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Abstract: For a non-decreasing sequence A=(4,) of positive integers tending to infinity such that

Aps1 = Ay <1, A4 =1; (V,1)-summability was defined as the limit of the generalized de la Vallée-Pousin

mean of a sequence, [10]. In this note, we have defined a new type of c-convergence of a sequence by using
the generalized de la Valée-Pousin mean and also investigated some inequalities related to this type of o-
convergence like to those that studied in [2, 3, 4, 5, 7].
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Ozet: Azalan olmayan dogal sayilarin sonsuza giden ve A, —A4,<1, A4 =1 sartlarin1 saglayan

[10]. Bu ¢alismada, de la Vallée-Pousin ortalamasi ile tanimlanan yeni bir ¢ —yakinsaklik tanimladik ve bu
—yakinsaklik i¢in, [2, 3, 4, 5, 7]’ daki benzer olan baz esitsizlikleri inceledik.
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1. INTRODUCTION

Let A = (aw) (n, Kk = 1, 2,...) be an infinite
matrix of real numbers and x=(x;) be a real

number sequence. We write Ax = ((Ax),) if

A (x)= {Zk a X } converges for each n.

Let X and Y be any two non-empty sequence
spaces. If x€ X implies that Axe Y, then we
say that the matrix A maps X into Y. By
(X,Y) we denote the class of matrices A
which maps X into ¥ . If X and Y are
equipped with the limits X - lim and Y - lim,
respectively, Ae (X, Y) and Y-limAx =
X - lim x for all xe X, then we write
AE (X, Y g -

Let K be a subset of N, the set of positive
integers. Natural density 6 of K is defined
by

8(K) =1iml|{k <n:keK} ,
n n

where the vertical bars indicate the number
of elements in the enclosed set. The number
sequence x=(x;) is said to be statistically
convergent to the number [ if for every ¢,
ofk : Ixi - 1> &} = 0, [8]. In this case, we
write st-lim x=I . We shall also write st and
sty to denote the sets of all statistically
convergent sequences and sequences of
statistically convergent to zero. Fridy and
Orhan [9] have introduced the notions of the
statistically boundedness, statistical-limit
superior (st-limsup) and inferior (st-
liminf).

Let I, and ¢ be the Banach spaces of
bounded and convergent sequences with the
usual supremum norm. Let o be a one-to-
one mapping from N into itself and T be
an operator on I, defined by Tx = x,0) . A
continuous linear functional @ on [, is said
to be an invariant mean or a o-mean if and
only if ,

(i) 8(x) > 0 when the sequenc x =
(xi) has x; > 0 forall k,

@ii) ¢(e)=1 ,where e=(1,1,1,...),
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(iii) #(x) =¢ (Tx) forall xel,.

It can be shown [12] that

Vo= {x€ly: lim,t,,(x) =s uniformlyin n
, s=o-limx},

where
+Tx, +..+T7
£ () = T =,
p+1
L (x)=0.

We say that a bounded sequence x = (x; ) is
o-convergent if and only if xeV, We
denote by Z the subset of V, consisting of all
sequences with o-limit zero. It is well-known
[12] that xe€ [, if and only if

(Tx-x)€Z and V,=Z @Re.

In this paper we shall deal with the following
functionals defined on 1, :

I(x) =liminfx , L(x)=Ilimsupx , V(x)
= sup limsupty, (x) , W(x) = ing L(x+7z)

n P

B(x) = st —limsupx , a(x) = st—liminfx

Let A=(4,) be a non-decreasing sequence of
positive integers tending to oo such that 4;=1
, Ane <4, +1.The generalized de la Vallée-
Pousin mean is given by

tn(x)=/1i >oxp I, =[n—-2A, +Ln]

n kely,

and (V,4) -summability was defined in [10] as
follows: A sequence x is said to be
(V,A)-convergent to a number [ if

limt,(x)= [ and (V, 1) is the set of all

(V, 1) -summable sequences.
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Next, we shall quote some lemmas which will
be useful to our proof.

Lemma 1.1. [7, Lemma 1] Let A = (au(i))
be conservative and 1> 0. Then,

limsupsup2|ank @) —ak| <A,
ik

n 1

if and only if
lirnsupsupZ:(ank(i)—ak)Jr S/“—x
n ik 2
and
limsupsupZ(ank(i)—ak)_ S/l;x ,

n i k

where x is the characteristic of A and for any
teR, " =max{0,t}) and t = max{-t, 0}.

Let |A] < o

and lim, sup;a,(i) = 0. Then, there exists a
Y€ L. with ||y||£1 such that

Lemma 1.2. [7, Lemma 2]

(1.1)
limsupsupZa MONES limsupsupz
k poik

P i

Cpei)-

In this paper, we have introduced a new type
of o-convergence by using the generalized de
la Vallée-Pousin mean and studied some
inequalities related to this new type of
o-convergence like to those that given in
[2,3,4,5,7].

2. THE MAIN RESULTS

Definition 2.1. A bounded sequence
x=(x;) is said to be o)-convergent to a

number s if

lim?,, (Ax)=s
P

uniformly inn ,

where

z‘,,n(/l,x)zL Zx

N t_L (}L,X)ZO
ﬂ‘/’ ielp !

o' (n)

To illustrate this new type of convergence, we
may give some examples:

Let us choose a sequence x = (x,) such that

n

{L n=3k,k=12,.
X, =

0, otherwise

and let o(n) = n + 2 . Now, if we choose the
sequence (4,) such that

(Ap)=1(1,1,1,2,22,33,3,...)
then, o, — limx=1. But, if
(2.1) Ap=(1,2,23344...)
then o), —-limx does not exist.

By V,(A) and Z, we respectively denote the
set of all g; —convergent and o;-convergent
to zero sequences. It is clear that

(V, 1) c V4) . Further, in the case 4, =p +
1,V,() =V,. Also, since A, /(p +1) is
bounded by 1, clearly V,(1) <V, . Note that
this connection is strictly with respect to the
choosen sequence (4,) . For example let
o(n) =n+ 1 and x = (x,) be given by

1, if nis odd
x =

" 0, if nis even
Then, clearly xe V, with ¢ — limx=1.1f
we choose (4,) such that
(lp)=(1,1,1,1,1,2,2,2,2,2,3 3,33, 3,..

-)

then, o;,— lim x = 1. But; if we choose (4,) as
in (2.1), then o; — lim x does not exist.
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Lemma 2.2. Let X be any sequence space.
Then, A€ (X, V,(4)) ifand only if D € (X,
c), where D is defined as in the proof.

Proof. For any x€ X, let us write

1 m m 1
/TZZ%WW - Tzao"m),kxk

P ielp k=0 k=0 "*p iclp

Letting m— oo, we have

LZ(AX)(,,-W =(Dx), ; (n€D),

p i€lp

Where D =(d,«(n)) is defined by

1
dhk (n)= 7 Zao’i(n),k

P ielp

for all k, n, p € N. Therefore, one can easily
see that Ae (X, V,(4)) if and only if
D € (X, c) . This completes the proof.

One can deduce from Lemma 2.2 that A€ (c,
V«2)) if and only if sup,Z; ld,n)l < oo,
lim, dyn) = o4 uniformly in » and
lim,2, dyy(n) = o uniformly in n. In the case
A€ (¢, V(A)),the number I; = I';,(A) = o — Loy
is defined and it is said to be characteristic
number of A with respect to 4. Note that I'; is
a generalization of the characteristic of an
infinite matrix A , (see [1, p. 46]).

Now, we may give our main results.

Theorem 2.3. Let A € (¢, V,(1)). Then, for
some constant y > Il and for all xe 1,

2.2) limsupsup:(d (m) = &
p n

< 7+2F/1 L(x) - 7—2F/1 I(x)

214

if and only if

(2.3) lim sup supz‘dpk(n)—ak <y
p n k

Proof. Firstly, let (2.2) holds. Define a matrix
C = (cp(n)) by

2.4) cpm)y=d, (n)—q

for all k, n, pe N. Then, the matrix C
satisfies the conditions of Lemma 1.2. So, we
have (1.1) for €. Hence, by (2.2), we can

write

lim sup sup z ‘cpk (n)‘ =lim sup sup z ¢ M)y,
P n k P n k

}/+F7 }/—Fy

< L(y)-— l

> » > »
+T -T

< (724 + 724j N

<7

which is the condition (2.3).

Conversely, let (2.3) holds and xe& [,.

Then, for any given £ > 0, we can write
[(x)—€ < x, SL(x) + €

whenever k = ko forsome k,e M. Now,

We can write

Zcpk (n)xk = Zcpk (n)x;
k

k<k,
+

Zcpk ()" x, - Zcpk (n) x;.

k>k, k>k,



Some Inequalities Related to A New Type of 2 Convergence

Hence, from Lemma 1.1 and the fact that
A € (c, V(1)) , we get that

(2.5
v+,
2

lim sup suchpk (n)x, = (L(x)+ &)

p n TF

- y_—zrﬂu(x)—e)

_ 7+2F,1 L- L
YE .

-T,
I(x)+
> (%)

Since € is arbitrary, the proof is completed.

In the case ;> 0 and y = I}, we have the
following result.

Theorem 2.4. Let A< (¢, V(1.)) and x€ L.

Then,
lim sup sup Z c  (mx, <T;L(x)
p n k
if and only if
(2.6) lim sup sup ) | ‘cpk (n)‘ =T,
p n k

where c . (n) is defined by (2.4).

Also, we should note that when A€ (c,
VA2))ree and A,=p + I, Theorem 2.4 is
same as Theorem 2 of [11].

Theorem 2.5. Let A€ (¢, V(1)). Then, for
some constant y > I}l and forall xe€ I,

2.7 lim sup sup ch,k (n)x,
p no

< %mﬂm ¥ Lﬁa(—m

if and only if (2.3) holds and

2.8) 11?12\% )| =0

keE

uniformlyin n forevery E cN with
O(E) = 0; where cy(n) is defined by (2.4).
Proof. Let (2.7) holds. Then, since S(x) <

L(x) and a(—x) < —-I(x) , the necessity of the
condition (2.3) follows from Theorem 2.3.

To show the necessity of the condition (2.8),
forany E cN with §(E) =0,
define a matrix B = (b,i(n)) by

¢ (n), keE
b, (=4 "
w ™ { 0. keE

Then, since A € (c, V,(4)), we can write (1.1)
for B. Now; for the same E, let us choose the
sequence (yk) as

(1, keE
Y“Z10, keE

Then, clearly y € st, and so,

By) = a(y) =st—limy=0.

Hence, by the assumption and (1.1), we
get that

lim sup sup Z ‘bpk (n)‘
P

n keE

+T -T
< Pipyy v T raey)
2 2
=0
which implies (2.8).

Conversely; suppose that (2.3) and (2.8) hold.
For any x€ [, let us define

E ={k:x>px)+&)} and
E,={k:x.<o(x)— €)}. Then

o(E;) = 6(E,) = 0, [9]. Hence, the set

E = E; NE; has also zero density and

29 ox)— €< x < Px)+E

whenever k¢ E . Now; it can be written that
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ZCFk (n)x, = ZCFk (n)x,

k keE
+ Zcpk (n)" x, —Zcpk (n)" x,
ke E keE

Thus, since (2.8) implies that the first sum on
the right hand-side is zero, by Lemma 1.1 and
from

(2.9), we get

lim sup sup Z € (n)x,
pno i

INA

-
25 g+ o+ LA @0 -o)

+I -
= 7—24,6@) + %a(—x)w:.

Since € is arbitrary, this completes the proof.
Inthecase ;>0 and y=1},

we have

Theorem 2.6. Let A< (¢, V(1)) and x€ L.

Then,

lim sup sup z ¢ (m)x; <TI; B(x)
p n %

if and only if (2.6) and (2.8) hold.

Inthe case A € (¢, Vi(4))s and Ap=
p+1, Theorem 2.6 is reduced to Theorem 2.3
of [6].

Theorem 2.7. Let A € (¢, V,(A)). Then, for
some constant y > 11| and for all x€ I,

(2.10) limsupsup » ¢, (n)x,
pn
< %DV(X) + LZDV(—)C)
if and only if (2.3) holds and

@11) 1im Y |e, () =c, 54 ()] =0
Pk
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uniformly in n where c,i(n) is defined by

(2.4).

Proof. Firstly, suppose that (2.10) holds.
Then, since V(x)<L(x) and V(-x)<
—I(x) for all xe [, the necessity  of (2.3)
follows from

Theorem 2.3. Define

R = (rp(n)) by rpi(n) = Cor(n) = Cp.oi0 (M)
Then, we have (1.1) for ® .

Let us choose y such that y, =0,
keo(N). Hence, since (yi — You)€ Z, (2.10)
implies that

lim sup sup Z ‘rpk (n)‘ =
p o nk

lim sup sup Z T (M) Y 1)
p n k

limsupsup ) ¢, (MY, = Vo)
P k

n

y+1y
< TV(M = Youy)

-
+ 7_2,1V(yg(k) =)
=0

which is (2.11).

Conversely, let the conditions (2.3) and (2.11)
hold. By the same argument as in Theorem 23
of [12], one can easily see that for any xe [,

Zcpk (n)(x; —xa(k)) = erk (n)xa(k)

k k

where the matrices C and ® are as above.

Hence, since (X, — x,u)) € Z, (2.11) implies
that C € (Z Z;). We also see from  the
assumption that (2.2) holds. Thus, taking
infimum over z€ Z in (2.2) we get that
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in£ lim sup sup Z ¢ (m(x, +2,)
z€ » n

SL;—"{L(X+ z) — }/_21—"1 I(x+72)

=L2F’1W(x) + 7_—2171W(—x).

On the other hand, since o, — lim Cz =0
for ze Z,

ing limsupsup D> ¢, (m)(x, +2z,)
<€ P k

n

2 limsupsup » c,, (n)x
J ; pk k

+ inf | lim sup sup z ¢, (n)z,
€l » n 7

= limsupsuchpk(n)xk-
p n k

Since W(x) = V (x) for all xe [, [11], we
conclude that (2.10) holds and the proof is
completed.

Inthecase ;>0 and y =1},

we have
Theorem 2.8. Let A€ (¢, V42)) and x€ L.
Then,

Iimsupsuchpk (mx, <17 V(x)
p n k

if and only if (2.6) and (2.11) holds.

Finally, we should note that when A€ (c,
VA2))reg and A, = p + 1, Theorem 2.8 is same
as Theorem 3 of [11].
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