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This work presents a theorem that any Lipschitz function is weakly subdifferentiable 

with 𝒙∗ component of the weak subgradient is different from 𝟎ℝ𝒏 . This theorem is 

based on Kasimbeyli's nonlinear cone separation theorem. Also, we show that any 

positively homogeneous and continuous function is both upper and lower Lipschitz. 

Additionally, we show that positively homogeneous and lower semicontinuous 

functions are weakly subdifferentiable that the pair (𝒙∗, 𝒄) which is a weak 

subgradient of a function in this case is different from (𝟎ℝ𝒏 , 𝟎). 
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1. INTRODUCTION 

 

It is quite famous in convex analysis that at each boundary point a convex set has a supporting 

hyperplane. This idea leads to one of the central concepts of convex analysis, which is called 

subgradient. The study of subgradients in convex optimization has been a cornerstone in developing 

methods for optimality conditions and duality theorems [4,12,13]. However, if the set is not convex 

there does not exist any supporting hyperplanes at boundary points. Many researchers have tried to 

generalize for nonconvex problems on optimality conditions. Among these contributions, Azimov and 

Gasimov’s weak subgradient definition emerges as a significant concept, introducing a novel approach 

to analyzing nonsmooth functions while retaining computational and theoretical practicality and the 

idea is very useful for analyzing optimality conditions in nonconvex optimization [1,3,5,6,7,8]. In 

[1,7] they use support cones instead of supporting hyperplanes. Therefore, this enables us to broaden 

the subdifferentiable class to the lower Lipschitz function class. This motivates our study on a broader 

class of weakly subdifferentiable functions.  

 

In [10], it has been introduced a distinct separation property in Banach spaces for two closed cones, 

along with a nonlinear separation theorem applicable to cones having this relation. It also extends 

traditional dual cones definitions by introducing augmented dual cones. Also, it is well known that any 

lower Lipschitz function satisfy the weak subdifferentiability [1,2]. Based on the separation theorem 
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we establish a theorem that any Lipschitz function is weakly subdifferentiable with 𝑥∗ component of 

(𝑥∗, 𝑐) is different than zero vector of ℝ𝑛. 

 

It is proven in [9] that positively homogeneous and continuous function is subdifferentiable. In this 

work, we show that positively homogeneous and lower semicontinuous function is weakly 

subdifferentiable. 

 

2. PRELIMINARIES 

 

Consider a normed space (𝕐, ‖∙‖).  

 

𝕌 = {𝒚 ∈ 𝕐: ‖𝒚‖ = 𝟏} 

 

is referred to as the unit sphere of (𝕐, ‖∙‖) and, 

 

 

𝔹 = {𝒚 ∈ 𝕐: ‖𝒚‖ ≤ 𝟏}, 

 

 

is referred to as the unit ball of the space (𝕐, ‖∙‖). The nonempty set ℂ contained in 𝕐 is considered a 

cone if, for any element 𝒚 in ℂ and any non-negative scalar 𝝀 ≥ 𝟎, then 𝝀𝒚 also belongs to ℂ. 
 

  

A cone ℂ is pointed if  

ℂ ∩ (−ℂ) = {𝟎𝕐}. 

 

 

A cone generating by a set 𝕊 is denoted by cone(𝕊):  

 

cone(𝕊)={𝝀𝒔: 𝝀 ≥ 𝟎, 𝒔 ∈ 𝕊}. 

 

 

Let ℂ ≠ {𝟎𝕐} be a convex cone. A nonempty convex subset 𝔻 of ℂ a is referred to as a base for ℂ if 

each 𝒚 ∈ ℂ if each 𝒚 ∈ ℂ\{𝟎𝕐} has a distinct representation in the form 𝒚 = 𝝀𝒅 for some 𝝀 > 𝟎 and 

some 𝒅 ∈  𝔻. Throughtout this work, The norm base of the cone ℂ is represented by ℂ𝕌 = ℂ ∩
 𝕌={𝒚 ∈ ℂ: ‖𝒚‖ = 𝟏}. 
 

Definition 2.1: Consider (𝕐, ‖∙‖) as a real normed space where partial ordering is determined by a 

cone ℂ  which is closed, convex, pointed . The definition of the dual cone ℂ∗ is as follows: 

 

ℂ∗  = {𝒛∗ ∈ 𝕐∗: 〈𝒛∗, 𝒛〉 ≥ 𝟎, ∀𝒛 ∈ ℂ}. 

 

 

and quasi interior of ℂ∗  denoted by ℂ# is given as follows:  

 

ℂ# = {𝒛∗ ∈ 𝕐∗: 〈𝒛∗, 𝒛〉 > 𝟎, ∀𝒛 ∈ ℂ\{𝟎}}. 

 

 

The extended version of these definitions are presented in [10] and called augmented dual cones are 

given as follows: Let  

 

ℂ𝒂∗  = {(𝒛∗, 𝒂) ∈ ℂ# × ℝ+: 〈𝒛∗, 𝒛〉 − 𝜶‖𝒛‖ ≥ 𝟎, ∀𝒛 ∈ ℂ}, 

 

 

ℂ𝒂∘  = {(𝒛∗, 𝒂) ∈ ℂ# × ℝ+: 〈𝒛∗, 𝒛〉 − 𝜶‖𝒛‖ > 𝟎, ∀𝒛 ∈ 𝒊𝒏𝒕(ℂ)},  

       and  

ℂ𝒂#  = {(𝒛∗, 𝒂) ∈ ℂ# × ℝ+: 〈𝒛∗, 𝒛〉 − 𝜶‖𝒛‖ > 𝟎,  ∀𝒛 ∈ ℂ\{𝟎𝕐}}.  

 

In the definition of  ℂ𝒂∘ assumes that the interior of the ordering cone 𝒊𝒏𝒕(ℂ) is not empty. 
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Definition 2.2: A pair (𝑥∗, 𝑐) which is in ℝ𝑛 × ℝ+is referred to as a weak subgradient of h at 𝑥0 on 

the set S provided that  

 

⟨𝑥∗, 𝑥 − 𝑥0⟩ − 𝑐‖𝑥 − 𝑥0‖ ≤ ℎ(𝑥) − ℎ(𝑥0)  for all 𝑥 ∈S (1) 

 

The weak subdifferential set contains all weak subgradients of ℎ at 𝑥0 and it is represented as 𝜕𝑆
𝑤ℎ(𝑥): 

 

𝜕𝑆
𝑤ℎ(𝑥0)={(𝑥∗, 𝑐) ∈ ℝ𝑛 × ℝ+: (1)  is satisfied} 

 

 

Remark 2.3: If 𝜕𝑆
𝑤ℎ(𝑥0) ≠ ∅, then ℎ is called the weakly subdifferentiable at 𝑥0. If we let 𝑆 = ℝ𝑛 

then we ignore the subscript  𝑆 in 𝜕𝑆
𝑤ℎ(𝑥0), and denote it by  𝜕𝑤ℎ(𝑥0) = 𝜕ℝ𝑛

𝑤 ℎ(𝑥0). It is obvious that 

if function ℎ is subdifferentiable at 𝑥0 then ℎ is also weakly subdifferentiable at 𝑥0. One can check if 

𝑥∗ ∈ 𝜕ℎ(𝑥0) then by definition  (𝑥∗, 𝑐) ∈ ℝ𝑛 × ℝ+ for every 𝑐 ≥0. The weak subgradient of ℎ is 

geometrically interpreted as:  

(𝑥∗, 𝑐) ∈ ℝ𝑛 × ℝ+ is a weak subgradient of ℎ at 𝑥0 ∈ 𝑋 if one can found a function  

 

𝑓(𝑥) = ⟨𝑥∗, 𝑥 − 𝑥0⟩ − 𝑐‖𝑥 − 𝑥0‖ + ℎ(𝑥0) (2) 

 

which is continuous, concave and, satisfies ℎ(𝑥) ≤ 𝑓(𝑥), ∀𝑥 ∈ 𝑋 and ℎ(𝑥0) = 𝑓(𝑥0). The hypograph 

of the function 𝑓 is defined as hypo (𝑓) = {(𝑥, 𝑎) ∈ 𝑋 × ℝ | 𝑓(𝑥) ≥ 𝑎} and it is a closed cone in 

𝑋 × ℝ with its vertex at (𝑥0, 𝑓(𝑥0)). To verify: 

ℎ𝑦𝑝𝑜 (𝑓) − (𝑥0, ℎ(𝑥0)) = {(𝑥 − 𝑥0, 𝑎 − ℎ(𝑥0)) ∈ 𝑋 × ℝ | ⟨𝑥∗, 𝑥 − 𝑥0⟩ − 𝑐‖𝑥 − 𝑥0‖ ≥ 𝑎 − ℎ(𝑥0)} 

           = {(𝑢, 𝑏) ∈ 𝑋 × ℝ | ⟨𝑥∗, 𝑢⟩ − 𝑐‖𝑢‖ ≥ 𝑏}. 

   

Thus, from (1) and (2) hypo (𝑓) is a supporting cone of the set  

 

𝑒𝑝𝑖 (f) = {(𝑥, 𝑎) ∈ 𝑋 × ℝ | 𝑓(𝑥) ≤  𝑎} 

 

 

at the point (𝑥0, ℎ(𝑥0)) in the way that epi(f) ⊂ (𝑋 × ℝ)\ ℎ𝑦𝑝𝑜(𝑓) and 𝑐𝑙(𝑒𝑝𝑖(𝑓)) ∩ 𝑔𝑟𝑎𝑝ℎ(𝑓) ≠ ∅  

where 𝑔𝑟𝑎𝑝ℎ (𝑓) = {(𝑥, 𝑎) ∈  𝑋 × ℝ |𝑓(𝑥) = 𝑎 }.  
 

In [1], they derived the weak subdifferential for the specific subclasses of lower Lipschitz functions.  

Lower Lipschitz function definition is given as follows:  

 

Definition 2.4: A function 𝑔 from 𝑋 into   ℝ is referred as "lower locally Lipschitz" at 𝑥0 ∈ 𝑋 if there 

exists a positive constant L and a neighborhood 𝒩(𝑥0) around 𝑥0 such that 

 

−𝐿‖𝑥 − 𝑥0‖  ≤  𝑔(𝑥) − 𝑔(𝑥0),   ∀𝑥 ∈ 𝒩(𝑥0). (3) 

 

The function 𝑔 is said to be lower Lipschitz at 𝑥0 where 𝐿 is called the Lipschitz constant if for all 𝑥 ∈
𝑋 the inequality (3) holds true.  

An example of the weak subdifferential is presented.  

 

Example 2.4: Let 𝑔: ℝ →  ℝ be given as 

 

𝑔(𝑥) = {
(𝑥 + 1)2              𝑖𝑓 𝑥 ≤ 1,

(𝑥 − 2)2 + 3      𝑖𝑓 𝑥 > 1.
 

 

 

The graph of function 𝑔 is given below.  
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We want to calculate the weak subdifferentiable of 𝑔 at 𝑥0 = 1. Clearly, function 𝑔 is not 

subdifferentiable at 𝑥0 = 1. 
 

First, the case 𝑥 ≤ 1 is considered. The definition 2.2  implies that: 

 

⟨𝑡, 𝑥 − 𝑥0⟩ − 𝑐‖𝑥 − 𝑥0‖ ≤ 𝑔(𝑥) − 𝑔(𝑥0) = (𝑥 + 1)2 − 𝑔(1) 

𝑡(𝑥 − 1) − 𝑐(1 − 𝑥) ≤ (𝑥2 + 2𝑥 + 1) − 4 

(𝑥 − 1)(𝑡 + 𝑐) ≤ 𝑥2 + 2𝑥 − 3 

Then 𝜕𝑤𝑔(1) for the case 𝑥 ≤ 1 obtained as:  

 

     𝜕𝑤𝑔(1) ={(𝑡, 𝑐) ∈ ℝ × ℝ+: 𝑣 + 𝑐 > 4} 

 

Then we consider the case 𝑥 > 1.  The weak subdifferential definition indicates that:  

⟨𝑡, 𝑥 − 𝑥0⟩ − 𝑐‖𝑥 − 𝑥0‖ ≤ 𝑔(𝑥) − 𝑔(𝑥0) 

⟨𝑡, 𝑥 − 1⟩ − 𝑐|𝑥 − 1| ≤ (𝑥 − 2)2 + 3 − 𝑔(1) 

(𝑡 − 𝑐)(𝑥 − 1) ≤ (𝑥2 − 4𝑥 + 4) + 3 − 4 

(𝑥 − 1)(𝑡 − 𝑐) ≤ 𝑥2 − 4𝑥 + 3 

Then 𝜕𝑤𝑔(1) for the case 𝑥 > 1 obtained as:  

 

     𝜕𝑤𝑔(1) ={(𝑡, 𝑐) ∈ ℝ × ℝ+: 𝑡 − 𝑐 ≤ −2}. 

 

Then finally we obtained that: 

 

 𝜕𝑤𝑔(1) ={(𝑡, 𝑐) ∈ ℝ × ℝ+:  − 𝑐 + 4 ≤ 𝑡 ≤ 𝑐 − 2}. 

 

 

 

3. A CLASS OF WEAKLY SUBDIFFERENTIABLE FUNCTIONS 

 

The below corollary provides a condition for a function to be weakly subddifferentiable.  

 

Corollary 3.1: [1, Corollary 3.1] Assume that 𝒉 is bounded from below and proper function from 𝑿 

into ℝ ∪ {+∞} and lower locally Lipschitz at �̅�. Then 𝒉 is said to be weakly subdifferentiable at �̅�.  
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The following theorem express a criteria for a weakly subddifferentiability of a function.  

 

Theorem 3.2: [2, Theorem 1] Assume that function 𝒉: ℝ𝒏 is finite at 𝒙𝟎 then the following conditions 

are equivalent:  

 

i) 𝒉 is lower Lipschitz at �̅�. 
ii) 𝒉 is weakly subdifferentialbe at �̅�.  
iii) 𝒉 is lower locally Lipschitz at �̅�  and there exists numbers 𝒑 ≥ 𝟎 and 𝒒 such that  

 

𝒉(𝒚) ≥ −𝒑‖𝒚‖ + 𝒒, ∀𝒚 ∈  ℝ𝒏. 

 

Lemma 3.3: [9, Lemma 2.7] Let 𝒇 be bounded from below on some neighborhood of zero and 

positively homogeneous function from 𝑿 into ℝ. Then 𝒇 is a weakly subdifferentiable at 𝟎𝑿 . 

 

We define the subsequent norm on ℝ𝑛+1.  
 

Let 𝑣 ∈ ℝ𝑛 𝑎𝑛𝑑 𝑎 ∈ ℝ then  
‖(𝑣, 𝑐)‖ = ‖𝑣‖ + |𝑐| 

 

defines a norm on ℝ𝑛+1. One can verify the norm properties easily.   

The following definition concerns with the separation of the cones in normed spaces.  

 

Definition 3.4: [10, Definition 4.1] Let (𝕐, ‖∙‖) be a normed space and assume that ℂ and 𝕂 be closed 

cones taken from (𝕐, ‖∙‖) with norm bases ℂ𝕌 and 𝕂𝕌, respectively. Suppose that 𝕂𝕌
𝜕 = 𝕂𝕌 ∩

𝑏𝑑(𝕂), and let �̃�𝜕 and ℂ̃ represent the closures of the sets 𝑐𝑜(𝕂𝕌
𝜕 ∪ {0𝕐}) and 𝑐𝑜(ℂ𝕌), respectively. 

The separation relation holds with respect to norm ‖∙‖ for the cones ℂ and 𝕂  if 

 

ℂ̃ ∩ �̃�𝜕 = ∅. (4) 

 

The following lemma is proved in [10] and we rewrite the theorem for the ℝ𝑛+1 case.  

 

Lemma 3.5: Suppose that ℂ and 𝕂 denote two nonempty cones in the space 𝕐. Assume that ℂ𝑎∗ ≠ ∅. 

Then for each ((𝑥∗, 𝑎∗), 𝛼) ∈ ℂ𝑎∗ with 𝛼 > 0, the sublevel sets 𝑆((𝑥∗, 𝑎∗), 𝛼)  defined by  

 

𝑆((𝑥∗, 𝑎∗), 𝛼) = {(𝑥, 𝑎) ∈ 𝕐: ⟨(𝑥∗, 𝑎∗), (𝑥, 𝑎)⟩ + 𝛼‖(𝑥, 𝑎)‖ ≤ 0 } 

 

is a pointed and closed cone that contains − ℂ. 
 

Proof. The proof can be done by following similar steps of the proof of Lemma 3.2 in [9]. 

 

We following theorem is presented in [10] and we show that when the cones ℂ and 𝕂 belong to the 

ℝ𝑛+1 the theorem remains true.  

 

Theorem 3.6: Assume that ℂ and 𝕂 be two closed cones are taken from a reflexive Banach space 

(𝕐, ‖∙‖). Suppose the cones −ℂ and 𝕂 fulfill the separation relation outlined in definition 3.3, 

 

ℂ̃ ∩ �̃�𝜕 = ∅. 
 

It implies that, ℂ𝑎# ≠ ∅ and there exists ((𝑥∗, 𝑎∗), 𝛼) ∈ ℂ𝑎# such that the corresponding sublevel set  

 

𝑆((𝑥∗, 𝑎∗), 𝛼) of the strongly monotonically increasing sublevel function  
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𝑔(𝑥, 𝑎) = ⟨(𝑥∗, 𝑎∗), (𝑥, 𝑎)⟩ + 𝛼‖(𝑥, 𝑎)‖ 

 

separates the cones −ℂ and 𝑏𝑑(𝕂) in the following manner  

 

⟨(𝑥∗, 𝑎∗), (𝑥, �̂�)⟩ + 𝛼‖(𝑥, �̂�)‖ < 0 ≤ ⟨(𝑥∗, 𝑎∗), (𝑥, 𝑎)⟩ + 𝛼‖(𝑥, 𝑎)‖ (5) 

 

 

for all (𝑥, �̂�) ∈  −ℂ\{0𝕐} and (𝑥, 𝑎) ∈  𝑏𝑑(𝕂). Then −ℂ is pointed cone. Conversely, if there exists a 

pair ((𝑥∗, 𝑎∗), 𝛼) ∈ ℂ𝑎# such that the corresponding sublevel set  

 

𝑆((𝑥∗, 𝑎∗), 𝛼) of the strongly monotonically increasing sublevel function  

 

𝑔(𝑥, 𝑎) = ⟨(𝑥∗, 𝑎∗), (𝑥, 𝑎)⟩ + 𝛼‖(𝑥, 𝑎)‖ 

 

separates the cones −ℂ and 𝑏𝑑(𝕂) in the following manner of (5) and if either (𝕐, ‖∙‖) is a finite 

dimensional space or ℂ is closed and convex cone, then the cones ℂ and 𝕂 fulfill the separation 

relation in (4).  

 

Proof. We omit the proof since it can be done similarly with the proof in [10, Theorem 4.3].  

 

Now we present a separation relation for an arbitrary closed cone 𝕂 which belongs to ℝ𝑛+1. 

 

Lemma 3.7: Let 𝕂 be a closed cone in ℝ𝑛+1 and assume that (�̂�, �̂�) ∉  𝕂. Then a vector  

(𝑦, 𝑎) ∈ ℝ𝑛+1\{0ℝ𝒏+𝟏} and a positive real number 𝛼 ≥ 0 exist such that  

 

 

   ⟨(𝑦∗, 𝑎∗), (�̂�, �̂�)⟩ + 𝛼‖(�̂�, �̂�)‖ < 0 ≤ ⟨(𝑦∗, 𝑎∗), (𝑦, 𝑎)⟩ + 𝛼‖(𝑦, 𝑎)‖        for all (𝑦, 𝑎) ∈ 𝕂 

 

Proof. In this proof, the idea is based on [11, Lemma 3.1].  

 

Let ‖(�̂�, �̂�)‖ = 1 and 𝛼 = 1 −
𝜀2

2
. 𝕂 is a closed cone and (�̂�, �̂�) ∉  𝕂 thus there exists 𝜀 ∈ (0,1) such 

that  

 

𝑁𝜀(�̂�, �̂�) = {(𝑦, 𝑎) ∈ ℝ𝑛+1: ‖(𝑦 − �̂�, 𝑎 − �̂�)‖ ≤ 𝜀} 

 

Assume that  

ℂ = 𝑐𝑜𝑛𝑒(𝑁𝜀(�̂�, �̂�)) 

and 

 

ℂ𝕌 = {(𝑦, 𝑎) ∈ 𝕌: ‖(𝑦 − �̂�, 𝑎 − �̂�)‖ ≤ 𝜀}. 

 

(𝑦, 𝑎) ∈ ℂ𝕌 ⟺ ‖(𝑦 − �̂�, 𝑎 − �̂�)‖2 ≤ 𝜀2 

 

                ⟺ ‖(𝑦 − �̂�)‖2 + (𝑎 − �̂�)2 ≤ 𝜀2 

 

              ⟺ ‖�̂�‖2 + 2〈𝑦, �̂�〉 + ‖𝑦‖2 + 𝑎2 + 2𝑎�̂� + �̂�2 ≤ 𝜀2 

 

                    ⟺ 2 − 2(〈𝑦, �̂�〉 + 𝑎�̂�) ≤ 𝜀2 

               ⟺ 1 −
𝜀2

2
≤ 〈𝑦 − �̂�, 𝑎 − �̂�〉 for all (𝑦, 𝑎) ∈  𝕌 ∩ 𝕂. 

 

The rest of the proof follows similarly.  
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For a given set 𝑺 ⊂ ℝ𝒏+𝟏 and a point at (�̅�, �̅�) ∈ 𝑺, we present the separation theorem.  

 

Theorem 3.8: Assume that 𝑺 ⊂ ℝ𝒏+𝟏 be cone shaped at (�̅�, �̅�) ∈ 𝑺. In that case, the cone ℂ ⊂ ℝ𝒏+𝟏 

exists which is pointed and closed that satisfy 

 

(𝑺 − {(�̅�, �̅�)}) ∩  ℂ\{𝟎ℝ𝒏} = ∅ 

 

and there exists ((𝒚∗, 𝒂∗), 𝜶) ∈ (−ℂ)# satisfying  

 
⟨(𝑦∗, 𝑎∗), (𝑦, 𝑎) − (�̅�, �̅�)⟩ + 𝛼‖(𝑦, 𝑎) − (�̅�, �̅�)‖ ≥ 0, ∀(𝑦, 𝑎) ∈ 𝑆. 

 

Proof: This theorem can be proven easily by following [11, Theorem 3.2]. 

 

 

The subsequent theorem asserts that if a function is positively homogeneous and continuous then it is 

both lower and upper Lipschitz.  

 

Theorem 3.9: Assume that the function 𝑓: ℝ𝑛 → ℝ is a continuous, positively homogeneous. Then 𝑓 

is Lipschitz. 

 

Proof: We know that if 𝑓 is continuous on 𝑆1 = {𝑢 ∈ 𝑆: ‖𝑢‖ = 1} then it attains its minimum and 

maximum on 𝑆1. Thus there exists real numbers 𝑚 and 𝑀 with 

  
   𝑓(𝑢) ≥ 𝑚 for all 𝑢 ∈ 𝑆1 

 

and 

                                                                                                          

𝑓(𝑢) ≤ 𝑀, for all 𝑢 ∈ 𝑆1. (6) 

 

 

Take any 𝑥 ∈ 𝑆. Then there exists some 𝑡 > 0  and 𝑥 ∈ 𝑆1 such that 𝑥 = 𝑡𝑢. Therefore,  

 

𝒇(𝒙) − 𝒇(𝟎) = 𝒇(𝒙) = 𝒇(𝒕𝒖) = 𝒕𝒇(𝒖) ≥ 𝒕𝒎 = 𝒕𝒎‖𝒖‖ = 𝒎‖𝒕𝒖‖ = 𝒎‖𝒙‖ (7) 

 

   

Now, if   𝒎 > 𝟎 then (7) implies that: 

 

−𝑳‖𝒙‖ ≤ 𝒎‖𝒙‖ ≤ 𝒇(𝒙) − 𝒇(𝟎) (8) 

 

where 𝑳 is an arbitrary positive real number.                

 

If   𝒎 < 𝟎 in (7) then, 

 

−𝑳‖𝒙‖ ≤ 𝒎‖𝒙‖ ≤ 𝒇(𝒙) − 𝒇(𝟎) where 𝑳 > 𝟎 and −𝑳 = 𝒎 < 𝟎.                    (9) 

 

    

Thus (8) and (9) together imply that 𝒇 is lower Lipschitz. Now since 𝒇 is bounded above (6) implies 

that, 

  

             𝒇(𝒙) − 𝒇(𝟎) = 𝒇(𝒙) = 𝒇(𝒕𝒖) = 𝒕𝒇(𝒖) ≤ 𝒕𝑴 = 𝒕𝑴‖𝒖‖ = 𝑴‖𝒕𝒖‖ = 𝒎‖𝒙‖                        

 

If 𝑴 > 𝟎, we know that,  
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                                     𝒇(𝒙) − 𝒇(𝟎) ≤ 𝑴‖𝒙‖ = 𝑳‖𝒙‖.     (10) 

 

If 𝑴 < 𝟎, then 

  

𝒇(𝒙) − 𝒇(𝟎) ≤ 𝑴‖𝒙‖ ≤ 𝑳‖𝒙‖ where 𝑳 > 𝟎 and arbitrary. (11) 

 

 

(9) and (10) imply that 𝒇 is upper Lipschitz. Thus 𝒇 is Lipschitz and there exists 𝑳 > 𝟎 such that  

 

|𝒇(𝒙) − 𝒇(𝟎)| ≤ 𝑳‖𝒙 − 𝟎‖. 

 

The proof is completed.  

 

The following theorem shows that positively homogeneous and lower semicontinuous functions are 

weakly subdifferentiable and it is worth to emphasize that the pair (𝒙∗, 𝒄) in this case is different from 

(𝟎ℝ𝒏 , 𝟎). 
 

Theorem 3.10: Let 𝑓: ℝ𝑛 → ℝ be lower semicontinuous and positively homogeneous function on the 

cone 𝑆. Then 𝑓 is weakly subdifferentiable at 𝑥 = 0, that is there exists  (𝑥∗, 𝑐) ∈ (ℝ𝑛 × ℝ+)\
{(0ℝ𝑛 , 0)} such that 

⟨𝑥∗, 𝑥⟩ − 𝑐‖𝑥‖ ≤ 𝑓(𝑥) − 𝑓(0)  for all 𝑥 ∈ 𝑆. 

 

Proof: Since 𝒇 is positively homogeneous it implies that 𝒇(𝟎) = 𝟎. 𝒇 is bounded below on      

𝑺𝟏 = {𝒙 ∈ 𝑺: ‖𝒙‖ = 𝟏} since 𝒇 is lower semicontinuous. Consider an arbitrary element 𝒙∗ ∈ ℝ𝒏\{𝟎}. 

Then it implies that  𝒚 = ⟨𝒙∗, 𝒙⟩ is continuous and thus bounded from below on 𝑺𝟏. Then there exists a 

sufficiently large number 𝒄 > 𝟎 such that 

 

                       
⟨𝒙∗, 𝒖⟩ − 𝒄‖𝒖‖ ≤ 𝒇(𝒖) − 𝒇(𝟎)  for all 𝒙 ∈ 𝑺𝟏. (12) 

 

 

Consider an arbitrary element  𝒙 ∈ 𝑺.  Since 𝑺  is a cone, then there exists 𝒕 > 𝟎 and 𝒖 ∈ 𝑺𝟏 such that 

𝒙 = 𝒕𝒖. For this 𝒖, multiply both sides of (12) by 𝒕 > 𝟎. Then it yields to 

 

⟨𝒙∗, 𝒙⟩ − 𝒄‖𝒙‖ ≤ 𝒇(𝒙) − 𝒇(𝟎)  ,∀𝒙 ∈ 𝑺. 
 

The proof is completed.  

 

Remark 3.11: Theorem 3.8 and Corollary 3.9 show that any lower Lipschitz function is weakly 

subdifferentiable. However, it is proved for  𝒚∗ component of the weak subgradient (𝒙∗, 𝜶) when 𝒙∗ =
𝟎ℝ𝒏 . The following theorem demonstrate that every Lipschitz function is weakly subdifferentiable 

with 𝒙∗ component of the weak subgradient is different from 𝟎ℝ𝒏 . 
 

The following theorem shows that a class of weakly subdifferentiable functions. 

 

Theorem 3.12:  Assume that 𝑓: ℝ𝑛 → ℝ is a Lipschitz continuous where 𝐿 is a Lipschitz constant.  

Then 𝑓 is weakly subdifferentiable at 𝑥0 ∈ 𝑖𝑛𝑡(𝑑𝑜𝑚(𝑓)), that is  𝜕𝑤𝑓(𝑥0) ≠ ∅ and there exists 

(𝑥∗, 𝛼) ∈  𝜕𝑤𝑓(𝑥0)  with 𝑥∗ ≠ 0ℝ𝑛 and 𝛼 > 0. 
 

Proof:  The proof is built upon nonlinear cone separation theorem [10]. Assume that 𝑥0 ∈
𝑖𝑛𝑡(𝑑𝑜𝑚(𝑓)). Since (𝑥0, 𝑓(𝑥0)) belongs to the boundary of 𝑒𝑝𝑖(𝑓) ⊂ ℝ𝑛 × ℝ, we can separate it 
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from 𝑖𝑛𝑡(𝑑𝑜𝑚(𝑓)) by a closed pointed cone. By Theorem 3.8 there exists ((𝑥∗, 𝑎∗), 𝛼) ∈ (−ℂ)#such 

that  

 

 
⟨(𝑥∗, 𝑎∗), (𝑥, 𝑎) − (𝑥0, 𝑎0)⟩ + 𝛼‖(𝑥, 𝑎) − (𝑥0, 𝑎0)‖ ≥ 0 for all (𝑥, 𝑎) ∈ 𝑒𝑝𝑖(𝑓). 

 
⟨(𝑥∗, 𝑎∗), (𝑥 − 𝑥0, 𝑎 − 𝑎0)⟩ + 𝛼‖(𝑥 − 𝑥0, 𝑎 − 𝑎0)‖ ≥ 0 for all (𝑥, 𝑎) ∈ 𝑒𝑝𝑖(𝑓). 

 

By using the norm defined on ℝ𝑛+1 we have,  

 

⟨𝑥∗,𝑥 − 𝑥0⟩ + 𝑎∗(𝑎 − 𝑎0) + 𝛼‖(𝑥 − 𝑥0‖ + 𝛼|𝑎 − 𝑎0| ≥ 0 for all (𝑥, 𝑎) ∈ 𝑒𝑝𝑖(𝑓). 

 

If we substitute 𝑓(𝑥0) = 𝑎0 it yields to,  

 

⟨𝑥∗,𝑥 − 𝑥0⟩ + 𝑎∗(𝑎 − 𝑓(𝑥0)) + 𝛼‖𝑥 − 𝑥0‖ + 𝛼|𝑎 − 𝑓(𝑥0)| ≥ 0 for all (𝑥, 𝑎) ∈ 𝑒𝑝𝑖(𝑓). 

 

Or equivalently,  

 
⟨𝑥∗,𝑥 − 𝑥0⟩ + 𝑎∗(𝑓(𝑥) − 𝑓(𝑥0)) + 𝛼‖(𝑥 − 𝑥0‖ + 𝛼|𝑓(𝑥) − 𝑓(𝑥0)| ≥ 0 for all 𝑥 ∈ 𝑑𝑜𝑚(𝑓). 

 

By the assumption that 𝑓 is a Lipschitz function, it implies that: 

 

𝛼|𝑓(𝑥) − 𝑓(𝑥0)| ≤ 𝛼𝐿‖𝑥 − 𝑥0‖ . 

 

Then we have, 

 

⟨𝑥∗,𝑥 − 𝑥0⟩ + 𝑎∗(𝑓(𝑥) − 𝑓(𝑥0)) + 𝛼‖𝑥 − 𝑥0‖ + 𝛼𝐿‖𝑥 − 𝑥0‖ ≥ 

⟨𝑥∗,𝑥 − 𝑥0⟩ + 𝑎∗(𝑓(𝑥) − 𝑓(𝑥0)) + 𝛼‖𝑥 − 𝑥0‖ + 𝛼|𝑓(𝑥) − 𝑓(𝑥0)| for all 𝑥 ∈ 𝑑𝑜𝑚(𝑓). 

 

 

Hence, we obtain 

 

⟨𝑥∗,𝑥 − 𝑥0⟩ + 𝑎∗(𝑓(𝑥) − 𝑓(𝑥0)) + (𝛼 + 𝛼𝐿)‖𝑥 − 𝑥0‖ ≥ 0 for all 𝑥 ∈ 𝑑𝑜𝑚(𝑓). 
 

Thus,  

 

⟨𝑥∗,𝑥 − 𝑥0⟩ + (𝛼 + 𝛼𝐿)‖𝑥 − 𝑥0‖ ≥ −𝑎∗(𝑓(𝑥) − 𝑓(𝑥0)) for all 𝑥 ∈ 𝑑𝑜𝑚(𝑓). 
 

Then finally,  

 

⟨−
𝑥∗

𝑎∗
, 𝑥 − 𝑥0⟩ − (

𝛼 + 𝛼𝐿

𝑎∗
) ‖𝑥 − 𝑥0‖ ≤ 𝑓(𝑥) − 𝑓(𝑥0) for all 𝑥 ∈ 𝑑𝑜𝑚(𝑓). 

 

Thus, (−
𝑥∗

𝑎∗ ,
𝛼+𝛼𝐿

𝑎∗ ) ∈ 𝜕𝑤𝑓(𝑥0). The proof is completed.  
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4. CONCLUSION 

 

In this work, we showed that a class of functions which are weakly subdifferentiable and with an 

important distinction that 𝑥∗ component of the weak subgradient of the pair (𝑥∗, 𝛼) in this case is 

different from 0ℝ𝑛 . As shown in Theorem 3.12, we proved that any Lipschitz function is weakly 

subdifferentiable with a distinct weak gradient component. Our results extend the class of weakly 

subdifferentiable functions by introducing a new criterion based on nonlinear cone seperation.  
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