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Abstract  Keywords 

This article studies the properties of the weak subdifferential for nonsmooth and 

nonconvex analysis studied. This study presents a formulation that is directly 

involved in convex analysis carried out in the nonconvex case. In this work, we 

present a theory that applies epigraphs to obtain augmented normal cones.  

 

The perturbation function plays a crucial role in establishing optimality conditions. 

This study demonstrates that positively homogeneous and lower semicontinuous 

functions are weakly subdifferentiable. Moreover, under specific conditions related 

to the objective function, the constraint function, and the feasible set, we show that 

the perturbation function is positively homogeneous. Thus we obtain a zero duality 

gap condition by implementing conditions on the objective function, constraint 

functions, and the set S. 
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1. INTRODUCTION 
 

The concept of subgradient marked the real beginning of the convex analysis in the way it is seen now.  

It is associated with a convex function and provides many useful properties of the derivative from an 

optimization perspective [3,10]. At boundary points, a convex set has a supporting hyperplane, which 

gives rise to the notion of the subdifferential, denoted by 𝜕𝑓. This concept forms the foundation of 

convex analysis and was introduced by R.T. Rockafellar in his 1963 thesis [11] for convex functions. 

Later, F.H. Clarke, in his 1973 thesis [4], extended this definition to Lipschitz continuous functions by 

introducing the Clarke subdifferential 𝜕𝑜𝑓. Indeed, there is a drawback to this subdifferential notion. 

The function must be convex to be able to use many nice consequences of this concept.  

 

When dealing with nonconvex functions, 𝒉: ℝ𝒏 → ℝ was addressed, the original definition of 

subgradients through the affine support inequality applicable to convex functions had to be replaced 

with an alternative approach.  

 

Clarke introduced the use of distance functions 𝑑𝐶  to get a new concept of normal cones to nonconvex 

set 𝐶. Then he applied this concept to epigraphs to obtain normal cones (𝑣, −1) whose 𝑣 component 

could be interpreted as a subgradient. This innovation appeared in Clarke [5] and it sparked years of 
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efforts by many researchers to advance the idea in various areas and apply then to a range of topics, with 

one of the most notable one is to optimal control.  
 

Another alternative approach to the subgradient concept to nonconvex functions, known as the weak 

subdifferential 𝜕𝑤𝑓 was presented by R.N. Gasimov in his 1992 thesis [7]. The weak subdifferential 

generalizes the subdifferential concept from convex analysis to nonconvex functions. This concept is 

founded on the idea of using supporting cones for the epigraph of a given function, which serves as a 

substitute for the supporting hyperplanes typically used in convex analysis. The idea behind the 

supporting cones is extremely helpful for nonconvex separation theorems and investigating nonconvex 

optimality problems.  

 

Azimov and Gasimov well established a necessary and sufficient condition in nonconvex optimization 

based on the zero duality gap property [1,8] by relating the definition of the weak subdifferential and 

the perturbation function. Some of the weak subdifferential properties are investigated in [2,9].  

 

The zero duality gap condition defined by an augmented Lagrangian dual function is well studied in 

[10]. It has been applied to zero duality gap conditions for optimality and approaches for finding 

solutions in nonconvex mathematical programming.  

 

Motivation:  

 

The subgradient can be viewed as a special case of the normal cone when the set is the epigraph of a 

convex function. In this study, we have presented a theorem that establishes a connection between the 

augmented normal cone of the epigraph and the weak subdifferential. Our findings demonstrate the 

existence of this theorem within the framework of nonconvex analysis. 

Furthermore, we derive a zero duality gap condition by imposing conditions on the objective function, 

constraint functions, and the set S. 

2. PROPERTIES OF THE WEAK SUBGRADIENT AND AUGMENTED NORMAL CONE 

 

In convex duality theory, the definitions of conjugate functions and subdifferentials are as follows:  

 

Let 𝑿 be a normed space and 𝑿∗ be the topological dual of 𝑿. Suppose that ℝ̅ = ℝ ∪ {±∞}. We will 

denote the norm of 𝑿 by ‖∙‖, the norm of 𝑿∗ by ‖∙‖∗, and the value of a linear functional 𝒙∗ ∈ 𝑿∗ at a 

point 𝒙 ∈ 𝑿 by 𝒙∗ , 𝒙⟩.  Let 𝒉: ℝ𝒏 → ℝ̅ be a given function.  

 

Definition 1: (a) A function 𝒉𝒘: 𝑿 × 𝑿∗ × ℝ+ → ℝ̅  defined by  

 

𝒉𝒘(𝒙𝟎, 𝒙∗, 𝒄) = 𝒔𝒖𝒑
𝐱∈𝐗

 {−𝒄‖𝒙 − 𝒙𝟎‖ + 𝒄‖𝒙𝟎‖ + ⟨𝒙, 𝒙∗⟩ − 𝒉(𝒙)} 

 

is called the weak conjugate of 𝒉.  

 

(b) A function 𝒉𝒘𝒘: 𝑿 → ℝ̅ defined by 

 

𝒉𝒘𝒘(𝒙) = 𝒔𝒖𝒑
(𝒙∗,𝒄)∈𝑿∗×ℝ+

{−𝒄‖𝒙 − 𝒙𝟎‖ + 𝒄‖𝒙𝟎‖ + ⟨𝒙, 𝒙∗⟩ − 𝒉𝒘(𝒙𝟎, 𝒙∗, 𝒄)} 

 

 

is called the weak biconjugate of 𝒉. 
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For 𝒄 = 𝟎, 𝒉𝒘(𝒙𝟎, 𝒙∗, 𝒄) = 𝒉∗(𝒙∗), where 𝒉∗ is the ordinary conjugate function in convex analysis.   

 

Azimov and Gasimov introduced the following weak subdifferential notion, which is the generalization 

of the classic subdifferential from convex analysis [1].  

 

Definition 2: A pair (𝑥∗, 𝑐) ∈ ℝ𝑛 × ℝ+ is referred to as a weak subgradient of h at 𝑥0 on S provided 

that  

 

                                           

 

The set of all weak subgradients of ℎ at 𝑥0is referred to as the weak subdifferential of ℎ at 𝑥0 and is 

denoted as 𝜕𝑆
𝑤ℎ(𝑥): 

 

     𝜕𝑆
𝑤ℎ(𝑥̅)={(𝑥∗, 𝑐) ∈ ℝ𝑛 × ℝ+: (1)  is satisfied}. 

 

If 𝜕𝑆
𝑤ℎ(𝑥0) ≠ ∅, then ℎ is called the weakly subdifferentiable at 𝑥0. If we let 𝑆 = ℝ𝑛 then we ignore 

the subscript  𝑆 in 𝜕𝑆
𝑤𝑓(𝑥0), and denote it by 𝜕𝑤ℎ(𝑥0) = 𝜕ℝ𝑛

𝑤 ℎ(𝑥0). It is obvious that if function ℎ is 

subdifferentiable at 𝑥0 then ℎ is also weakly subdifferentiable at 𝑥0 . One can check if 𝑥∗ ∈ 𝜕ℎ(𝑥0) then 

by definition  (𝑥∗, 𝑐) ∈ ℝ𝑛 × ℝ+ for every 𝑐 ≥0. The weak subgradient of a function ℎ is geometrically 

interpreted as:  

(𝑥∗, 𝑐) ∈ ℝ𝑛 × ℝ+ is a weak subgradient of ℎ at 𝑥 ∈ 𝑋 if one can found a function  

 

𝑓(𝑥) = ⟨𝑥∗, 𝑥 − 𝑥0⟩ − 𝑐‖𝑥 − 𝑥0‖ + ℎ(𝑥0) 

 

which is a continuous, concave, and satisfies ℎ(𝑥) ≤ 𝑓(𝑥), ∀𝑥 ∈ 𝑋 and ℎ(𝑥0) = 𝑓(𝑥0). The hypograph 

of the function 𝑓 is defined as hypo (𝑓) = {(𝑥, 𝑎) ∈ 𝑋 × ℝ | 𝑓(𝑥) ≥ 𝑎} and it is a closed cone in 𝑋 × ℝ 

with its vertex at (𝑥0, 𝑓(𝑥0)). To verify: 

 

hypo (𝑓) − (𝑥0, ℎ(𝑥0)) = {(𝑥 − 𝑥0, 𝑎 − ℎ(𝑥0)) ∈ 𝑋 × ℝ | ⟨𝑥∗, 𝑥 − 𝑥0⟩ − 𝑐‖𝑥 − 𝑥0‖ ≥ 𝑎 − ℎ(𝑥0)} 

                = {(𝑢, 𝑏) ∈ 𝑋 × ℝ | ⟨𝑥∗, 𝑢⟩ − 𝑐‖𝑢‖ ≥ 𝑏}. 

 

Thus, from (2.1) and (2.2) that hypo (𝑓) is a supporting cone of the set  

 

𝑒𝑝𝑖(ℎ) = {(𝑥, 𝑎) ∈ 𝑋 × ℝ | ℎ(𝑥) ≤  𝑎}              

  

at the point (𝑥0, ℎ(𝑥0)) in the way that epi(h) ⊂ (𝑋 × ℝ)\ ℎ𝑦𝑝𝑜(𝑓) and 𝑐𝑙(𝑒𝑝𝑖(ℎ)) ∩ 𝑔𝑟𝑎𝑝ℎ(𝑓) ≠ ∅  

where 𝑔𝑟𝑎𝑝ℎ (𝑓) = {(𝑥, 𝑎) ∈  𝑋 × ℝ |𝑓(𝑥) = 𝑎 }.  
Azimov and Gasimov obtained the weak subdifferential for subclasses of lower Lipschitz functions [1]. 

Lower Lipschitz function definition is given as follows:  

 

Definition 3: A 𝑔: 𝑋 →  ℝ is said to be "lower locally Lipschitz" at 𝑥0 ∈ 𝑋 if there exists a positive 

constant L and a neighborhood 𝒩(𝑥0) around 𝑥0 such that 

 

−𝐿‖𝑥 − 𝑥0‖ ≤  𝑔(𝑥) − 𝑔(𝑥0),   ∀𝑥 ∈ 𝒩(𝑥0). (2) 

                                   

𝑔 is lower Lipschitz at 𝑥0 with the Lipschitz constant 𝐿 if the inequality (2) holds for all 𝑥 ∈ 𝑋.  

An example of the weak subdifferential is presented.  

Example 4: Let ℎ: ℝ →  ℝ be given as 

 

⟨𝑥∗, 𝑥 − 𝑥0⟩ − 𝑐‖𝑥 − 𝑥0‖ ≤ ℎ(𝑥) − ℎ(𝑥0)  for all 𝑥 ∈  𝑆 (1) 
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ℎ(𝑥) =  {

|𝑥 + 2|                𝑖𝑓 𝑥 ≤ 0
     4𝑥 + 2            𝑖𝑓 0 < 𝑥 ≤ 1

2|𝑥 − 2| + 4    𝑖𝑓 𝑥 > 1
 

The graph of function ℎ is given below. 

 

 
 

We want to calculate the weak subdifferentiable of ℎ at 𝑥0 = 1.  

 

First, we consider the case 𝑥 < −2. It follows from definition (2.1) that: 

 
⟨𝑦, 𝑥 − 𝑥0⟩ − 𝑐‖𝑥 − 𝑥0‖ ≤ ℎ(𝑥) − ℎ(𝑥0) 

⟨𝑦, 𝑥 − 1⟩ + 𝑐(𝑥 − 1) ≤ −(𝑥 + 2) − ℎ(1) 

𝑦(𝑥 − 1) + 𝑐(𝑥 − 1) ≤ (−𝑥 − 2) − 6 

(𝑥 − 1)(𝑦 + 𝑐) ≤ −𝑥 − 8 

Then 𝜕𝑤ℎ(1) for the case 𝑥 < −2 obtained as:  

 

     𝜕𝑤ℎ(1) ={(𝑦, 𝑐) ∈ ℝ × ℝ+: 𝑦 + 𝑐 > 2} 

 

Then we consider the case −2 ≤ 𝑥 ≤ 0.  It follows from the definition (2.1), 

 ⟨𝑦, 𝑥 − 𝑥0⟩ − 𝑐‖𝑥 − 𝑥0‖ ≤ ℎ(𝑥) − ℎ(𝑥0) 

⟨𝑦, 𝑥 − 1⟩ + 𝑐(𝑥 − 1) ≤ (𝑥 + 2) − ℎ(1) 

𝑦(𝑥 − 1) − 𝑐(1 − 𝑥) ≤ (𝑥 + 2) − 6 

(𝑥 − 1)(𝑤 + 𝑐) ≤ 𝑥 − 4 

Then 𝜕𝑤ℎ(1) for the case −2 ≤ 𝑥 ≤ 0 obtained as:  

 

     𝜕𝑤ℎ(1) ={(𝑦, 𝑐) ∈ ℝ × ℝ+: 𝑦 + 𝑐 ≥ 4} 

 

We consider the case 0 < 𝑥 ≤ 1.  We have the following from the definition (2.1) that, 
⟨𝑦, 𝑥 − 𝑥0⟩ − 𝑐‖𝑥 − 𝑥0‖ ≤ ℎ(𝑥) − ℎ(𝑥0) 

⟨𝑦, 𝑥 − 1⟩ − 𝑐|𝑥 − 1| ≤ ℎ(𝑥) − ℎ(1) 

𝑦(𝑥 − 1) − 𝑐(1 − 𝑥) ≤ 4𝑥 + 2 − 6 

(𝑥 − 1)(𝑦 + 𝑐) ≤ 4(𝑥 − 1) 

 

Then 𝜕𝑤ℎ(1) for the case 0 < 𝑥 ≤ 1 obtained as:  
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     𝜕𝑤ℎ(1) ={(𝑦, 𝑐) ∈ ℝ × ℝ+: 𝑦 + 𝑐 ≥ 4} 

 

Now we consider the case when 1 < 𝑥 < 2. It follows from the definition (2.1) that, 

 
⟨𝑦, 𝑥 − 1⟩ − 𝑐|𝑥 − 1| ≤ ℎ(𝑥) − ℎ(1) 

𝑦(𝑥 − 1) − 𝑐(𝑥 − 1) ≤ 2|𝑥 − 2| + 4 − 6, 
(𝑦 − 𝑐)(𝑥 − 1) ≤ −2(𝑥 − 1), 

 𝜕𝑤ℎ(1) for the case 1 < 𝑥 < 2 is obtained as:  

 𝜕𝑤ℎ(1) ={(𝑦, 𝑐) ∈ ℝ × ℝ+: 𝑦 − 𝑐 ≤ −2} 

 

The last case is when 𝑥 ≥ 2. Then we have,  
⟨𝑦, 𝑥 − 1⟩ − 𝑐|𝑥 − 1| ≤ ℎ(𝑥) − ℎ(1) 

𝑦(𝑥 − 1) − 𝑐(𝑥 − 1) ≤ 2|𝑥 − 2| + 4 − 6, 
(𝑦 − 𝑐)(𝑥 − 1) ≤ 2(𝑥 − 3), 

𝜕𝑤ℎ(1) for the case 𝑥 ≥ 2 is obtained as: 

      𝜕𝑤ℎ(1) ={(𝑦, 𝑐) ∈ ℝ × ℝ+:𝑦 − 𝑐 ≤ −2} 

 

Then finally we obtained that  

 

 𝜕𝑤ℎ(1) ={(𝑦, 𝑐) ∈ ℝ × ℝ+: 4 − 𝑐 ≤ 𝑦 ≤ 𝑐 − 2} 

 

We give the normal cone and augmented normal cone definitions below. The augmented normal cone 

notion is introduced to the literature by Kasimbeyli and Mammadov and it is quite helpful for obtaining 

the optimality condition in nonconvex optimization [8].  

 

Definition 5: Let 𝐴 ⊆ ℝ𝑛 and 𝑥0 ∈ 𝑆. The normal cone to 𝐴 at 𝑥0 defined as  

 

𝑁𝐴(𝑥0 ) = {𝑣 ∈ ℝ𝑛: ⟨𝑣, 𝑥 −  𝑥0⟩ ≤ 0 for all 𝑥 ∈ 𝐴}. 

 

It is clear that if 𝑥0 ∈ 𝑖𝑛𝑡(𝑆) then the set 𝑁𝐴(𝑥0 ) consists of a single element, that is the zero element 

0 ∈ ℝ𝑛. Such a normal cone is called trivial. If 𝑥0 ∉  𝑖𝑛𝑡 𝑆 and 𝑆 is convex then normal cone is called 

nontrivial, the zero of ℝ𝑛 may be the only element in this cone. A normal cone is called nontrivial if it 

contains non-zero elements.  

 

Definition 6: 

Let 𝑥0 ∈ 𝐴 and 𝐴\{𝑥0} ≠ ∅. The augmented normal cone to 𝐴 at 𝑥0 is defined as: 

 

𝑁𝐴
𝑎(𝑥0 ) = {(𝑣, 𝑐) ∈ ℝ𝑛 × ℝ: ⟨𝑣, 𝑥 −  𝑥0⟩ − 𝑐‖𝑥 − 𝑥0‖ ≤ 0 for all 𝑥 ∈ 𝐴}.                 

 

(3) 

Below, we recall definition of the augmented normal cone (for nonconvex sets) earlier introduced in (3). 

Here we will use a slightly different but an equivalent formulation (in the definition we use 

⟨𝑣, 𝑥 −  𝑥0⟩ + 𝑐‖𝑥 − 𝑥0‖ instead of ⟨𝑣, 𝑥 − 𝑥0⟩ + 𝑐‖𝑥 − 𝑥0‖). 

  
 

Since, for pairs (𝑣, 𝑐) with ‖𝑣‖ ≤ 𝑐, the inequality {(𝑣, 𝑐) ∈ ℝ𝑛 × ℝ: ⟨𝑣, 𝑥 −  𝑥0⟩ − 𝑐‖𝑥 − 𝑥0‖ ≤ 0 is 

obviously satisfied for all x∈ ℝ𝑛, an augmented normal cone consisting of only such elements is 

called trivial. The trivial augmented normal cone will be denoted by 𝑁𝐴
𝑡𝑟𝑖𝑣(𝑥0 ) and defined as  

 

𝑁𝐴
𝑎(𝑥0 ) = {(𝑣, 𝑐) ∈ ℝ𝑛 × ℝ: ‖𝑣‖ ≤ 𝑐} 
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Remark 7: It follows from the definition of normal and augmented normal cone that, for a given set 

𝐴 ⊂ ℝ𝑛, if the normal cone 𝑁𝐴(𝑥0 ) is not empty, then for  the pair  𝑣 ∈ 𝑁𝐴(𝑥0 ) with 𝑐 ≥ 0 belongs to 

the augmented normal cone 𝑁𝐴
𝑎(𝑥0 ). Conversely, if  (𝑣, 𝑐) ∈ 𝑁𝐴

𝑎(𝑥0 ) with 𝑐 ≤ 0, then  𝑣 ∈ 𝑁𝐴(𝑥0 ).  

Therefore, we will use the following definition for the augmented normal cone in this paper:  

 

𝑁𝐴
𝑎(𝑥0 ) = {(𝑣, 𝑐) ∈ ℝ𝑛 × ℝ: 𝑐 ≤ ‖𝑣‖, ⟨𝑣, 𝑥 −  𝑥0⟩ − 𝑐‖𝑥 − 𝑥0‖ ≤ 0 for all 𝑥 ∈ 𝐴}. 

 

The following lemma was proved in [8, Lemma 4]. 

 

Lemma 8: If  𝑥0 ∈ 𝑖𝑛𝑡 𝐴 then 𝑁𝐴
𝑎(𝑥0 ) = 𝑁𝐴

𝑡𝑟𝑖𝑣(𝑥0 ) 

Now we will establish a relationship between the augmented normal cone to the epigraph of a given 

function 𝑓 at some point (𝑥0, 𝑓(𝑥0)) and the weak subdifferential of 𝑓 at 𝑥0.  

Let 𝑓: ℝ𝑛 → ℝ be a given function. The epigraph epi(𝑓) of 𝑓 is defined as follows:  

 

epi(𝑓) = {(𝑥, 𝑎) ∈ ℝ𝑛 × ℝ: 𝑓(𝑥) ≤ 𝑎}. 

 

Then the augmented normal cone to the set epi(𝑓) ∈ ℝ𝑛 × ℝ at the point (𝑥0, 𝑓(𝑥0)) can be rewritten 

as follows: 

 

𝑁𝑒𝑝𝑖(𝑓)
𝑎 (𝑥0, f(𝑥0)) = {((𝑣, 𝛽), 𝑐) ∈ (ℝ𝑛 × ℝ) × ℝ+ ∶  

⟨𝑣, 𝑥 −  𝑥0⟩ + 𝛽(𝑎 − 𝑓(𝑥0)) − 𝑐‖(𝑥 − 𝑥0), (𝑎 − 𝑓(𝑥0))‖ ≤ 0 for all (𝑥, 𝑎) ∈  𝑒𝑝𝑖(𝑓).  

 

where the set ‖(𝑥 − 𝑥0), (𝑎 − 𝑓(𝑥0))‖
ℝ𝑛×ℝ

= ‖𝑥 − 𝑥0‖
ℝ𝑛 + |𝑎 − 𝑓(𝑥0)|ℝ. Obviously, such a setting 

satisfies the definition of the norm, such that:  

• ‖(𝑥, 𝑎)‖ = ‖𝑥‖ + |𝛼| ≥ 0 for all (𝑥, 𝑎) ∈ ℝ𝑛 × ℝ and obviously ‖(𝑥, 𝑎)‖ = 0 if and only if 

(𝑥, 𝑎) = (0ℝ𝑛 , 0); 

• ‖𝜆(𝑥, 𝑎)‖ = ‖(𝜆𝑥, 𝜆𝑎)‖ = ‖𝜆𝑥‖ + |𝜆𝑎| = |𝜆|(‖𝑥‖ + |𝑎|) = |𝜆|‖(𝑥, 𝑎)‖  for all (𝑥, 𝑎) ∈
ℝ𝑛 × ℝ and 𝜆 ∈ ℝ; 

• ‖(𝑥1, 𝑎1) + (𝑥2, 𝑎2)‖ = ‖(𝑥1, 𝑥2) + (𝑎1 + 𝑎2)‖ = ‖(𝑥1, 𝑥2)‖ + |𝑎1 + 𝑎2| ≤ ‖𝑥1‖ + ‖𝑥2‖ +
|𝑎1| + |𝑎2|=‖(𝑥1, 𝑎1)‖ + ‖(𝑥2, 𝑎2)‖ for all (𝑥1, 𝑎1) ∈ ℝ𝑛 × ℝ  and (𝑥2, 𝑎2 ∈ ℝ𝑛 × ℝ. 

 

 

3. DUALITY IN NONCONVEX OPTIMIZATION  

 

Suppose that 𝑋 and 𝑌 are normed spaces and assume that 𝑋∗ and 𝑌∗ are their dual spaces, respectively.  

 

Taking the function  𝒉: 𝑿 → ℝ̅ into account we consider a nonlinear problem in the following form:  

 

                          (P)     {𝐢𝐧𝐟
𝒙∈𝑿

𝒇(𝒙).    

 

The problem (P) is referred to as the primal problem. Its infimum is denoted by inf (P), and any 𝒙 ∈ 𝑿 

that satisfies 𝒇(𝒙) = 𝒊𝒏𝒇(𝑷) is called an optimal solution of (P). Problem (P) is considered nontrivial 

if there exists 𝒙 ∈ 𝑿 such that 𝒇(𝒙) < +∞. . 
 

 𝑿 = {𝒙 ∈ 𝑺: 𝒈𝒋(𝒙) ≤ 𝟎, 𝒋 = 𝟏, … , 𝒎} ≠ ∅. 

 

For the problem (P) the associated dualizing parameterization function 

 

𝝓(𝒙, 𝒚) = {
𝒇(𝒙)    𝒊𝒇 𝒙 ∈ 𝑺 𝒂𝒏𝒅 𝒈𝒋(𝒙) ≤ 𝟎, 𝒋 = 𝟏, … , 𝒎,

+∞                                                          𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆.
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The function 𝝓: 𝑿 × 𝒀 → ℝ ∪ {+∞} defined above satisfies that  𝝓(𝒙, 𝟎) = 𝒇(𝒙).  It is easy to check 

 

𝒊𝒏𝒇𝒙∈𝑿𝝓(𝒙, 𝟎) = 𝒊𝒏𝒇 (𝑷). 

 

Utilizing the classical method for constructing the dual of a minimization problem [6, 10] we can now 

define the corresponding dual problem. To formulate the dual problem based on the function 𝝓, the 

weak conjugate function 𝝓𝒘 must be calculated. By definition 2.1, the weak conjugate function 𝝓𝒘 is 

from (𝑿∗ × ℝ+ × 𝑿) × (𝒀∗ × ℝ+ × 𝒀) into ℝ̅ and is given by the following definition: 

 

𝝓𝒘((𝒙∗, 𝒄, 𝒙𝟎), (𝒚∗, 𝜶, 𝒚𝟎)) = 𝒔𝒖𝒑
(𝒙,𝒚)∈𝑿×𝒀

 {
−𝒄‖𝒙 − 𝒙𝟎‖ + 𝒄‖𝒙𝟎‖ + ⟨𝒙∗, 𝒙⟩

−𝜶‖𝒚 − 𝒚𝟎‖ + 𝜶‖𝒚𝟎‖ + ⟨  𝒚∗, 𝒚⟩ − 𝝓(𝒙, 𝒚)}
 

 

is referred to as the dual problem of (𝑷) based on the dualizing parameterization 𝝓. 

 

When (𝒙∗, 𝒄) = (𝟎, 𝟎), 𝒙𝟎 = 𝟎, 𝒚𝟎 = 𝟎, the value of 𝝓𝒘 will be referred to simply as:  

 

𝝓𝒘(𝟎, 𝒚∗, 𝜶) =  𝒔𝒖𝒑
(𝒙,𝒚)∈𝑿×𝒀

{−𝜶‖𝒚‖ + ⟨𝒚, 𝒚∗⟩ − 𝝓(𝒙, 𝒚)} 

 

(𝑷𝒘)                       𝒔𝒖𝒑
(𝒚∗,𝜶)∈𝒀∗×ℝ+

{−𝝓𝒘(𝟎, 𝒚∗, 𝜶)} 

 

The supremum of problem (𝑷𝒘) is represented by sup (𝑷𝒘). Any element (𝒚∗, 𝜶) ∈ 𝒀∗ × ℝ+ that 

satisfies 𝝓𝒘(𝟎, 𝒚∗, 𝜶)= sup (𝑷𝒘) is referred to as an optimal solution of (𝑷𝒘). 

 

Assume that 𝒉 is a function from 𝒀  into ℝ̅. We define the perturbation function associated with 

problem (P) as follows:  

 

 𝒉(𝒚) = 𝒊𝒏𝒇𝒙∈𝑿𝝓(𝒙, 𝒚)                                                                

 

 

The perturbation function definition implies that 

 

𝒉(𝒚) = 𝒊𝒏𝒇 (𝑷). 
 

The theorem below provides conditions for strong duality, based on the properties of the perturbation 

function 𝒉. 
 

Theorem 9: [1, Lemma 4.2] (i)  𝒉𝒘(𝒚∗, 𝜶, 𝟎) = 𝝓𝒘(𝟎, 𝒚∗, 𝜶); 
 (ii) 𝒔𝒖𝒑(𝑷𝒘) = 𝒉𝒘𝒘; 

 (iii) Suppose the perturbation function 𝒉, defined by (10), is proper and weakly 

subdifferentiable at  𝟎 ∈ 𝒀. Then 𝒊𝒏𝒇(𝑷) = 𝒔𝒖𝒑 (𝑷𝒘), and any weak subgradient of 𝒉 at 𝟎 ∈ 𝒀 is an 

optimal solution of (𝑷𝒘). 

 

 

Theorem 10: [10, Theorem 2.7] Let 𝒉 be bounded from below on some neighborhood of zero and 

positively homogeneous function from 𝑿 into ℝ. Then 𝒉 is weakly subdifferentiable at 𝟎𝑿. 
 

In the following theorem, we show that if the objective and constraint functions defined on the conic 

set are positively homogeneous then the perturbation function is also positively homogeneous.  
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Theorem 11: Assume that 𝑺 is a cone in ℝ𝒏. Let 𝒇: 𝑺 → ℝ be positively homogeneous and the 

mappings 𝒈 = (𝒈𝟏, 𝒈𝟐, … , 𝒈𝒎): 𝑺 → ℝ are positively homogeneous. Then the perturbation function 

𝒉(𝒚) is positively homogeneous.  

 

Proof: We must show that 𝒉(𝝀𝒚) = 𝝀𝒉(𝒚). Now the definition of the perturbation function implies 

that:  

 

𝒉(𝝀𝒚) = 𝒇(𝒙) if 𝒙 ∈ 𝑺 𝒂𝒏𝒅 𝒈𝒋(𝒙) ≤ 𝝀𝒚, 𝒋 = 𝟏, … , 𝒎. 

 

Since 𝒈𝒋
′𝒔 are positively homogeneous we have that  

 

𝒉(𝝀𝒚) = 𝒇(𝒙) if 𝒙 ∈ 𝑺 𝒂𝒏𝒅 𝒈𝒋 (
𝟏

𝝀
𝒙) =

𝟏

𝝀
𝒈𝒋(𝒙) ≤ 𝒚, 𝒋 = 𝟏, … , 𝒎. 

 

Now if we denote 
𝟏

𝝀
𝒙 = 𝒛 then we obtain:  

 

𝒉(𝝀𝒚) = 𝒇(𝝀𝒛) if 𝝀𝒛 ∈ 𝑺 𝒂𝒏𝒅 𝒈𝒋(𝒛) ≤ 𝒚, 𝒋 = 𝟏, … , 𝒎. 

 

By the assumption that 𝒇 is positively homogeneous and 𝑺 is a cone, then it yields that:  

 

𝒉(𝝀𝒚) = 𝝀𝒇(𝒛) if 𝒛 ∈ 𝑺 𝒂𝒏𝒅 𝒈𝒋(𝒛) ≤ 𝒚, 𝒋 = 𝟏, … , 𝒎. 

Hence  

𝒉(𝝀𝒚) = 𝝀𝒉(𝒚).   

The proof is completed.  

 

Based on the results of Theorem 9, Theorem 10 and Theorem 11 the following theorem can be stated.  

 

Theorem 12: Assume that 𝑆 is a cone in ℝ𝑛. Let 𝑓: 𝑆 → ℝ be positively homogeneous and lower 

semicontinuous and the mappings 𝑔 = (𝑔1, 𝑔2, … , 𝑔𝑚): 𝑆 → ℝ are positively homogeneous and lower 

semicontinuous. Then the zero duality gap satisfies.  

 

Proof. If 𝑆 is a cone in ℝ𝑛 , the functions 𝑓: 𝑆 → ℝ and 𝑔 = (𝑔1, 𝑔2, … , 𝑔𝑚): 𝑆 → ℝ are positively 

homogeneous and lower semicontinuos then by Theorem 9 we know that the perturbation function ℎ is 

positively homogeneous. Also, under the condition of lower semicontinuity of 𝑓 and 𝑔, ℎ is also lower 

semicontinuous. Thus, from Theorem 10 we obtain that ℎ is weakly subdifferentiable at 𝟎. Finally, 

Theorem 9 implies that the zero duality gap is satisfied. The proof is completed.  

 

 

In convex analysis, the following proposition is well known that relates to normal cone and 

subdifferential.  

 

Proposition 13: Let ℎ  be convex, proper function then  

 

𝜕𝑓(𝑥̅) = {𝑣 ∈ ℝ𝑛: (𝑣, −1) ∈ 𝑁 ((𝑥̅, 𝑓(𝑥̅)), 𝑒𝑝𝑖 𝑓)}. 

 

 

Theorem 14: Assume that 𝒇: ℝ𝒏 → ℝ is a proper function. 

i) If 𝒇 is weakly subdifferentiable function at 𝒙̅ ∈ ℝ𝒏 and (𝒗, 𝒄) ∈   𝝏𝒘𝒇(𝒙̅) then 

((𝒗, −𝟏), 𝒄) ∈  𝑵𝒆𝒑𝒊(𝒇) 
𝒂 (𝒙̅, 𝐟(𝒙̅)). 
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ii) If 𝒇 is Lipschitz function at 𝒙̅ ∈ ℝ𝒏 with Lipschitz constant 𝑳 and ((𝒗, −𝟏), 𝒄) ∈
 𝑵𝒆𝒑𝒊(𝒇) 

𝒂 (𝒙̅, 𝐟(𝒙̅)) with 𝒄 ≥ 𝟎 then 𝒇 is weakly subdifferentiable function at 𝒙̅ ∈ ℝ𝒏 and 

(𝒗, 𝒄 + 𝒄𝑳) ∈   𝝏𝒘𝒇(𝒙̅). 

 

Proof. (i) 

Assume that 𝒇 is Lipschitz at 𝒙̅ ∈ ℝ𝒏. Then clearly 𝒇 is lower Lipschitz and hence weakly 

subdifferentiable at 𝒙̅ ∈ ℝ𝒏. Let (𝒗, 𝒄) ∈   𝝏𝒘𝒇(𝒙̅). Then by definition of the weak subdifferential, we 

have:  

 

𝑓(𝑥) − f(𝑥̅) ≥ 〈𝑣, 𝑥 − 𝑥̅〉 − 𝑐‖𝑥 − 𝑥̅‖  for all 𝑥 ∈ ℝ𝒏. 
 

Hence 

 

𝛼 − f(𝑥̅) ≥ 〈𝑣, 𝑥 − 𝑥̅〉 − 𝑐‖𝑥 − 𝑥̅‖ − 𝑐|𝛼 − f(𝑥̅)|  for all (𝑥, 𝑎) ∈ 𝑒𝑝𝑖 (𝑓). 
 

This can be written in the form:  

 
〈𝑣, 𝑥 − 𝑥̅〉 + (−1)(𝛼 − f(𝑥̅)) − 𝑐‖(𝑥 − 𝑥̅), (𝛼 − f(𝑥̅))‖  for all (𝑥, 𝑎) ∈ 𝑒𝑝𝑖 (𝑓). 

 

which implies that ((𝒗, −𝟏), 𝒄) ∈  𝑵𝒆𝒑𝒊(𝒇) 
𝒂 (𝒙̅, 𝐟(𝒙̅)). 

 

(ii) Now assume that ((𝒗, −𝟏), 𝒄) ∈  𝑵𝒆𝒑𝒊(𝒇) 
𝒂 (𝒙̅, 𝐟(𝒙̅)). This means that  

 

〈𝒗, 𝒙 − 𝒙̅〉 + (−𝟏)(𝜶 − 𝐟(𝒙̅)) − 𝒄‖(𝒙 − 𝒙̅), (𝜶 − 𝐟(𝒙̅))‖  for all (𝒙, 𝒂) ∈ 𝒆𝒑𝒊 (𝒇). (4) 

 

Now by letting 𝜶 = 𝒇(𝒙) we obtain: 

 
〈𝒗, 𝒙 − 𝒙̅〉 + (−𝟏)(𝒇(𝒙) − 𝐟(𝒙̅)) − 𝒄‖(𝒙 − 𝒙̅), (𝒇(𝒙) − 𝐟(𝒙̅))‖  for all 𝒙 ∈ ℝ𝒏. 

 

By the hypothesis, 𝒇 is Lipschitz function at 𝒙̅ with Lipschitz constant 𝑳. Hence,  

 

𝒇(𝒙) − 𝐟(𝒙̅) ≤ 𝑳‖𝒙 − 𝒙̅‖ for all 𝒙 ∈ ℝ𝒏 

 

Then it follows from (4) that  

 

𝒇(𝒙) − 𝐟(𝒙̅) ≥ 〈𝒗, 𝒙 − 𝒙̅〉 − (𝒄 + 𝒄𝑳)‖𝒙 − 𝒙̅‖  for all 𝒙 ∈ ℝ𝒏. 

 

which shows that the proof is completed.  

 

4. CONCLUSION 

 

In this work, we have presented a theorem relates the augmented normal cone when the set is epigraph 

and the weak subdifferential. We showed the existence of such a theorem in the nonconvex analysis.  

We additionally obtain a zero duality gap condition by imposing conditions on the objective function, 

constraint functions and the set S.   

 

CONFLICT OF INTEREST 

 

The authors stated that there are no conflicts of interest regarding the publication of this article. 

 

 



Bila and Kasımbeyli / Estuscience  – Theory 13 [1] – 2025 

 

76 

 

 

REFERENCES 

 

[1] Azimov AY, Gasimov RN. On weak conjugacy, weak subdifferentials and duality with zero gap 

in nonconvex optimization, International Journal of Applied Mathematics, 1, 1999, pp. 171–192. 

 

[2] Bila S, Kasimbeyli R. On the some sum rule for the weak subdifferential and some properties of 

augmented normal cones, Journal of Nonlinear and Convex Analysis, 24(10), 2023, pp. 2239–

2257. 

 

[3] Borwein JM, Lewis AS. Convex Analysis and Nonlinear Optimization, CMS Books in 

Mathematics, Springer Science+Business Media, Inc., New York, 2006. 

 

[4] Clarke FH. Necessary conditions for nonsmooth problems in optimal control and the calculus of 

variations, Thesis, University of Washington, Seattle, 1973. 

 

[5 ] Clarke FH. Generalized gradients and applications, Trans. Amer. Math. Soc., 205, pp. 247–262, 

1975. 

 

[6] Ekeland I, Temam R. Convex Analysis and Variational Problems, Elsevier, 1976. 

 

[7] Gasimov RN. Duality in nonconvex optimization, Ph.D. Dissertation, Department of Operations 

Research and Mathematical Modeling, Baku State University, Baku, 1992. 

 

[8] Gasimov RN. Augmented Lagrangian duality and nondifferentiable optimization methods in 

nonconvex programming, J. Global Optimization, 24, 2002, pp. 187–203. 

 

[9] Kasimbeyli R, Mammadov M. Optimality conditions in nonconvex opti-mization via weak 

subdifferentials, Nonlinear Analysis: Theory, Methods and Applications, 74, 2011, pp. 2534–

2547. 

 

[10] Rockafellar RT. Convex analysis, Princeton University Press, Princeton, 1970.  

 

[11] Rockafeller RT. Convex analysis and dual extremum problems. Thesis, Harvard, 1963.  

 

 

 

 

 

 

 


