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ABSTRACT 
The power generated from wind turbines is of critical importance as one of the fundamental components 
of sustainable and renewable energy systems. However, the complex and nonlinear nature of wind flow 
and the influence of interconnected factors make turbine power estimation significantly difficult. This 
study aims to evaluate the performance of different forecasting models using real-time data obtained 
from wind turbines and to determine the most effective model for wind power generation. The analyses 
are performed based on performance metrics that measure the agreement between the predicted and 
actual values. The study results reveal that the Decision Tree Regressor model provides the highest 
accuracy with 0.998 R² value and low error rates (RMSE: 0.151, MAE: 0.036) and that tree-based 
models are more effective in wind power estimation. These models, trained using large datasets, offer 
significant potential in terms of increasing power grid stability and ensuring the optimization of wind 
farms. The study shows that advanced methods used in turbine power estimation are an effective tool 
for optimizing renewable energy use by contributing to sustainable energy targets. 
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1. INTRODUCTION 
Renewable energy has become a cornerstone of 
global efforts to combat climate change and 
reduce dependence on fossil fuels. Among these 
energy sources, wind energy has attracted 
attention due to its scalability and potential to 
generate significant amounts of energy without 
carbon emissions [1]. However, the inherent 
characteristics of wind, such as variability and 
discontinuity, make it difficult to accurately 
predict energy outputs, which creates critical 
challenges for integration into energy grids and 
system stability [2]. 
 
To address these challenges, various forecasting 
methods have been developed over the years. 
Traditional methods have been based on 
physical models and statistical analyses. For 
example, methods such as Autoregressive 
Integrated Moving Average (ARIMA) and 
Kalman filtering have tried to predict wind 
power based on historical data [3]. Numerical 
Weather Prediction (NWP) based physical 
models have improved forecast accuracy by 

simulating the effects of meteorological 
conditions [2]. Nonetheless, these conventional 
models fall short in capturing the complex and 
nonlinear behavior of wind dynamics [4]. 
 
In light of these limitations, recent years have 
witnessed a shift towards more data-driven 
approaches. The advent of Machine Learning 
(ML) and Deep Learning (DL) has ushered in a 
new era in wind power forecasting. Deep 
learning algorithms such as Convolutional 
Neural Network (CNN) and Long Short-Term 
Memory (LSTM) have shown superior 
performance in capturing temporal and spatial 
dependencies in wind turbine data [5]. Hybrid 
approaches have improved prediction accuracy, 
especially with techniques such as the 
combination of Discrete Wavelet Transform 
(DWT) and LSTM [6]. Recently, meta-heuristic 
methods such as Sparrow Search Algorithm 
(SSA) have been used in wind power forecasts 
and have significantly improved the forecast 
accuracy [7]. In addition, hybrid ARIMA-
LSTM models have shown high performance 
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by capturing short- and long-term dependencies 
[8]. 
 
Despite these advancements, some challenges 
remain. The limited availability of high-quality 
data and the difficulty of generalizing models 
across different geographical regions limit the 
applicability of wind power forecasts [9]. 
Furthermore, errors in the accuracy of NWP 
models lead to performance degradation in 
short-term forecasts [10]. To mitigate these 
issues, hybrid strategies combining learning-
based models with optimization techniques 
have been proposed. For example, performance 
improvement has been achieved by combining 
Teaching Learning Based Optimization 
(TLBO) algorithms with deep learning models 
[2]. In addition, Variational Mode 
Decomposition (VMD) and Gated Recurrent 
Unit (GRU) based models offer higher 
accuracy, especially in short-term forecasts 
[11]. 
 
Another important approach to improving 
forecasting performance is the effective use of 
turbine-level data. The utilization of turbine-
level data is critical in improving forecast 
accuracy. These approaches have been 
improved by the development of hierarchical 
models that effectively utilize turbine-level 
information [12]. For example, new methods 
utilizing turbine-level information have led to 
improvements in probabilistic wind power 
forecasts [6,13]. 
 
In summary, while substantial progress has 
been made in the field of wind power 
forecasting, several persistent challenges 
remain to be addressed. Achieving high 
forecasting accuracy is essential not only for 
ensuring grid stability but also for the efficient 
integration of renewable energy into the power 
system. However, limitations such as the low 
quality and availability of data, regional and 
climatic variability, and the inherent constraints 
of traditional prediction models continue to 
hinder progress in this domain. The literature 
highlights that overcoming these challenges 
requires the development of more robust, 
generalizable, and adaptive approaches. 
Therefore, there is a pressing need for novel 
methods that can enhance model performance, 
accommodate diverse operating environments, 
and contribute to the reliable use of wind energy 
in sustainable power systems. In this study, the 

performance of various machine learning 
algorithms are compared using real-time data at 
the turbine level and an effective prediction 
model is developed. In the second section, 
information about the comprehensive dataset is 
given, and the details of the machine learning 
algorithms applied after pre-processing steps, 
along with evaluation parameters, are 
presented. In the third section, experimental 
results are presented and the models are 
compared. In the results section, the accuracy of 
the developed forecasting model and its 
contribution to power grid stability are 
discussed. In addition, the limitations of the 
study are evaluated and suggestions for future 
studies are presented. 
 
2. MATERIAL AND METHODS 
2.1. Data Source 
In this study, real-time data were obtained from 
a wind farm located in the Denizli region of 
Turkey, where the energy production values of 
three turbines, each with three blades and a 
capacity of 3.4 MW (3400 kWp), were 
monitored for one year. The site has an 
elevation of 1618 meters and a hub height of 
79.5 m. The dataset, comprising 526,221 rows 
and 22 columns, was collected between January 
1 and December 31, 2024, with minute-level 
sampling recorded daily from an actual wind 
turbine in the region. These data enables the 
estimation of wind energy production over time. 
These dataset columns contain various 
measurements that track in detail the 
performance and operating parameters of a 
wind turbine. Parameters such as time data, 
device identifier, active power, wind speed, 
nacelle orientation, operating status, current and 
voltage values, frequency, reactive power, fault 
codes, rotor and generator rotational speeds, 
ambient temperature, hydraulic system pressure 
and total amount of energy supplied to the grid 
are used to monitor the instantaneous and 
cumulative performance, electrical 
characteristics and operating conditions of the 
turbine. 
 
The dataset used in this study was obtained in 
real-time from an industrial-scale wind turbine 
site. It encompasses electrical, mechanical, and 
environmental variables measured under actual 
operational conditions. This enhances both the 
practical relevance of the study and its 
contribution to sustainable energy systems. 
Table 1 provides detailed descriptions of the 
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dataset variables, including operational, 
environmental, and electrical parameters 
collected from wind turbines. 
 

Table 1. Description of the wind turbine dataset 
variables. 

Data Column Description 

time 
Timestamp of the 
record (UTC) 

device_id 

Unique identifier 
assigned to each wind 
turbine 

active_power 
Active power output of 
the turbine (kW) 

wind_speed 
Wind speed at the 
turbine location (m/s) 

yaw_direction 
Nacelle (turbine head) 
direction (degrees) 

wt_operationstate 

Operational 
status/state of the 
turbine 

current_v 
Phase V current value 
(Amps) 

current_u 
Phase U current value 
(Amps) 

current_w 
Phase W current value 
(Amps) 

voltage_v 
Phase V voltage value 
(Volts) 

voltage_u 
Phase U voltage value 
(Volts) 

voltage_w 
Phase W voltage value 
(Volts) 

frequency 

Frequency of the 
generated electricity 
(Hz) 

reactive_power 
Reactive power output 
of the turbine (VAR) 

error_code 

Error codes, if any, 
detected during 
operation 

rotor_rpm 

Rotor rotational speed 
(Revolutions Per 
Minute) 

generator_rpm 
Generator rotational 
speed (RPM) 

ambie_tmp 
Ambient temperature 
near the turbine (°C) 

hyd_press 
Hydraulic system 
pressure 

active_energy_export 
Total energy exported 
to the electrical grid 

eac 

Active energy 
difference between 
consecutive 
measurements 

 
The dataset used in the prediction algorithm 
includes electrical, mechanical, and 

environmental variables collected at the turbine 
level. Among these, electrical parameters-
particularly current and voltage-played a 
decisive role in prediction performance, 
significantly enhancing model accuracy by 
providing strong predictive power. 
 
2.2. Data Preprocessing 
The performance and accuracy of wind turbine 
forecasting models can be significantly affected 
by missing or inaccurate data in the dataset. 
Such errors are usually caused by missing 
values, inconsistent data entries or irregularities 
in the dataset. In this study, a comprehensive 
data preprocessing process was implemented to 
improve the quality of the dataset and ensure the 
reliability of the prediction models. 
 
Firstly, K-Nearest Neighbours (KNN), Linear 
Interpolation and Mode Interpolation methods 
were used to fill the missing data. These 
methods provided a statistically consistent 
filling of missing values. In addition, redundant 
and repetitive columns (redundant features) in 
the dataset were identified and removed. In 
order to create a data structure suitable for time 
series analysis, new features derived from the 
‘time’ column were created. These features 
include ‘hour’, ‘day’, ‘month’, ‘year’, ‘day 
name’. These inferences allowed the model to 
learn temporal dynamics better. 
 
In order to increase the generalization capability 
of the dataset and to prevent overfitting of the 
model, cross-validation method was applied. In 
addition, normalization was performed to 
eliminate the scale differences between the 
features and to increase the convergence speed 
of the model. These steps made the dataset 
suitable for machine learning models. In 
addition, statistical analyses were performed on 
input features and power. This process 
contributed to eliminating inconsistencies in the 
dataset and increasing model accuracy. 
 
Feature Engineering: Feature extraction is the 
process of creating numerical features from raw 
data that can be used in machine learning 
models. The number of input features can be 
very large and many of them may have low 
correlation with the target variables. Feature 
selection methods are a critical step to improve 
model performance, reduce training time and 
improve the interpretability of models [14]. 



Hocu and Turker, /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY  9:2 (2025) 395-404 

 

398 

In this study, new features are derived to better 
model wind turbine performance and improve 
prediction accuracy. These features include 
energy exchange ratio (active energy / reactive 
energy), rotor and generator speed ratio, current 
unbalance (standard deviation of currents), 
voltage unbalance (standard deviation of 
voltages) and power efficiency (active power / 
wind speed). These derived characteristics 
better reflect the dynamic behavior of the 
system, strengthening the predictive capability 
of the model and enabling a more effective 
analysis of critical parameters related to power 
generation. 
 
2.3. Machine Learning 
Within the scope of machine learning, various 
regression-based machine learning models are 
applied in this study for the prediction of wind 
turbine data. These models aim to estimate the 
dependent variable based on independent 
features using learning algorithms [15]. In the 
study, nine machine learning models were 
trained according to the characteristics of the 
dataset and the results were analyzed. The data 
were divided into 80% for training the model 
and 20% for testing. 
 
Among the models, Decision Tree Regressor, 
based on decision trees, stands out with its 
capacity to make fast and effective predictions 
by branching the data [14]. XGBoost Regressor, 
a more advanced algorithm, provides high 
accuracy and performance by using the gradient 
boosting method [16]. Similarly, Gradient 
Boosting Regressor aims to reduce the error by 
successively optimizing a set of weak 
predictors. 
 
Furthermore, the Extra Tree Regressor model 
offers greater generalization capacity by using 
randomized decision tree principles [14,17]. K-
Neighbors  Regressor offers a simple and 
efficient approach, basing predictions on the 
values of the KNN. Linear Regression, a more 
basic model, makes predictions assuming a 
linear relationship between the target and 
independent variables. However, this model 
may have limitations on non-linear datasets. In 
addition, more sophisticated models such as 
Ridge, Elastic Net and Lasso try to avoid 
overfitting by using regularization techniques 
[18-20]. This process has enabled the 
identification of the most suitable algorithms 
for wind turbine forecasting models. 

2.4. Performance Metrics of the Model 
Error metrics used to evaluate the performance 
of machine learning algorithms play a critical 
role in measuring how well the model fits with 
real values and its generalization capability. 
These metrics help to evaluate the effectiveness 
and reliability of the model by determining its 
predictive accuracy and predictive power. 
 
Mean Absolute Error (MAE) is a metric used to 
determine how close the predictions are to the 
true values and evaluates the average error of 
the predictions. This metric is calculated by Eq. 
1 [21].  
 

MAE =�1
𝑛𝑛
∑ �𝑍𝑍𝑗𝑗 − 𝑍̂𝑍𝑗𝑗�𝑛𝑛
𝑗𝑗=1         (1) 

 
Root Mean Square Error (RMSE) measures the 
magnitude of deviations of the model's 
predictions from the true values; it indicates 
how well the predicted values agree with the 
true observations and is a metric reflecting the 
error rate. To compare the prediction accuracy 
of different models, RMSE is calculated by Eq. 
2 [21-22].  
 

RMSE �1
𝑛𝑛
∑ �𝑍𝑍𝑗𝑗 − 𝑍̂𝑍𝑗𝑗�

2𝑛𝑛
𝑗𝑗=1         (2) 

 
R-squared (𝑅𝑅2) is a measure of how well a 
model fits the data; high values indicate the 
explanatory power of the model.  Eq. 3 [23].  
 

𝑅𝑅2= 1 −
∑ �𝑍𝑍𝑗𝑗−𝑍𝑍�𝑗𝑗�

2𝑛𝑛
𝑗𝑗=1
∑ �𝑍𝑍𝑗𝑗−𝑍𝑍�𝑗𝑗�𝑛𝑛
𝑗𝑗=1

                     (3) 

 
Mean Squared Error (MSE) is a widely used 
evaluation metric that quantifies the average of 
the squared differences between predicted and 
actual values. It provides a measure of how 
close the regression model’s predictions are to 
the true outcomes. The MSE is calculated by 
Eq. 4.  
 
MSE = 1

𝑚𝑚
∑  �𝑍𝑍𝑗𝑗 − 𝑍̂𝑍𝑗𝑗�

2𝑚𝑚
𝑗𝑗=1                     (4) 

 
3. EXPERIMENTAL FINDINGS 
In this study, the power generation performance 
and operating dynamics of the wind turbines are 
analyzed in detail using annual real-time data 
obtained from the wind farm. The analyses of 
the monthly energy production values reveal 
that the turbines provide a high stability in 
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energy production throughout the year, and 
these findings are presented in detail in Figure 
1. From January to December, the total energy 
production ranged between 2.5x10¹² kWh and 
3.0x10¹² kWh, with a slight increase in 
production in the last quarter of the year 
(October, November, December). This increase 
can be attributed to the increase in wind speeds 
during this period of the year. However, the 
generation remained relatively constant during 

the summer months (June, July, August), 
indicating that the system operates continuously 
and efficiently despite the seasonal variations in 
wind speed. The results show that wind turbines 
provide a reliable contribution to the energy 
needs in the region. 
 
 

 

 
Figure 1. Total montly energy production. 

 
Figure 2 illustrates the importance of various 
input features in predicting active power output, 
based on the linear regression coefficients. The 
results clearly underscore the dominant role of 
electrical current variables in the model’s 
predictive performance. Among all variables, 
three-phase current values (current_w, 
current_v, current_u) exhibited the highest 
regression coefficients. While current_w and 
current_v contributed positively, current_u 
presented a strong negative coefficient, likely 
reflecting phase-specific imbalances in the 
system. 
 
The differences between the phases are due to 
asymmetric loading and instantaneous power 
regulation in the system. In real wind turbine 
data, the contribution of each phase to the active 
power is not equal due to factors such as rotor 
position, wind direction and inverter operating 
characteristics. The higher effect observed 
especially in the W phase can be associated with 
the situations where this phase carries more 
current under load or that phase transmits more 

energy at the inverter output. Such imbalances 
are commonly observed in field operations. 
 
Voltage components (voltage_v and voltage_w) 
also had a moderate yet positive influence on 
the model output, indicating their 
supplementary role in power estimation. 
Conversely, mechanical indicators such as wind 
speed and rotor RPM, although theoretically 
significant and highly correlated with active 
power, showed relatively lower predictive 
power within the linear regression model. This 
suggests that for short-term forecasting, 
electrical signals provide more direct and 
immediate predictive value than mechanical 
inputs. 
 
Environmental parameters such as ambient 
temperature and hydraulic pressure contributed 
minimally, offering only limited explanatory 
power related to operational efficiency. 
Similarly, frequency and reactive power had 
negligible influence, indicating their minor role 
in determining active power within this context. 
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Overall, the integration of highly impactful 
electrical variables, particularly current and 
voltage, substantially enhanced the model’s 
prediction accuracy. These findings reinforce 
the superiority of electrical parameters over 

mechanical and environmental variables for 
short-term active power forecasting in wind 
energy systems. 
 

 

 
Figure 2. The impact of variables on active power based on linear regression coefficients. 

The correlation matrix illustrates the 
interdependencies among various wind turbine 
parameters. A very strong positive correlation 
was observed between active power and current 
in phases U, V, and W (r = 1.0), indicating that 
electrical current directly determines active 
power generation. Additionally, rotor RPM and 
generator RPM also showed a strong correlation 
with active power (r = 0.83), underlining the 
importance of mechanical rotation in energy 
conversion. Interestingly, voltage values (U, V, 

W) displayed weaker correlations with active 
power (ranging from 0.16 to 0.25), and 
frequency showed an even lower correlation (r 
= 0.042). These findings reinforce that 
mechanical dynamics such as rotor speed, along 
with electrical current, are the dominant factors 
in power production, whereas voltage and 
frequency play a comparatively limited role. 
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Figure 3. Wind farm parameter correlation matrix. 

In this study, various machine learning models 
were applied to predict energy production using 
real-time farm data obtained from wind turbines 
and the performances of these models are 
comprehensively given in Table 2 with metrics 
such as accuracy (R²), error rates (RMSE, 
MAE).  
 
It compares the performance of various machine 
learning algorithms in predicting wind turbine 
energy production. Decision Tree Regressor 
showed the highest performance with R² value 
of 0.998, RMSE 0.151 and MAE 0.036, and 
provided the most accurate predictions by 
providing a very good fit to the data. XGBoost 
Regressor and Extra Tree Regressor provided 
an accuracy close to Decision Tree with R² 
values of 0.995 and 0.989, respectively, and 
were among the reliable models with low error 
rates. Gradient Boosting Regressor provided an 
acceptable accuracy with R² value of 0.962, but 
was considered a less effective model due to 
higher RMSE and MAE values. K-Neighbors 
Regressor showed a moderate performance with 
R² value of 0.912. However, Linear Regression 
and Ridge models had low accuracy with R² 
values of 0.806, and their high error rates 
showed that they could not capture the data 
complexity sufficiently. Elastic Net and Lasso 
models had the lowest accuracy with R² values 

of 0.734 and 0.729, and they exhibited poor 
performance with high error rates. 
 
Table 2. Machine learning regression model results 

for wind power prediction. 
ML Regression 

Algorithms 
R_Squared RMSE MAE 

DecisionTree  0.998 0.151 0.036 
XGBoost  0.995 0.256 0.114 
ExtraTree 0.989 0.390 0.086 
GradientBoosting 0.962 0.740 0.433 
Kneighbours  0.912 1.126 0.746 
Linear 0.806 1.679 1.123 
Ridge 0.806 1.679 1.123 
ElasticNet 0.734 1.965 1.235 
Lasso 0.729 1.983 1.235 
 
Figure 4 compares the agreement between 
predicted and actual values of different machine 
learning models. The analysis revealed that 
tree-based models provide the highest accuracy 
in energy production estimation by better 
capturing complex data relationships. While 
these models provide effective and reliable 
results in wind energy estimation, it was 
observed that simple models cannot adequately 
represent the data complexity and therefore 
exhibit lower performance. This clearly shows 
that complex and optimized algorithms provide 
more reliable results in wind power estimation. 
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Figure 4. Predicted and actual values of the machine learning models of R² score. 

The accuracy of the models developed within 
the scope of the study was tested not only on the 
turbine data used for training, but also on the 
data of a different turbine located in the same 
region. This validation process is critical to 
evaluate the generalization capacity of the 
models and to determine the consistency of 
performance on new data. The results revealed 
that the Decision Tree Regressor model 
provided a high fit (R² = 0.998) in both the 
training and validation phases. This finding 
proves that the model is not limited to a specific 
turbine, but can also make effective predictions 
with data obtained from different turbines in the 
same region. 
 
This approach emphasizes a model 
development process that ensures consistency 
within regional differences and increases the 
potential for the model to be used in real-world 
applications. It also demonstrates the critical 
importance of region-specific turbine data on 
forecast performance. In the future, performing 
similar validation processes on turbines in 
different regions can further strengthen the 
generalization capacity of the model and 
provide a solid foundation for wider 
applications. In this context, it is aimed to 
provide more reliable and sustainable solutions 
in renewable energy systems. 
 
3.1. Discussion 
This study evaluates the effectiveness of 
machine learning algorithms in wind power 
forecasting using real-time data from wind 
turbines. The analysis revealed that the 
Decision Tree Regressor model achieved 
superior performance with high accuracy (R² = 
0.998), effectively modeling complex and 
nonlinear relationships. These findings are 
consistent with previous research, which 

highlights the effectiveness of tree-based 
models in wind energy forecasting. 
 
Traditional physical and statistical methods 
often fall short in modelling regional and 
meteorological variability. In contrast, machine 
learning and artificial intelligence-based 
approaches offer strong potential to address 
these challenges. Particularly, hybrid models 
and transfer learning techniques have shown 
notable improvements in forecast accuracy 
[24]. However, this study demonstrates that 
even with simple models and high-quality 
turbine-level data, competitive results can be 
achieved. 
 
Some limitations should be considered. The 
dataset covers only a specific region and time 
frame, which may restrict the generalization of 
the findings to other geographic and climatic 
conditions. The quality and representativeness 
of turbine data significantly influence 
prediction accuracy. Therefore, the use of larger 
and more diverse datasets, along with 
adaptation strategies such as transfer learning, 
will be critical for enhancing the generalization 
capacity of forecasting models. 
 
Future research could focus on the integration 
of hybrid model architectures and meta-
heuristic optimization techniques to improve 
robustness and scalability. Additionally, the 
development of explainable forecasting 
systems, such as transformer-based models 
enhanced with attention mechanisms, may 
enhance both the transparency and usability of 
prediction tools. Ultimately, such innovative 
approaches can support the reliable integration 
of renewable energy into power grids and 
contribute to the achievement of sustainable 
energy goals. 
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4. RESULTS 
This study investigates the applicability of 
machine learning algorithms for wind power 
forecasting using real-time data from wind 
turbines. Among the tested models, the 
Decision Tree Regressor yielded the highest 
accuracy (R² = 0.998) and the lowest error 
metrics (RMSE: 0.151, MAE: 0.036), 
demonstrating its robustness in capturing 
complex data patterns. In contrast, linear 
models such as Linear Regression and Ridge 
showed limited performance, failing to 
adequately model the nonlinearities inherent in 
wind energy data. The findings highlight the 
suitability of tree-based models for wind power 
forecasting and their potential to enhance grid 
stability and support the sustainable integration 
of wind energy into power systems. By 
leveraging turbine-level data, machine learning 
approaches offer accurate and scalable solutions 
for modern energy management.  
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