other Classifier Tools 

To evaluate the performance of our best model (i.e., RFE-

XGB), like article [16], we compared it with two tools in 

the literature: M1-GA [1] and IPCARF [26]. As mutual 

dataset between our proposed method and the two other 

methods mentioned before, we utilized our dataset which 

is detailed in Section 2. For each tool, we utilized the FS 

classification models as described in their respective 

methodologies. To ensure a fair comparison, we used the 

same 80:20 ratio for training and testing datasets as in our 

proposed method, RFE-XGB. The results of this 

comparison are presented in Table 3. 

As shown in Table 3, RFE-XGB achieved the highest 

values for ACC, PR, Recall, and F1-score, as well as the 

lowest ER, demonstrating the success of our model in this 

study. Figure 3 illustrates the ROC curve, depicting the 

prediction performance of our proposed method 

alongside the two other tools on the testing dataset. 

Notably, the performance of M1-GA and RFE-XGB is 

very close, while IPCARF exhibits the lowest prediction 

performance on the testing dataset. 

 

Table 3. Comparison of RFE-XGB algorithm performance with two literature tools. The highest and lowest values are 

highlighted in bold for clarity. 
Tools ER ACC PR Recall F1 score 

RFE-XGB 6.57% 93.42% 94.19% 93.42% 93.40% 

M1-GA 6.65% 93.34% 94.1% 93.34% 93.31% 

IPCARF 11.77% 88.22% 88.68% 88.22% 88.19% 

 

Figure 3. ROC curve of comparison between RFE-XGB and two other lncRNAs identification tools. 

 

4. CONCLUSION 

In this study, we developed a validated and robust 

machine learning pipeline to reduce the dimensionality 

of features in lncRNAs and mRNAs and accurately 

differentiate between them. We utilized a dataset from 

the literature [1], which consists of 5,467 features of 

lncRNAs and mRNAs from five plant species. To 

identify the most relevant features and reduce 

dimensionality, we employed the RFE algorithm, 

extracting the 10 most relevant features. For 

classification, we evaluated six machine learning 

classifiers: RF, REPTree, ANN, SVM, LR and XGBoost. 

Among these, XGBoost demonstrated the best prediction 

performance on the testing dataset and was selected as 

the optimal classifier to pair with the RFE algorithm. 

To assess the effectiveness of our pipeline, we compared 

its performance with two other lncRNA identification 

tools from the literature. As shown in Table 3, our 

method outperformed these existing tools, achieving 

higher percentages in ACC, PR, recall and F1-score. 

One limitation of this work is the exclusive use of 

machine learning classification algorithms. As future 

work, we plan to integrate RFE with deep learning 

classifiers and evaluate their performance. The findings 

of this study have the potential to be further utilized in 

advancing lncRNA prediction methodologies. 
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